
tUPL	Parallel	Programming	
Paradigm	



Data	Flow	Compu4ng	

Tradi4onally,	compilers	analyze	program	source	code	for	
data	dependencies	between	instruc4ons	in	order	to	
be=er	organize	the	instruc4on	sequences	in	the	binary	
output	files.	
	
A	dataflow	compiler	records	these	dependencies	by	
crea4ng	unique	tags	for	each	dependency	instead	of	
using	variable	names.	By	giving	each	dependency	a	
unique	tag,	it	allows	the	non-dependent	code	segments	
in	the	binary	to	be	executed	out	of	order	and	in	parallel.	
	



Dataflow	Execu4on	
•  Programs	are	loaded	into	the	Content	Addressable	Memory	

(CAM)	of	a	dynamic	dataflow	computer.		
•  When	all	of	the	tagged	operands	of	an	instruc4on	become	

available	(that	is,	output	from	previous	instruc4ons	and/or	user	
input),	the	instruc4on	is	marked	as	ready	for	execu4on	by	an	
execu4on	unit.	This	is	known	as	ac+va+ng	or	firing	the	
instruc4on.	

•  Once	an	instruc4on	is	completed	by	an	execu4on	unit,	its	
output	data	is	stored	(with	its	tag)	in	the	CAM.	Any	instruc4ons	
that	are	dependent	upon	this	par4cular	datum	(iden4fied	by	its	
tag	value)	are	then	marked	as	ready	for	execu4on.	



In	a	Picture	
• 		

Manchester	Data	Flow	Machine	



Dataflow	in	Prac4ce	

However,	in	prac4ce	the	following	problems	occurred:	
	
– Efficiently	broadcas4ng	data	tokens	in	a	massively	
parallel	system.	

– Efficiently	dispatching	instruc4on	tokens	in	a	massively	
parallel	system.	

– Building	Content	Addressable	Memory	(Tag	Memory)	
large	enough	to	hold	all	of	the	dependencies	of	a	real	
program.	



Linda	Coordina4on	Language	
•  Main	usage:	in	combina4on	with	other	exis4ng	languages,	

e.g.	C/Fortran,	provide	a	mean	to	link	less	expensive	desktop	
computers	together	and	combine	their	power	so	they	can	
jointly	tackle	problems.		

•  A	logically	global	associa4ve	memory,	called	a	tuplespace,	in	
which	processes	store	and	retrieve	tuples.	

•  This	model	is	implemented	as	a	"coordina4on	language"	in	
which	several	primi4ves	opera4ng	on	ordered	sequence	of	
typed	data	objects,	"tuples”		
–  in	atomically	reads	and	removes—consumes—a	tuple	from	
tuplespace	

–  rd	non-destruc4vely	reads	a	tuplespace	
–  out	produces	a	tuple,	wri4ng	it	into	tuplespace	
–  eval	creates	new	processes	to	evaluate	tuples,	wri4ng	the	result	
into	tuplespace	



tUPL	
•  Free	Computer	Programming	from	common	
ar4facts	like	data	structures,	data	dependencies,	
explicit	parallelism	constructs	

•  Harness	a	compila4on	framework	such	that	
– Data	structures	are	generated	automa4cally	
– Data	dependencies	are	turned	into	opportuni4es	to	
op4mize	performance	

– Parallel	execu4on	is	guaranteed	
	



Basic	tUPL	Data	Type	
	
	 	 	 	 	 	<	token,	data	>	

	
Formally,	this	basic	data	type	is	even	further	
stripped	down	to	
	 	 	 	 	 	 	<	token	>A		

	
with	A	an	address	func4on,	s.t.	data	is	stored	at:	@A	[token] 		
and	the	value	which	is	stored	at	@A	[token]	is:	A	[token]	
So	data	==	A	[token]	

	
	
	
	



Address	func4on	A(ddr)	

A(ddr)	can	be	any	inver4ble	func4on,	but	mostly	
it	is	an	affine	func4on:	
	
So	Addr	can	be	represented	as	

Zn → Zk



NOTE!!!!	
	 	 	 	 	 	 	A	[	I,	J	]	=	5.0		

	
does	NOT	mean	that	element	[	I,	J	]	of		

	Matrix	A,	or	of	a		
	2-Dimensional	Array	A		

is	assigned	the	value	5.0.		
	
