
Explicitly	Parallel	Pla.orms		

•  Explicit Parallelism, Task Parallelism 
•  Mostly in the order of >> 10 
•  Requires active involvement of the programmer and /

or compiler (no free lunch) 
•  Requires additional program constructs 
•  Requires new programming paradigms 



Amdahl’s	Law	
Given	a	computa<on	of	which	a	frac<on	of	q	cannot	be	
parallelized.		
Then	the	maximal	speedup	with	P	processors	is	limited	to:	
	

	 	 	SP = T / ( q T + (1-q) T / P )		
	
with	T	the	sequen<al	<me.	
	
So,	with 	q	=	0.01				 	max	speedup	<=		100	regardless	of	P	

	 	 	q	=	0.05 	 	max	speedup	<=				20	regardless	of	P	
	 	 	q	=	0.10 	 	max	speedup	<=				10	regardless	of	P	

	



Flynn’s	Taxonomy	

•  Processing	units	in	parallel	computers	either	operate	
under	the	centralized	control	of	a	single	control	unit	or	
work	independently.		

•  If	there	is	a	single	control	unit	that	dispatches	the	
same	instruc<on	to	various	processors	(that	work	on	
different	data),	the	model	is	referred	to	as	single	
instruc<on	stream,	mul<ple	data	stream	(SIMD).		

•  If	each	processor	has	its	own	control	control	unit,	
each	processor	can	execute	different	instruc<ons	on	
different	data	items.	This	model	is	called	mul<ple	
instruc<on	stream,	mul<ple	data	stream	(MIMD).		



SIMD	and	MIMD	architectures	

A	typical	SIMD	architecture	(a)	and	a	typical	MIMD	architecture	(b).	



SIMD	Processors		
	
•  The	same	instruc=on	on	different	processors	(func=onal	units).	

Execu<on	is	=ghtly	synchronized.	
•  Some	of	the	earliest	parallel	computers	such	as	the	Illiac	IV,	

MPP,	DAP,	CM-2,	and	MasPar	MP-1	belonged	to	this	class	of	
machines.	

•  Variants	of	this	concept	have	found	use	in	co-processing	units	
such	as	the	MMX	units	in	Intel	processors	and	GPU’s	like	
NVIDIA.		

•  SIMD	relies	on	the	regular	structure	of	computa=ons	(such	as	
those	in	image	processing).		

•  It	is	oWen	necessary	to	selec<vely	turn	off	opera<ons	on	certain	
data	items.	For	this	reason,	most	SIMD	programming	paradigms	
allow	for	an	``ac=vity	mask'',	which	determines	if	a	processor	
should	par<cipate	in	a	computa<on	or	not.		



MIMD	Processors	
•  In	contrast	to	SIMD	processors,	MIMD	processors	can	

execute	different	programs	on	different	processors.		
•  A	variant	of	this,	called	single	program	mul<ple	data	

streams	(SPMD)	executes	the	same	program	on	different	
processors,	but	allows	for	different	instruc<ons	to	be	
executed	on	each	processor	(if/case	stmts)		

•  It	is	easy	to	see	that	SPMD	and	MIMD	are	closely	related	
in	terms	of	programming	flexibility	and	underlying	
architectural	support.		

•  Examples	of	such	pla.orms	include	current	genera<on	Sun	
Ultra	Servers,	SGI	Origin	Servers,	mul=processor	PCs,	
worksta=on	clusters,	and	the	IBM	SP.		



SIMD-MIMD	Comparison		
•  SIMD	computers	require	less	hardware	than	MIMD	

computers	(single	control	unit).		
•  However,	since	SIMD	processors	are	<ghtly	synchronized	and	

therefore	specially	designed,	they	tend	to	be	expensive	and	
have	long	design	cycles.	(NVIDIA	forms	an	excep<on	to	this,	
WHY?)		

•  In	contrast,	pla.orms	suppor<ng	the	MIMD/SPMD	paradigm	
can	be	built	from	inexpensive	off-the-shelf	components	with	
rela<vely	lible	effort	in	a	short	amount	of	<me.		

