
How	are	high	speeds	being	realized?	

•  Faster	and	faster	processors	(implicit	
parallelism	and/or	fine	grain	
parallelism)	

•  More	and	more	parallelism	(explicit	
parallelism	and/or	medium/coarse	
grain	parallelism)	

	
	
	



Implicit	Parallelism	
•  Serial	Parallelism,	Peephole	OpDmizaDons,	
Pipelining	

•  Mostly	in	the	order	of	2-6	
•  Inherently	part	of	processor/cache/memory	
design	

•  Requires	no	acDve	involvement	of	the	
programmer	(it’s	for	free)	

•  Enabled	through	the	explosion	of	transistor	on	
chip	(billions	on	a	processor	IC,	tens	of	billions	on	
a	memory	IC)	



Trends	in	Processor	Architectures:	
è	SubstanDal	Increase	in	clock	speeds	and	

transistor	counts	
		

•  How	to	uDlize	these	resources	in	an	efficient	
manner.	

•  Current	processors	use	these	resources	in	
mulDple	funcDonal	units	and	execute	mulDple	
instrucDons	in	the	same	cycle.		

•  The	precise	manner	in	which	these	
instrucDons	are	selected	and	executed	
provides	impressive	diversity	in	architectures.		



Pipelining			

•  Pipelining	overlaps	various	stages	of	instrucDon	
execuDon	to	achieve	beUer	performance.		

•  An	instrucDon	can	be	executed	while	the	next	one	is	
being	decoded	and	the	next	one	is	being	fetched.		

	



Pipelining	and	Superscalar	ExecuDon		

•  Pipelining,	however,	has	several	limitaDons.		
•  The	speed	of	a	pipeline	is	eventually	limited	by	the	slowest	

stage.		
•  For	this	reason,	convenDonal	processors	rely	on	very	deep	

pipelines	(up	to	20	stage	pipelines	in	state-of-the-art	Intel	
Core	processors).		

•  However,	in	typical	program	traces,	every	5-6th	instrucDon	
is	a	condiDonal	jump!	This	requires	very	accurate	branch	
predicDon.		

•  The	penalty	of	a	miss-predicDon	grows	with	the	depth	of	
the	pipeline,	since	a	larger	number	of	instrucDons	will	have	
to	be	flushed.		

	
	èèè			MulDple	Pipelines	(Superscalar)	



IllustraDon	
Speedup	of	a	pipeline	of	depth	k	and	average	number	of	pipelined	
instrucDons	n:	

	 	 	S	(n,	k)	=	k*n	/	(n	+	k	-1)	
So,	for	k	=	20:	S	(n,	20)	=	20n	/	(n+19).	

	 	 	n=10:	 	 	6.9	
	 	 	n=100: 	 	16.8	
	 	 	n=1000:	 	19.6							->			20	(k)	

However,	with	p%	miss	predicDon	and	branch	every	5	instrucDons:	average	
length	≈	(100/p)*5	=	500/p.	So	

	 	p	=	10%:	average	length	=	50.	So	for	all	n:	maximal	speedup	=	14.5	
	 	p	=	20%:	average	length	=	25.	So	for	all	n:	maximal	speedup	=	11.4	
	 	p	=	30%:	average	length	=	16.	So	for	all	n:	maximal	speedup	=			9.4	

Considering	the	fact	that	implemenDng	pipelines	generates	delays	(latches),	
in	general	there	is	a	performance	loss	of	50%,	making	the	maximal	speedups:	

	 	7.2	(p=10%)	
	 	5.7	(p=20%)	
	 	4.7	(p=30%)	

	
	 	 	 		



Superscalar	ExecuDon		
Scheduling	of	instrucDons	is	determined	by	a	number	of	
factors:		

–  True	Data	Dependency:	The	result	of	one	operaDon	is	an	
input	to	the	next.		

–  Resource	Dependency:	Two	operaDons	require	the	same	
resource.		

–  Branch	Dependency:	Scheduling	instrucDons	across	
condiDonal	branch	statements	cannot	be	done	
determinisDcally	a-priori.		

–  The	scheduler	looks	at	a	large	number	of	instrucDons	in	an	
instrucDon	queue	and	selects	appropriate	number	of	
instrucDons	to	execute	concurrently	based	on	these	
factors.		

–  The	complexity	of	this	scheduler	is	an	important	constraint	
on	superscalar	processors.		



InstrucDon	Issue	Mechanisms	

•  InstrucDons	can	be	issued	only	in	the	order	in	which	
they	are	encountered.	That	is,	if	the	second	instrucDon	
cannot	be	issued	because	it	has	a	data	dependency	
with	the	first,	only	one	instrucDon	is	issued	in	the	
cycle.	This	is	called	in-order	issue.		

•  In	a	more	aggressive	model,	instrucDons	can	be	issued	
out-of-order.	In	this	case,	if	the	second	instrucDon	has	
data	dependencies	with	the	first,	but	the	third	
instrucDon	does	not,	the	first	and	third	instrucDons	can	
be	co-scheduled.	This	is	also	called	dynamic	issue.		

•  Performance	of	in-order	issue	is	generally	limited.	



Superscalar	ExecuDon:		
Efficiency	ConsideraDons		

•  Not	all	funcDonal	units	can	be	kept	busy	at	all	Dmes.		
•  If	during	a	cycle,	no	funcDonal	units	are	uDlized,	this	is	
referred	to	as	verDcal	waste.		