BUT:	

	5.0	is	stored	at	loca4on	@A	[	I,	J	],	or	that	
	the	data	value	of	<	I,	J	>A	becomes	5.0,	or	that		
	<	I,	J,	data	>	=	<	I,	J,	5.0	>*	

	
*	Note	that	tokens	can	be	more	dimensional:	token	tuples	t	
			In	this	case	t.i	represents	the	ith	field	of	t	



		
SO,	data	structures	as	we	know	them	do	not	
exists	in	tUPL,	only	
		
	single	storage	loca<ons	for	each	data	item,	
	represented	by	token	tuples	

	
We	need	a	mean	to	express	a	collec4on	or	set		
of	these	single	storage	loca4ons	
	
è	(Token)	Tuple	Reservoirs	



Examples	of	Tuple	Reservoirs	(I)	

A	Digraph	G(V,E):	
	T	=	{	<u,v>	|	u,	v	ε	V	and	(u,	v)	ε	E	}	
	with	address	func4on	Weigth	[	u,	v	]	represen4ng	the	
	address	at	which	the	weight	of	edge	(u,v)	is	stored	

	
A	Sparse	Matrix	A:	

	T	=	{	<i,j> |	at	row	i	and	column	j		
	 	 	 	 	 	 	there	is	a	nnz	element}	
	with	address	func4on	Value	[	i,j]	represen4ng	the	
	address	at	which	the	value	of	matrix	A	[	i,	j	]	is	stored	



Examples	of	Tuple	Reservoirs	(II)	

A	Linked	List	(of	single	storage	loca4ons):	
	T	=	{	<ik,jk> | 	1	<=	k	<=	n,	
	 	 	 	 	 	 	for	every	jk	,	1	<=	k	<	n,		
	 	 	 	 	 	 	 	there	exists	exactly	one	im,	
	 	 	 	 	 	 	 	such	that	jk	=	im	,	and	
	 	 	 	 	 	 	for	all	jk	,	1	<=	k	<=	n	,		
	 	 	 	 	 	 	 	the	values	are	different}	

Together	with	an	address	func4on	Value	[	ik,	jk	]	
represen4ng	the	value	at	the	kth	posi4on	in	the	list.	
OR	address	func4on	Value	[	ik]	!	(tUPL	allows	both)	



Examples	of	Tuple	Reservoirs	(III)	

Rela<onal	Database	Tables	
	T	=	{	< i >|	1	<=	i	<=	n,	with	i	represen4ng	
	 	 	 	 	 	the	ith	record	in	the	database	table}	
	and	associated	address	func4ons:	
	 	field1	[	i	],	field2	[	i	],	…,	fieldt	[	i	]	



tUPL	Loop	Structures	
Two	BASIC	Loop	Structures:	
	
     forelem ( t; t ε T ) 
     whilelem ( t; t ε T ) 

	
Both	structures	are	inherently		

	 	 	parallel	and	non-determinis4c	
 
This	means	that	any	tuple	of	T	can	be	taken	at	any	4me!! 
	
In	the	forelem	structure	every	tuple	is	taken	exactly	once,	
while	in	the	whilelem	every	tuple	can	be	taken	an	
arbitrary	number	of	4mes	(details	later)	
	



Example	I	

Sparse	Matrix-Vector	Mul<plica<on	
  
  forelem ( t; t ε T ) 
  { 

   Value_C[t.i]+= Value_A[t.i,t.j] 
          * Value_B[t.j] 

  }	



Example	II	(LU	factoriza4on)	
	for (k; kεN) 
 { 
  pivot = IDX_A<i,j>[(k,k)](); 
  forelem (t; t ε A.<i,j>[<(k,∞),k>]) 
  { 
   mult = Value[t.i,t.j]/Value[t.pivot,t.pivot]; 
   Value[t.i,t.j] = mult; 
   forelem (r; r ε A.<i,j>[<t.j,(t.j,∞)>]) 
   { 
    cand = NULL 
    forelem (q; q ε A.<i,j>[<t.i,t.j>]) 
     cand = q; 
    if (cand == NULL) 
    { 
     cand = <t,i,t.j> 
     A = A U cand; 
     Value[cand.i,cand.j] = 0 
    } 
    Value[cand.i,cand.j] -= mult*Value[r.i,r.j] 
   } 
  } 
 } 



Example	III	
SORTING	
	
	 	whilelem ( t; t ε T ) 
  { 

   if ( X[t.i] > X[t.j] ) 
    swap ( X[t.i], X[t.j] ) 

  }  

	