•  Not	all	applica=ons	are	naturally	suited	to	SIMD	processors.		
•  MIMD/SPMD	pla.orms	have	rela<vely	large	communica=on	

overhead,	therefore	ask	for	large	grain	parallelism.	



Communica<on	Model	of	Parallel	Pla.orms		

•  There	are	two	primary	forms	of	data	exchange	
between	parallel	tasks	-	accessing	a	shared	
data	space	and	exchanging	messages.		

•  Pla.orms	that	provide	a	shared	data	space	
are	called	shared-address-space	machines	or	
mul<processors.		

•  Pla.orms	that	support	messaging	are	also	
called	message	passing	plaQorms	or	mul<-
computers.		



Shared-Address-Space	Pla.orms		

•  Part	(or	all)	of	the	memory	is	accessible	to	all	
processors.		

•  Processors	interact	by	modifying	data	objects	
stored	in	this	shared-address-space.		

•  If	the	<me	taken	by	a	processor	to	access	any	
memory	word	in	the	system	global	is	iden<cal,	
the	pla.orm	is	classified	as	a	uniform	memory	
access	machine	(UMA).	If	this	is	not	the	case	
then	we	refer	to	a	non-uniform	memory	access	
machine	(NUMA).		



NUMA	and	UMA	Shared-Address-
Space	Pla.orms		

	

	
	

(a)  Uniform-memory	access	shared-address-space	computer;		
(b)  Uniform-memory-access	shared-address-space	computer	with	caches	

and	memories;		
(c)  Non-uniform-memory-access	shared-address-space	computer	with	

local	memory	only.	



Programming	Consequences	
•  In	contrast	to	UMA	pla.orms,	NUMA	machines	require	
locality	from	underlying	algorithms	for	performance.		

•  Programming	Shared-Address-Space	plaQorms	is	easier	
since	reads	and	writes	are	implicitly	visible	to	other	
processors.		

•  However,	read-write	data	to	shared	data	must	be	
coordinated.		

•  Caches	in	such	machines	require	coordinated	access	to	
mul<ple	copies.	This	leads	to	the	cache	coherence	
problem.		

•  A	weaker	model	of	these	machines	provides	an	address	
map,	but	not	coordinated	access.	These	models	are	called	
non	cache	coherent	shared	address	space	machines.		



Shared-Address-Space		
vs.		

Shared	Memory	Machines		

•  We	refer	to	Shared-Address-Space	Pla.orms	
as	a	programming	abstrac=on	and	to	Shared	
Memory	Machines	as	a	physical	machine.		

•  It	is	possible	to	provide	a	shared	address	
space	using	a	physically	distributed	memory.		



Message-Passing	Pla.orms		

•  These	pla.orms	comprise	of	a	set	of	processors	
and	their	own	(exclusive)	memory.		

•  Naturally	examples	are	clustered	worksta<ons	and	
non-shared-address-space	mul<-computers.		

•  These	pla.orms	are	programmed	using	(variants	
of)	send	and	receive	primi=ves.		

•  Libraries	such	as	MPI	(Message	Passing	Interface)	
and	PVM	(Parallel	Virtual	Machine)	provide	such	
primi<ves.	OpenMP	is	an	API	based	on	
mul<threading.	



Message	Passing		
vs.		

Shared	Address	Space	Pla.orms	

•  Message	passing	requires	liSle	hardware	
support,	other	than	a	network.		

•  Shared	address	space	plaQorms	can	easily	
emulate	message	passing.	The	reverse	is	
more	difficult	to	do	(in	an	efficient	manner).		



Interconnec=on	Networks		
for	Parallel	Computers		

•  Interconnec<on	networks	carry	data	between	
processors	and	to	memory.		

•  Interconnects	are	made	of	switches	and	links	
(wires,	fiber).		