•  If	during	a	cycle,	only	some	of	the	funcDonal	units	are	
uDlized,	this	is	referred	to	as	horizontal	waste.		

•  Due	to	limited	parallelism	in	typical	instrucDon	traces,	
dependencies,	or	the	inability	of	the	scheduler	to	
extract	parallelism,	the	performance	of	superscalar	
processors	is	eventually	limited.		

•  ConvenDonal	microprocessors	typically	support	four-
way	superscalar	execuDon.		



Very	Long	InstrucDon	Word	(VLIW)	
Processors		

•  The	hardware	cost	and	complexity	of	the	superscalar	
scheduler	is	a	major	consideraDon	in	processor	design.		

•  To	address	this	issues,	VLIW	processors	rely	on	compile	
Dme	analysis	to	idenDfy	and	bundle	together	
instrucDons	that	can	be	executed	concurrently.		

•  These	instrucDons	are	packed	and	dispatched	
together,	and	thus	the	name	very	long	instrucDon	
word.		

•  This	concept	was	used	with	some	commercial	success	
in	the	MulDflow	Trace	machine	(circa	1984).		

•  Variants	of	this	concept	are	employed	in	the	Intel	IA64	
processors.		



Very	Long	InstrucDon	Word	(VLIW)	
Processors:	ConsideraDons		

•  Issue	hardware	is	simpler.		
•  Compiler	has	a	bigger	context	from	which	to	select	co-
scheduled	instrucDons.		

•  Compilers,	however,	do	not	have	runDme	informaDon	
such	as	cache	misses.	Scheduling	is,	therefore,	
inherently	conservaDve.		

•  Branch	and	memory	predicDon	is	more	difficult.		
•  VLIW	performance	is	highly	dependent	on	the	
compiler.	A	number	of	techniques	such	as	loop	
unrolling,	speculaDve	execuDon,	branch	predicDon	are	
criDcal.		

•  Typical	VLIW	processors	are	limited	to	4-way	to	8-way	
parallelism.		



LimitaDons	of		
Memory	System	Performance		

•  Memory	system,	and	not	processor	speed,	is	
omen	the	boUleneck	for	many	applicaDons.		

•  Memory	system	performance	is	largely	captured	
by	two	parameters:	latency	and	bandwidth.		

•  Latency	can	be	improved	by	providing	caches	
between	processor	and	memory	

•  Bandwidth	can	be	improved	by	increasing	the	
amount	of	memory	interleaving	(banks)	and	
thereby	increasing	memory	block	size.	



Impact	of	Memory	Bandwidth:	an	Example		

Consider	the	following	code	fragment,	which	sums	columns	of	
the	matrix	b	into	a	vector column_sum:  

 for (i = 0; i < 1000; i++)  
       column_sum[i] = 0.0; 
       for (j = 0; j < 1000; j++) 
            column_sum[i] += b[j][i]; 
	
è Normally	the	vector	column_sum	is	small	and	easily	fits	

	into	the	cache.	
è The	matrix	b	is	accessed	in	a	column	order,	resulDng	in	very	

	bad	striding	behavior,	reducing	memory	bandwidth		
	significantly	

	



Impact	of	Memory	Bandwidth:	an	Example	
	

We	can	fix	the	code	as	follows:  
 for (i = 0; i < 1000; i++) 
       column_sum[i] = 0.0; 
 for (j = 0; j < 1000; j++) 
       for (i = 0; i < 1000; i++) 
            column_sum[i] += b[j][i]; 
	
In	this	case,	the	matrix	is	traversed	in	a	row-order	and	
performance	can	be	expected	to	be	significantly	
beUer.  

	



Impact	of	Memory	Bandwidth:	an	Example	
	

Note	that	if	the	size	of	the	columns	of	the	b	matrix	are	larger	than	
the	(L1)	cache	size	say	8MB,	the	column_sum	vector	cannot	be	
kept	in	cache	resulDng	in	cache	misses	on	column_sum.	This	
can	be	fixed	by	loop	blocking:	rewrite	the	loop	into	an	equivalent	
form: 

 for (i = 0; i < 10000000; i++) 
       column_sum[i] = 0.0; 
 for (j = 0; j < 1000; j++) 
    for (k = 0; k < 10000000; k = k+8000000) 
      for (i = k; i < k+8000000; i++) 
               column_sum[i] += b[j][i]; 
	
Then	the	j-loop	and	k-loop	are	interchanged	resulDng	into:	
	



Impact	of	Memory	Bandwidth:	an	Example	
	

 for (i = 0; i < 10000000; i++) 
       column_sum[i] = 0.0; 
 for (k = 0; k < 10000000; k = k+8000000) 
    for (j = 0; j < 1000; j++) 
      for (i = k; i < k+8000000; i++) 
               column_sum[i] += b[j][i]; 
	
	
And	the	operand	column_sum	can	be	kept	in	cache	speeding	
up	the	computaDon	again	with	a	significant	factor!!!!!	

	
	



Other	ways	of	reducing	(memory)	latencies	

Ø MulDthreading	allows	delays	to	be	hidden	by	
delaying	execuDon	of	one	thread	in	favor	of	a	
thread	which	is	not	delayed.	

Ø Prefetching	allows	data	to	be	put	in	cache	
before	the	processor	actually	needs	the	data	