Example	IV:	MaxFlow	

	whilelem ( t; t ε T ) 
	{  if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] > 0) 
  { 
   delta_change = min(Remainder[t.v,t.w],Delta[t.u,t.v]); 
   Delta[t.v,t.w]+= delta_change; 
   Remainder[t.v,t.w] -= delta_change; 
   Remainder[t.w,t.v] += delta_change; 
   F[t.u,t.v] += delta_change; 
   Delta[t.u,t.v] -= delta_change 
  } 
  if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] == 0) 
  { 
   if (t.v == ‘s’ || t.v == ‘t’) 
   { 
    F[t.u,t.v] += Delta[t.u,t.v]; 
    Delta[t.u,t.v] = 0 
   } 
   else 
   {  # Reverse Flow 
    Delta[t.v,t.u] += Delta[t.u,t.v]; 
    Remainder[t.v,t.u]-= Delta[t.u,t.v]; 
    Delta[t.u,t.v] = 0 
   } 
  } 
 }  

 

T	=	{	<u,v,w>	|	(u,v)	and	(v,w)	(back)edges	of	G	and	w!=u }*	

*|T|	≈	(aver_out+aver_in)*(aver_out+aver_in-1)*|V|	
										≈	aver_out^4*|V|	



tUPL	Loop	Body	
One	or	more	condi<onally	executed	serial	codes	opera<ng	on	data	
items	which	are	defined	by	the	tokens	from	the	Tuple	Reservoir	and	
their	associated	address	func<ons*,	i.e.	
	
tUPL	Loop	Body:	

	 	 	if ( Cond_1 ) 
   { 
    Serial_Code_1 (< t >) 
   } 
   if ( Cond_2 ) 
   { 
    Serial_Code_2 (< t >) 
   } 
   … 
   if ( Cond_n ) 
   { 
    Serial_Code_n (< t >) 
   } 

 
Ø  All		Cond_i’s	are	exclusive	for	forelem.	For	whilelem	mul4ple	condi4ons	

can	be	true	at	the	same	4me	for	a	tuple.		
Ø  n	can	be	1	and	Cond_1	can	be	true. 
 
*Except	for	local/temporary	variables	with	respect	to	the	Loop	Body 



tUPL	Loop	Bodies:	Two	Cases	
I 	For	all		i,	j,	k,	and	m	there	is	no	flow	(an4)	
	dependence	between	
	 	Serial_Code_i (< tk >)	and	 	 	 	
	 	Serial_Code_j (< tm >) 

 
II 	There	exists		i,	j,	k,	and	m	for	which	there	is	flow	
	(an4)	dependence	between	
	 	Serial_Code_i (< tk >)	and	 	 	 	
	 	Serial_Code_j (< tm >) 

	
 
		
	



Case	I	
è There	are	no	Read	on	Write	Dependencies,	and/
	or	Write	on	Read	Dependencies	

è	For	all	i	and	k:	repeated	execu4on	of	just	
   Serial_Code_i (< tk >) 
 does	not	have	any	effects,	even	when	these	
	execu4ons	are	interleaved	with	the	execu4on	
	of	other	
   Serial_Code_j (< tm >) 

è Use	of		
   forelem ( t; t ε T ) 

è	As	a	result	each	Serial_Code_i (< tk >)	is	
	executed	exactly	once,	albeit	in	arbitrary	order	



Case	II	
è There	are	dependencies	between	the	
execu4on	of	one	condi4onal	serial	code	using	
one	tuple	with	the	execu4on	of	(possibly	
another)	condi4onal	code	on	another	(the	
same)	tuple		

è tUPL	relies	on	tuples	to	be	taken	at	any	4me	
è These	dependencies	have	to	be	broken	
è Leading	to	possible	repe44ve	execu4on	of							
the	same	tuples	(see	next	slides)	

è Use	of	
	 	 	whilelem ( t; t ε T ) 



Case	III	
In	case,	a	prefixed	order	of	tuples	is	required	for	
the	execu4on	of	the	tUPL	loop	body,	then	tUPL	
foresees	in	the	use	of	a	ready	clause	in	the	
condi4on	clause	of	the	whilelem	construct.	
	 	whilelem ( t; t ε T ) 
   if ( ready(q)[q.i<t.j]) ) 

	
The	use	of	this	clause	will	severely	limit	the	
op4miza4on		possibili4es	of	the	tUPL	framework.	