•  Interconnects	are	classified	as	sta=c	or	dynamic.		
•  Sta=c	networks	consist	of	point-to-point	
communica<on	links	among	processing	nodes	
and	are	also	referred	to	as	direct	networks.		

•  Dynamic	networks	are	built	using	switches	and	
communica<on	links.	Dynamic	networks	are	also	
referred	to	as	indirect	networks.	



Sta<c	and	Dynamic	
Interconnec<on	Networks		

Classifica<on	of	interconnec<on	networks:	(a)	a	sta=c	network;	
and	(b)	a	dynamic	network.	



Network	Topologies		

•  A	variety	of	network	topologies	have	been	
proposed	and	implemented.		

•  These	topologies	tradeoff	performance	for	
cost.		

•  Commercial	machines	oWen	implement	
hybrids	of	mul=ple	topologies	for	reasons	of	
packaging,	cost,	and	available	components.		



Network	Topologies:	Buses		

•  Some	of	the	simplest	and	earliest	parallel	machines	used	
buses.		

•  All	processors	access	a	common	bus	for	exchanging	data.		
•  The	distance	between	any	two	nodes	is	O(1)in	a	bus.	
The	bus	also	provides	a	convenient	broadcast	media.		

•  However,	the	bandwidth	of	the	shared	bus	is	a	major	
boSleneck.		

•  Typical	bus	based	machines	are	limited	to	dozens	of	
nodes.	Sun	(Cray)	servers	and	Intel	Core	based	shared-
bus	mul=processors	are	examples	of	such	architectures.		



Network	Topologies:	Buses		

Bus-based	interconnects	(a)	with	no	local	caches;	(b)	with	local	
memory/caches.	

Since	much	of	the	data	accessed	by	processors	is	local	to	the	
processor,	a	local	memory	can	improve	the	performance.	



Network	Topologies:	Crossbars	
	

A	completely	non-blocking	crossbar	network	connec<ng	p	
processors	to	b	memory	banks.	

A	crossbar	network	uses	an	p×m	grid	of	switches	to	connect	
p	inputs	to	m	outputs	in	a	non-blocking	manner.	



Network	Topologies:	Crossbars	

•  The	cost	of	a	crossbar	of	p	processors	grows	
as	O(p2).	

•  This	is	generally	difficult	to	scale	for	large	
values	of	p.	

•  Examples	of	machines	that	employ	crossbars	
include	the	Sun	Ultra	HPC	10000	and	the	
Fujitsu	VPP500.	



Network	Topologies:		
Mul<stage	Networks		

•  Crossbars	have	excellent	performance	scalability	
but	poor	cost	scalability.		

•  Buses	have	excellent	cost	scalability,	but	poor	
performance	scalability.		

•  Mul=stage	interconnects	strike	a	compromise	
between	these	extremes.		



		

	
Network	Topologies:	Mul<stage	Networks	

	

The	schema<c	of	a	typical	mul<stage		
interconnec<on	network.	



• 		

	
Network	Topologies:		

Mul<stage	Omega	Network	
	•  One	of	the	most	commonly	used	mul<stage	

interconnects	is	the	Omega	network.	
•  This	network	consists	of	log p stages,	where	
p	is	the	number	of	inputs/outputs.	

•  At	each	stage,	input	i	is	connected	to	output	j:	



• 		

	
Network	Topologies:	Omega	Network	

	Each	stage	of	the	Omega	network	implements	a	perfect	
shuffle	as	follows:	

A	perfect	shuffle	interconnec=on	for	eight	inputs	and	outputs.	



Rou<ng	in	Omega	Network	

X1X2X3X4 -> X1X2X3Y4 -> X2X3Y4X1 -> X2X3Y4Y1 ->  
        Sw        PS         Sw         PS  
X3Y4Y1X2 -> X3Y4Y1Y2 -> Y4Y1Y2X3 -> Y4Y1Y2Y3 -> 
        Sw        PS         Sw 
Y1Y2Y3Y4 
          

Connec<ng		X1X2X3X4	to	Y1Y2Y3Y4			



		
		

Network	Topologies:		
Mul=stage	Omega	Network	

•  The	perfect	shuffle	paberns	are	connected	
using	2×2	switches.	