Example	
 T = {<1>,<2>, …,<100>}; # <iter> 

 
 whilelem ( t; t ε T ) 
 { 
  if ( ready(q)[q.iter < t.iter] ) 
  { 
   … 
  } 
 } 

	
Note	that:	
	
Ø  tUPL	also	allows	the	following	nota4on	(tuples	t	have	only	1	field)	
	

	 	 	if ( ready(q)[q < t] )	
	
Ø  If	there	are	no	tuples	found	which	fulfill	the	ready	clause	condi4on	then	ready	

evaluates	to	true	
Ø  The	use	of	ready	does	not	prevent	that	for	each	itera4on	the	loop	body	is	being	

executed	mul4ple	4mes.	Use	of	forelem	is	recommended	in	combina4on	with	
the	ready	clause	if	only	one	execu4on	per	itera4on	is	meant.	



Example	(con4nued)	
 T = {<1>,<2>, …,<100>}; # <iter> 

 
 whilelem ( t; t ε T ) 
 { 
  if ( ready(q)[q < t] ) 
  { 
   … 
  } 
 } 

	
In	this	case	tUPL	allows	the	following	shorthand	nota4on:	
	

 for (k; kεN+100)* 
  { 
   … 
  } 

*  kεN+100 is	used	for	kεT={<1>,<2>, …,<100>},  
 kεN100  is	used	for	kεT={<0>,<1>, …,<100>} 

	



Case	IV	
As	a	last	resort	the	programmer	can	of	use	the	condi4on	
clause	in	the	whilelem	loop	body	to	explicitly	control	the	
order	in	which	the	tuples	are	visited.	
 
 whilelem ( q; q ε T ) 
 {  if ( q.row > q.col && 
         Count[q.col] == 0 &&  
         Visited[q] = False ) 
  { 
   B[q.row] = B[q.row] - Value[q]*B[q.col]; 
   Count[q.row + 1]--; 
   Visited[q] = True; 
   } 
 } 



Data	Dependencies	Denial	(DDD)	in	tUPL	
The	tUPL	compiler	framework	will	(by	default):	

		translate	data	dependent	instruc4ons	into	independent	instruc4ons,	
by	introducing	an	extra	address	func4on	($Old_....)	for	each	address	func4on	on	
which	a	data	dependence	occurs.	
	
Suppose	w.l.o.g.	that	data	dependence	occurs	on	address	func4on	X,	so	that		

	for	tuple	t1	:	X[t1]	=	…					
	for	tuple	t2	:	y	=	…	X[t2]	…	

and	that	the	storage	loca4ons	are	equal:	@X[t1]	==	@X[t2]	
	
tUPL	automa4cally	transforms	this	into:	
	

	Ini4alize	new	address	func4on.	
	 	forall	t:	$Old_X[t]	=	NULL	
	And	the	read	instruc4ons	are	transformed	into:	
	 		
	 	while	(X[t]	!=	$Old_X[t])		y	=	…	X[t]	…	;	$Old_X[t]	=	X[t]	

	
The	“while”	construct	is	merged	into	the	whilelem	construct.	
	
	



forall	t:	$Old_X[t]	=	NULL	
	
	
X[t1]	=	5;	
	
	
while	(X[t2]	!=	$Old_X[t2])		y	=	X[t2];	$Old_X[t2]	=	X[t2]	
	
è  y	=	5	
	
Different	Execu<on	Order	
forall	t:	$Old_X[t]	=	NULL	
	
	
while	(X[t2]	!=	$Old_X[t2])		y	=	X[t2];	$Old_X[t2]	=	X[t2]	
(è	y	=	…	)	
	
X[t1]	=	5;	
	
	
while	(X[t2]	!=	$Old_X[t2])		y	=	X[t2];	$Old_X[t2]	=	X[t2]	
	
è	y	=	5	

	
	

…	
@X[t1]	

@X[t2]	
NULL	NULL	

@$Old_X[t1]	 @$Old_X[t2]	

5	
@X[t1]	

@X[t2]	
NULL	NULL	

@$Old_X[t1]	 @$Old_X[t2]	

5	
@X[t1]	

@X[t2]	
5	NULL	

@$Old_X[t1]	 @$Old_X[t2]	

…	
@X[t1]	

@X[t2]	
NULL	NULL	

@$Old_X[t1]	 @$Old_X[t2]	

…	
@X[t1]	

@X[t2]	
…	NULL	

@$Old_X[t1]	 @$Old_X[t2]	

5	
@X[t1]	

@X[t2]	
…	NULL	

@$Old_X[t1]	 @$Old_X[t2]	

5	
@X[t1]	

@X[t2]	
5	NULL	

@$Old_X[t1]	 @$Old_X[t2]	

X[t1]	=	5;	y	=	X[t2];			#	@X[t1]==@X[t2]	



Why	not	use	the	same	construct		
for	write	instruc<ons	?	

	 	X[t1]	=	5	
	 	X[t2]	=	10	

	
and	@X[t1]==	@X[t1],	then	
	

	while	(X[t1]	!=	$Old_X[t1])		X[t1]	=	5;		$Old_X[t1]	=	X[t1]	
	while	(X[t2]	!=	$Old_X[t2])		X[t2]	=	10;		$Old_X[t2]	=	X[t2]	
	while	(X[t1]	!=	$Old_X[t1])		X[t1]	=	5;		$Old_X[t1]	=	X[t1]	
	while	(X[t2]	!=	$Old_X[t2])		X[t2]	=	10;		$Old_X[t2]	=	X[t2]	
	……	

Etc.	etc.	
	
è RACE	CONDITION	
	



Example	
	T = {<1,3>,<2,1>,<3,2>};#<i,j> 
 A[1,1]=6;A[1,3]=2;A[2,1]=-1;A[2,2]=5;A[3,2]=2;A[3,3]=4 
 B[1]=8;B[2]=9;B[3]=8; 
 X[1]=0;X[2]=0;X[3]=0; 

	
 whilelem ( t; t ε T ) 
 {   
  X[t.i]=(B[t.i]-X[t.j]*A[t.i,t.j])/A[t.i,t.i] 

  } 
	
(What	is	being	computed???)	
	
è THERE	IS	A	FLOW	DEPENDENCE	ON	X	!!!!!!	

	For	instance	 	<1,3>	:	X[1]	=	(B[1]-X[3]*A[1,3])/A[1,1]	
	 	 	 	 	<2,1>	:	X[2]	=	(B[2]-X[1]*A[2,1])/A[2,2]	
		



Loop	is	transformed	
 T = {<1,3>,<2,1>,<3,2>};  #<i,j> 
 A[1,1]=6;A[1,3]=2;A[2,1]=-1;A[2,2]=5;A[3,2]=2;A[3,3]=4 

 B[1]=8;B[2]=9;B[3]=8; 

 X[1]=0;X[2]=0;X[3]=0; 

	
 $Old_X[<1,3>]=NULL;$Old_X[<2,1>]=NULL;$Old_X[<3,2>]=NULL; 

	
 whilelem ( t; t ε T ) 
 { 
  if (X[t.j]!= $Old_X[t]) 
  {   
   X[t.i]=(B[t.i]-X[t.j]*A[t.i,t.j])/A[t.i,t.i]; 
   $Old_X[t]=X[t.j] 

  } 

  } 

	
  



Resul4ng	Execu4on	Orders	
<1,3>	#	X[t.j]	=	X[3]	=	0	and	$Old_X[t]	=	NULL	

	X[1]	=	(8-X[3]*2)/6	=	8/6	=	1.333							
	$Old_X[<1,3>]	=	0.000	

<2,1>	#	X[t.j]	=	X[1]	=	1.333	and	$Old_X[t]	=	NULL	
	X[2]	=	(9-X[1]*-1)/5	=	10.333/5	=	2.067	
	$Old_X[<2,1>]	=	1.333	

<3,2>	#	X[t.j]	=	X[2]	=	2.067	and	$Old_X[t]	=	NULL	
	X[3]	=	(8-X[2]*2)/4	=	(8-4.134)/4	=	1.466	
	$Old_X[<3,2>]	=	2.067	

<1,3>	#	X[t.j]	=	X[3]	=	1.466	and	$Old_X[t]	=	0.000	
	X[1]	=	(8-X[3]*2)/6	=	(8-2.932)/6	=	0.845	
	$Old_X[<1,3>]	=	1.466	

<2,1>	#	X[t.j]	=	X[1]	=	0.845	and	$Old_X[t]	=	1.333	
	X[2]	=	(9-X[1]*-1)/5	=	(9+0,845)/5	=	1.969	
	$Old_X[<2,1>]	=	0.845	

<3,2>	#	X[t.j]	=	X[2]	=	1.969		and	$Old_X[t]	=	2.067	
	X[3]	=	(8-X[2]*2)/4	=	(8-3.938)/4	=	1.015	
	$Old_X[<3,2>]	=	1.969	

<1,3>	#	X[t.j]	=	X[3]	=	1.015	and	$Old_X[t]	=	1.466	
	X[1]	=	(8-X[3]*2)/6	=	(8-2.030)/6	=	0.995	
	$Old_X[<1,3>]	=	1.015	