•  The	switches	operate	in	two	modes:	crossover	
or	pass-through	(switch	bit	posi<on	or	not).	

Two	switching	configura<ons	of	the	2	×	2	switch:		
(a)	Pass-through;	(b)	Cross-over.	



• 		
Network	Topologies:		

Mul=stage	Omega	Network	
	

	
	
	

A	complete	omega	network	Ω8	connec<ng	8	inputs	and	eight	outputs.	
	
An	omega	network	Ωn	has	n/2 * log n switching	nodes	(log n stages).	

A	complete	Omega	network	with	the	perfect	shuffle	interconnects	
and	switches	can	be	illustrated	as	follows:	



Network	Topologies:		
the	BuSerfly	Network	

		

A	varia<on	of	
The	Omega	
network	

Two	Stages;	



In	Fact:	The	following	networks	are	equivalent	
• 		



• 		



•  		



Rela<onship	with	FFT	
• 		



Rou<ng	Proper<es	

•  Clos/Benes	showed	that	RNRN
-1		can	realize	any	permuta=on.	

Proof	is	based	on	Hall’s	marriage	theorem:		
	
Imagine	two	groups;	one	of	n	men,	and	one	of	n	women.	For	each	woman,	there	is	a	subset	of	the	men,	
any	one	of	which	she	would	happily	marry;	and	any	man	would	be	happy	to	marry	a	woman	who	wants	
to	marry	him.	Consider	whether	it	is	possible	to	pair	up	(in	marriage)	the	men	and	women	so	that	every	
person	is	happy.	If	we	let	Ai	be	the	set	of	men	that	the	i-th	woman	would	be	happy	to	marry,	then	the	
marriage	theorem	states	that	each	woman	can	happily	marry	a	man	if	and	only	for	any	subset	of	the	
women,	the	number	of	men	whom	at	least	one	of	the	women	would	be	happy	to	marry,	be	at	least	as	
big	as	the	number	of	women	in	that	subset.	It	is	obvious	that	this	condi<on	is	necessary,	as	if	it	does	not	
hold,	there	are	not	enough	men	to	share	among	the	women.	What	is	interes<ng	is	that	it	is	also	a	
sufficient	condi<on.	
	

•  ΩN	is	equivalent	with	RN
-1,	so	ΩN

-1ΩN	can	also	realize	any	
permuta=on.	Non-blocking!!!!!	

•  This	is	not	the	case	for	ΩNΩN.	
•  ΩNΩNΩN	can	also	realize	any	permuta=ons.	Proof	based	on	

coun=ng	arguments,	actual	rou=ng	is	very	complicated.	



Network	Topologies:		
Completely	Connected	Network	

•  Each	processor	is	connected	to	every	other	
processor.	

•  The	number	of	links	in	the	network	scales	as	
O(p2).	

•  While	the	performance	scales	very	well,	the	
hardware	is	not	realizable	for	large	values	of	p.	

•  In	this	sense,	these	networks	are	sta=c	
counterparts	of	crossbars.	



• 		
Network	Topologies:	Completely	

Connected	and	Star	Connected	Networks	

(a)	A	completely-connected	network	of	eight	nodes;		
(b)	a	star	connected	network	of	nine	nodes.	



Network	Topologies:		
Star	Connected	Network	

•  Every	node	is	connected	only	to	a	common	
node	at	the	center.	

•  Distance	between	any	pair	of	nodes	is	O(1).	
However,	the	central	node	becomes	a	
boSleneck.	

•  In	this	sense,	star	connected	networks	are	
sta=c	counterparts	of	buses.	



• 		
Network	Topologies:		

Linear	Arrays,	Meshes,	and	k-d	Meshes	
	

•  In	a	linear	array,	each	node	has	two	neighbors,	
one	to	its	leW	and	one	to	its	right.	If	the	nodes	at	
either	end	are	connected,	we	refer	to	it	as	a	1-D	
torus	or	a	ring.	