<2,1>	#	X[t.j]	=	X[1]	=	0.995		and	$Old_X[t]	=	0.845	
	X[2]	=	(9-X[1]*-1)/5	=	(9+0.995)/5	=	1.999	
	$Old_X[<2,1>]	=	0.995	

<3,2>	#	X[t.j]	=	X[2]	=	1.999	and	$Old_X[t]	=	1.969	
	X[3]	=	(8-X[2]*2)/4	=	(8-3.998)/4	=	1.000	
	$Old_X[<3,2>]	=	1.999	

<1,3>	#	X[t.j]	=	X[3]	=	1.000	and	$Old_X[t]	=	1.015	
	X[1]	=	(8-X[3]*2)/6	=	(8-2.000)/6	=	1.000	
	$Old_X[<1,3>]	=	1.000	

<2,1>	#	X[t.j]	=	X[1]	=	1.000		and	$Old_X[t]	=	0.995	
	X[2]	=	(9-X[1]*-1)/5	=	(9+1.000)/5	=	2.000	
	$Old_X[<2,1>]	=	1.000	

<3,2>	#	X[t.j]	=	X[2]	=	2.000	and	$Old_X[t]	=	1.999	
	X[3]	=	(8-X[2]*2)/4	=	(8-4.000)/4	=	1.000	
	$Old_X[<3,2>]	=	2.000	

	

<2,1>	#	X[t.j]	=	X[1]	=	0	and	$Old_X[t]	=	NULL	
	X[2]	=	(9-X[1]*-1)/5	=	9/5	=	1.800	
	$Old_X[<2,1>]	=	0.000	

<1,3>	#	X[t.j]	=	X[3]	=	0	and	$Old_X[t]	=	NULL	
	X[1]	=	(8-X[3]*2)/6	=	8/6	=	1.333							
	$Old_X[<1,3>]	=	0.000	

<2,1>	#	X[t.j]	=	X[1]	=	1.333	and	$Old_X[t]	=	0.000	
	X[2]	=	(9-X[1]*-1)/5	=	10.333/5	=	2.067	
	$Old_X[<2,1>]	=	1.333	

<1,3>	#	X[t.j]	=	X[3]	=	0	and	$Old_X[t]	=	0.000	
	NOP	

<2,1>	#	X[t.j]	=	X[1]	=	1.333	and	$Old_X[t]	=	1.333	
	NOP	

<3,2>	#	X[t.j]	=	X[2]	=	2.067	and	$Old_X[t]	=	NULL	
	X[3]	=	(8-X[2]*2)/4	=	(8-4.134)/4	=	1.466	
	$Old_X[<3,2>]	=	2.067	

<1,3>	#	X[t.j]	=	X[3]	=	1.466	and	$Old_X[t]	=	0.000	
	X[1]	=	(8-X[3]*2)/6	=	(8-2.932)/6	=	0.845	
	$Old_X[<1,3>]	=	1.466	

<3,2>	#	X[t.j]	=	X[2]	=	2.067	and	$Old_X[t]	=	2.067	
	NOP	

<2,1>	#	X[t.j]	=	X[1]	=	0.845	and	$Old_X[t]	=	1.333	
	X[2]	=	(9-X[1]*-1)/5	=	(9+0,845)/5	=	1.969	
	$Old_X[<2,1>]	=	0.845	

…	…	
	
Otherwise	similar	(except	for	interleaving	with	NOPs)	

OR	



Scheduling		whilelem (t; t ε T)	

Ø For	each	execu4on	of	a	tuple	exactly	one	of	the	
tuples	with	a	valid	condi4onal	serial	code	is	
chosen.	

Ø If	there	are	no	tuples	le�	with	a	valid	condi4onal	
serial	code,	then	the		whilelem	loop		terminates.	

Ø Any	loop	scheduling	for	a	whilelem	loop	must	
guarantee	that	every	tuple	with	a	valid	condi4onal	
serial	code	that	is	con4nuously	enabled	beyond	a	
certain	point	is	taken	infinitely	many	4mes	(cf.	just	
computa4on).	

	



Scheduling		forelem (t; t ε T)	

Ø For	each	execu4on	of	a	tuple	exactly	one	of	the	
tuples	is	chosen	with	a	valid	condi4onal	serial	
code	and	which	has	not	been	executed	so	far.	

Ø If	there	are	no	tuples	le�	with	a	valid	condi4onal	
serial	code,	then	the		forelem	loop		terminates.	

	
Note	that	if	the	condi4ons	are	not	carefully	
chosen	it	can	happen	that	the	forelem	loop		
terminates	before	all	tuples	have	been	executed.	



Automa4c	Data	Structure	Genera4on	in	tUPL	

tUPL	Code	 tUPL	
Intermediate	

C/C++	Code	

Backend	
Intermediate	

CUDA	Code	

P	
A	
R	
S	
E	
R	

Materialized	
Intermediate	

Code	
Transforma<ons	

Materializa<on	

Concre<za<on	

MPI	Code	



tUPL	Intermediate	
forelem ( t; t ε T ) 
{ 
 … t … 

} 

whilelem ( t; t ε T ) 
{ 

 … t … 
} 

	
	

forelem ( i; i ε pT ) 
{ 
 … T[i] … 

} 
whilelem ( i; i ε pT ) 
{ 
 … T[i] … 

} 
	
	

Ø  pT	and	T[i]	nota4on	allows	for	a	more	clear	expression	of	
the	materializa4on	and	concre4za4on	phase		

Ø  tUPL	allows	mix	use	of	tUPL	nota4on	and	intermediate	
nota4on	



Tuple	Selectors	

•  (i;i ε pT.(row,col)[<10,100>])means	
choose	only	these	tuples	from	the	reservoir	T	
for	which	the	row	field	equals	10	and	col	field	
equals	100.	

•  IDX_T<row,col>[<10,100>]()	within	the	loop	body	
refers	to	the	tuple	i,	for	which	row	equals	10	
and	col	equals	100.	

•  [<10,(100, 1000)>]refers	to	the	second	
field	to	be	of	a	value	between	10	and	1000.	

	



Some	Code	Transforma4ons*	

forelem (i; i ε pA) 
 … A[i]…	

forelem (ii; ii ε A.field1) 
 forelem (i; i ε pA.field1[ii]) 
  … A[i]…	

Orthogonaliza<on	

A.field1	is	the	set	of	all	possible	field1	values	of	tuples	in	A:	{	i.field1	|	i	ε	A	} 

Encapsula<on	

forelem (i; i ε pA.field1) 
 … …	

forelem (i; i ε N10) 
   … …	

If		A.field1	would	be	{	0,		1,	3,	4,	7,	9,	10	},	for	instance.	This	transforma4on	only		
makes	sense,	if	the	execu4on	of	the	inner	loop	for	the	other	i-value’s	results	into	a	NOP.	i.e.	
C[i]	=	C[i]	+	B[i],	and	B[i]	==	0	for	2,	5,	6	and	8.		

*forelem is	used	in	the	examples	but	the	trafo’s	equally	apply	to	whilelem	



Some	Code	Transforma4ons	(2)	

forelem (i; i ε pA) 
 forelem (j; j ε pB.field_b[A[i].field_a]) 
  … A[i].field_c … B[j].field_d …	

Loop	Collapse	

forelem (i; i ε pAxB.field_b[field_a]) 
 … AxB[i].field_c … AxB[i].field_d …	

AxB	is	the	cross	product	of	the	two	tuple	sets	A	and	B:	{	<	i,	j	>	|	i	ε	A	and	j	ε	B	}		



Horizontal	Itera<on	
Space	Reduc<on	

Some	Code	Transforma4ons	(3)	

Loop	Interchange	

forelem (i; i ε pA) 
 forelem (j; j ε pB) 
  … A[i] … B[j] …	

forelem (j; j ε pB) 
 forelem (i; i ε pA) 
  … A[i] … B[j] …	

forelem (i; i ε pA) 
 … A[i].field2 … A[i].field3 …	

forelem (i; i ε pA’) 
 … A’[i].field2 … A’[i].field3 …	

With	A’	=	{	<field2,field3>	|	<field1,field2,field3>	ε	A	}	



Materializa4on	

forelem (i; i ε pA.field[X]) 
 … A[i]…	

forelem (i; i ε N*) 
 … PA[i]…	

N*	represents	the	set	{	1,	2,	…	,	|PA|	},	with	PA	an	
enumera4on	of	the	set:		

	 	{	i	|	i	ε	A	and	i.field	==	X	}		
		
DO	NOT	CONFUSE	PA	with	a	linear	array	data	structure	



Some	more	code	transforma4ons	

Tuple	Splieng	

forelem (i; i ε A.field) 
 forelem (k; k ε pB.field[i]) 

   … B[k].value …	

forelem (i; i ε N10) 
 forelem (k; k ε pB.field[i]) 