•  A	generaliza<on	to	2	dimensions	has	nodes	with	
4	neighbors,	to	the	north,	south,	east,	and	west.	

•  A	further	generaliza<on	to	d	dimensions	has	
nodes	with	2d	neighbors.	

•  A	special	case	of	a	d-dimensional	mesh	is	a	
hypercube.	Here,	d	=	log	p,	where	p	is	the	total	
number	of	nodes.	



• 		
Network	Topologies:		

Two-	and	Three	Dimensional	Meshes	
	

Two	and	three	dimensional	meshes:	(a)	2-D	mesh	with	no	wraparound;	
(b)	2-D	mesh	with	wraparound	link	(2-D	torus);	and	(c)	a	3-D	mesh	with	

no	wraparound.	



• 		
Network	Topologies:		

Hypercubes	and	their	Construc<on	
	

	
Construc=on	of	hypercubes	from	hypercubes	of	lower	dimension.	



	
Proper=es	of	Hypercubes	

	
•  The	distance	between	any	two	nodes	is	at	most	
log	p.	

•  Each	node	has	log	p	neighbors.	
•  The	distance	between	two	nodes	is	given	by	the	
number	of	bit	posi=ons	at	which	the	two	nodes	
differ,	and	therefore	is	limited	to	log	p.	



• 		
Network	Topologies:	Tree-Based	Networks	

	

	
Complete	binary	tree	networks:	(a)	a	sta=c	tree	network;	and	(b)	a	

dynamic	tree	network.	



Network	Topologies:	Tree	Proper<es		

•  The	distance	between	any	two	nodes	is	no	
more	than	2	log	p.		

•  Links	higher	up	the	tree	poten<ally	carry	
more	traffic	than	those	at	the	lower	levels.		

•  For	this	reason,	a	variant	called	a	fat-tree,	
fabens	the	links	as	we	go	up	the	tree.		

•  Trees	can	be	laid	out	in	2D	with	no	wire	
crossings	in	Ω	(√n	log	n)	space	area.		



• 		
Network	Topologies:	Fat	Trees	

	

	

A	fat	tree	network	of	16	processing	nodes.	Bandwidth	
each	=mes	doubles	when	going	up	one	level.		



Evalua=ng		
Sta<c	Interconnec<on	Networks	

•  Diameter:	The	distance	between	the	farthest	two	nodes	in	the	network.	
The	diameter	of	a	linear	array	is	p	−	1,	that	of	a	mesh	is	2(					−	1),	that	of	a	
tree	and	hypercube	is	log	p,	and	that	of	a	completely	connected	network	
is	O(1).	

•  Bisec6on	Width:	The	minimum	number	of	wires	you	must	cut	to	divide	
the	network	into	two	equal	parts.	The	bisec<on	width	of	a	linear	array	
and	tree	is	1,	that	of	a	mesh	is						,	that	of	a	hypercube	is	p/2	and	that	of	a	
completely	connected	network	is	p2/4.	

•  Arc	connec6vity:	The	minimum	number	of	edges	(arcs)	that	need	to	be	
removed	to	make	the	graph	disconnected.	

•  Vertex	connec6vity:	The	minimum	number	of	ver=ces	(nodes)	that	need	
to	be	removed	to	make	the	graph	disconnected.	

•  Cost:	The	number	of	links	or	switches	(whichever	is	asympto<cally	higher)	
is	a	meaningful	measure	of	the	cost.	However,	a	number	of	other	factors,	
such	as	the	ability	to	layout	the	network,	the	length	of	wires,	etc.,	also	
factor	in	to	the	cost.	



• 		
Evalua<ng		

Sta=c	Interconnec<on	Networks	

Network  Diameter  Bisection
Width  

Arc 
Connectivity  

Cost  
(No. of links)  

Completely-connected  

Star  

Complete binary tree  

Linear array  

2-D mesh, no wraparound  

2-D wraparound mesh  

Hypercube  

Wraparound k-ary d-cube  



• 		

Evalua<ng		
Dynamic	Interconnec<on	Networks	

	
Network  Diameter  Bisection 

Width  
Arc 
Connectivity  

Cost  
(No. of links)  

Crossbar  

Omega Network  

Dynamic Tree  



Message	Passing	Costs	in		
Parallel	Computers	

•  The	total	<me	to	transfer	a	message	over	a	
network	comprises	of	the	following:	
–  Startup	@me	(ts):	Time	spent	at	sending	and	receiving	
nodes	(execu<ng	the	rou<ng	algorithm,	programming	
routers,	etc.).	

–  Per-hop	@me	(th):	This	<me	is	a	func<on	of	number	of	
hops	and	includes	factors	such	as	switch	latencies,	
network	delays,	etc.	

–  Per-word	transfer	@me	(tw):	This	<me	includes	all	
overheads	that	are	determined	by	the	length	of	the	
message.	This	includes	bandwidth	of	links,	error	
checking	and	correc<on,	etc.	



Store-and-Forward	Rou<ng		
•  A	message	traversing	mul<ple	hops	is	completely	
received	at	an	intermediate	hop	before	being	
forwarded	to	the	next	hop.	

•  The	total	communica<on	cost	for	a	message	of	
size	m	words	to	traverse	l	communica<on	links	is	

•  In	most	pla.orms,	th	is	small	and	the	above	
expression	can	be	approximated	by	
			



Packet	Rou<ng	
•  Store-and-forward	makes	poor	use	of	communica<on	
resources.		

•  Packet	rou<ng	breaks	messages	into	packets	and	
pipelines	them	through	the	network.		

•  Since	packets	may	take	different	paths,	each	packet	
must	carry	rou<ng	informa<on,	error	checking,	
sequencing,	and	other	related	header	informa<on.		

•  The	total	communica<on	<me	for	packet	rou<ng	is	
approximated	by:		

	
•  The	factor	tw	accounts	for	overheads	in	packet	
headers.	



Cut-Through	Rou<ng		
•  Takes	the	concept	of	packet	rou<ng	to	an	extreme	by	
further	dividing	messages	into	basic	units	called	flits.		

•  Since	flits	are	typically	small,	the	header	informa<on	
must	be	minimized.		

•  This	is	done	by	forcing	all	flits	to	take	the	same	path,	in	
sequence.		

•  A	tracer	message	first	programs	all	intermediate	
routers.	All	flits	then	take	the	same	route.		

•  Error	checks	are	performed	on	the	en<re	message,	as	
opposed	to	flits.		

•  No	sequence	numbers	are	needed.		



Cut-Through	Rou<ng		

•  The	total	communica<on	<me	for	cut-through	
rou<ng	is	approximated	by:		

•  This	is	iden<cal	to	packet	rou<ng,	however,	tw	
is	typically	much	smaller.		



Rou<ng	Mechanisms		
for	Interconnec<on	Networks		

How	does	one	compute	the	route	that	a	message	
takes	from	source	to	des<na<on?		

– Rou<ng	must	prevent	deadlocks	-	for	this	reason,	we	
use	dimension-ordered	or	e-cube	rou<ng.		

– Rou<ng	must	avoid	hot-spots	-	for	this	reason,	two-
step	rou<ng	is	oWen	used.	In	this	case,	a	message	
from	source	s	to	des<na<on	d	is	first	sent	to	a	
randomly	chosen	intermediate	processor	i	and	then	
forwarded	to	des<na<on	d.		

	



• 		
Case	Studies:		

The	IBM	Blue-Gene	Architecture		



• 		
Case	Studies:		

The	Cray	T3E	Architecture	

Interconnec<on	network	of	the	Cray	T3E:		
(a)	node	architecture;	(b)	network	topology.	



• 		
Case	Studies:		

The	SGI	Origin	3000	Architecture	



The	Cedar	Architecture	
• 		



MasPar	MP	1	