   … B[k].value …	
	

forelem (i; i ε N10) 
 forelem (k; k ε N*) 

   … B[i][k].value …	
	

2	dimensional	materializa4on	into	B[][]	necessary	because	of	outerloop	dependence.	

forelem (i; i ε N10) 
 forelem (k; k ε N*) 

   … B[i].value[k] …	
	



Some	more	code	transforma4ons	(2)		

N*	Materializa<on	

forelem (i; i ε N10) 
 forelem (k; k ε N*) 

   … A[i][k] …	
	

forelem (i; i ε N10) 
 forelem (k; k ε PA_len[i]) 

   … A[i][k] …	
	



Some	more	code	transforma4ons	(3)		
Data	Localiza<on	

forelem (i; i ε pA) 
 … B [ A[i] ] …	

forelem (i; i ε pA’) 
 … A’[i].field_B …	

Here	the	tuples	in	reservoir	A	are	being	extended	to	include	the	data	at	address	
@B[A[i].field_k}.	So	A’	=	{	<	t,	B[t]	>	|	t	ε	A	}.	By	default,	this	
transforma4on	is	only	allowed	for	read	only	data	at	B.	



Regrouping	of	Single	Storage	Loca4ons	(Tuples)	

Regrouping	as	a	result	of	orthogonaliza4on	on	the	
	 	 	 	 	 	first	field	

 X  
X XX 
X  XX 
 XX 
 X 



Regrouping	a�er	Materializa4on	and		
Loop	Interchange	

 X  
X XX 
X  XX 
 XX 
 X 



Regrouping	a�er	orthogonaliza4on	on	the	second	field	
followed	by	materializa4on	and	loop	interchange	

 X  
X XX 
X  XX 
 XX 
 X 



Concre4za4on	
forelem (i; i ε N*) 
 … PA[i]…	

forelem (i; i ε PA_len[i]) 
  … PA[i] …	
	

for	(i	=	0;	i	<	PA_len;	i++)	
		...	PA[i]	...		

	



Some	Concre4za4on	Steps	
tUPLE	loop	construct	 Concre<za<on	

forelem (i; i ε pA) 
 … A[i]…	

	

Linked	list	of	struct’s	

forelem (i; i ε N10) 
 … A[i]…	

	

An	array	of	struct’s	

forelem (i; i ε N10) 
 forelem (k; k ε PA_len[i]) 

   … A[i][k] …	
	

An	array	of	arrays	of	struct’s	

forelem (i; i ε N10) 
 forelem (k; k ε PA_len[i]) 

   … A[i][k].value …	
	

An	array	of	arrays	of	struct’s	

forelem (i; i ε N10) 
 forelem (k; k ε PA_len[i]) 

   … A[i].value[k] …	
	

An	array	of	arrays	of	values	



Example	
forelem (i;iε pA) 
 … B[A[i]]…	

forelem (i;iε PA’_len) 
 … PA’[i].field_B …	

forelem (i;iε pA’) 
 … A’[i].field_B …	

forelem (i;iε pA’_len) 
 … PA’.field_B[i]…	

A	linked	list	of	struct’s:	A	+	
A	mul<dimensional	array:	B	
	
	
An	linked	list	of	struct’s:	A		
	
	
An	array	of	struct’s	A’	
	
	
Several	Arrays	for	each	field		
of	A’	
	
Just	one	array	of	field_B		
values	
	

forelem (i;iε pA’_len) 
 … PA’.field_B[i]…	

Materializa<on	

Data	Localiza<on	

Tuple	Splieng	

Horizontal	Itera<on	Space	Reduc<on	



The	automa4c	genera4on	of	ITPACK	data	structure		





The	Transforma4on	Search	Space	for	SpMxM	





END	OF	COURSE	



Parallel	Programming	II	(this	fall)	
•  tUPL	will	automa4cally	choose	sequences	of	valid	
serial	codes	to	be	executed	one	a�er	the	other,	
so	that	their	execu4on	is	being	op4mized.	

•  So,	next	to	the	automa4c	genera4on	of	data	
structures	tUPL	will	also	automa<cally	op<mize	
and	change	the	order	in	which	opera<ons	are	
performed	and	by	doing	so	will	change	the	actual	
algorithm	being	used	to	compute	the	results.	

•  In	fact	within	tUPL	new	algorithms	can	be	
automa<cally	generated	which	will	not	only	
execute	in	parallel	but	will	also	be	adap4ve	to	the	
underlying	problem	to	be	solved.	


