
Parallel	Sor)ng	



A	jungle	

•  		



Illustra)on	

h3ps://www.youtube.com/watch?v=kPRA0W1kECg	



(Sequen)al)	Sor)ng	

•  Bubble	Sort,	Inser)on	Sort	
– O	(	n2	)	

•  Merge	Sort,	Heap	Sort,	QuickSort	
– O	(	n	log	n	)	
– QuickSort	best	on	average	

•  Op)mal	Parallel	Time	complexity	
– O	(	n	log	n	)	/	P	
–  If	P	=	N	then	O	(	log	n	)	



Inser)on	Sort	
Insertion_Sort (A) 
 for i from 1 to |A| - 1 

    j = i 
    while j > 0 and A[j-1] > A[j] 
        swap A[j] and A[j-1] 
        j = j – 1 
Return ( A )	
 
Inherently	sequen)al	so	hard	to	parallelize	!!!!	
è	Only	through	pipelining		can	speedup	be	realized	



Pipelined	Inser)on	Sort	
• 		

Tpipelined	=	2n,	
with	n	processors,	
so	maximal	
speedup	=	n/4	-	3	
(	wortcase	
sequen=al	=me	=	
(n-1)(n-2)/2	)	



Parallel	Merge	Sort	
Merge_Sort (A) 
 n = |A| 
 halfway = floor(n/2) 

 
 DO	IN	PARALLEL 
  Merge_Sort (A[1]… A[halfway]) 
  Merge_Sort (A[halfway+1]… A[n]) 

 
 j = 1; current = 1 
 for i from 1 to halfway 
  while j ≤ n-halfway and A[halfway + j] < A[i] 

        X[current] = A[halfway + j] 
        j = j + 1; current = current+1 
  X[current] = A[i] 
  current = current+1 

Return ( X )	
	

halfway halfway + j n i 

A 



In	a	picture	

•  		



Notes	Merge	Sort	
•  Collects	sorted	list	onto	one	processor,	
merging	as	items	come	together	

•  Maps	well	to	tree	structure,	sor)ng	locally	on	
leaves,	then	merging	up	the	tree	

•  As	items	approach	root	of	tree,	processors	are	
dropped,	limi)ng	parallelism	

•  O	(	n	),	if	P	=	n		
	(1+2+4+…+n/2+n)	=	n	(1+1/2+1/4	…	)	=	n.2		



Parallel	QuickSort	
QuickSort (A) 
  if |A| == 1 then return A 
  i = rand_int (|A|) 
  p = A[i] 
  DO	IN	PARALLEL 
   L = QuickSort({a  A|a < p}) 
   E = {a  A|a = p} 
   G = QuickSort({a  A|a > p}) 
Return ( L || E || G ) 

∈

∈

∈

∈



		

If	we	assume	that	the	pivots	are	chosen	such	that	L	and	
G	are	about	equal	in	size,	then	

	 	Sequen)al:	T	(n)	=	2T	(n/2)	+	O	(n)	=	O	(n	log	n)	
In	fact	it	can	be	proven	that	this	always	holds!	
	
For	parallel	execu)on	the	choice	of	i	is	crucial	for	load	
balance.	Even	more	importantly	we	would	like	to	
choose	mul)ple	pivots	(p-1)	at	the	same	)me,	so	that	
each	)me	we	get	p	par))ons	which	can	be	executed	in	
parallel.		



P	par))ons	
•  For	a	given	p	(number	of	pivots)	and	s	
(oversampling	rate),	first	select	at	random		

				p*s	candidate	pivots		
	 	for i from 1 to p*s 
   Cand[i] = rand_int (|A|)	

	
•  	Sort	the	list	of	candidate	pivots:	Cand[i]	
•  Choose	Cand[s],Cand[2*s]…Cand[(p-1)*s]				
Find	a	good	value	for	the	oversampling	rate:	s	>	1,	

	è	s	should	not	lead	to	very	long	sor)ng	)mes	



Parallel	Radix	Sort	
Instead	of	comparing	values:	COMPARE	DIGITS 
 
Radix_Sort (A, b) # Assume	binary	representa)ons	of	keys	
 for i from 0 to b-1 
  FLAGS = { (a>>i) mod 2 | a  A }  
  NOTFLAGS = { 1-FLAGS[a] | a  A } 
  R_0 = SCAN (NOTFLAGS) 
  s_0 = SUM (NOTFLAGS) 
  R_1 = SCAN (FLAGS) 
  R = {if FLAGS[j] == 0  
    then R_0[j] 
    else R_1[j] + s_0 
     | j  [0…|A|-1} 
  A = A sorted by R 

Return ( A ) 
	

∈
∈

∈

(a>>i) mod 2:  
 rightshiN	i	=mes,	so	e.g.	
 01101>>2 mod2 = 
 00011 mod 2 = 1 

So	(a>>i) mod 2	equals	the		
(i+1)th	rightmost	bit	of	a 



	LSD/MSD	Radix	Sort	

Instead	of		
   (a>>i) mod 2		

one	can	also	implements	Radix	Sort	with:	
	 	 	(a<<i) div 2^(b-1)  

	
The	first	implementa)on	is	called	least	
significant	digit	Radix	Sort	or	LSD	Radix	Sort	
The	la3er	on	is	MSD	Radix	Sort	



Notes	Radix	Sort	

Ø Sequen)al	)me	complexity:	
	 	T(n)	=	O	(b.n),		
	b	itera)ons,	each	itera)on	O(n)	

Ø Note	that	b	≈	log	n,	so	a	total	of	O	(n	log	n)	
Ø Instead	of	single	digits	a	block	of	r	digits	can	
be	taken	each	)me,	resul)ng	in	b/r	itera)ons	



Illustra)on	(LSD	Radix	Sort)	

•  		



Sor)ng	of	each	selected	digit	in	Radix	
Sort,	with	Prefix	Sum	Based	Sor)ng	

Each	element	i	of	the	prefix	sum	array	has	the	
SUM	of	all	elements	which	index	is	smaller	than	i			



What	is	the	rela)onship	with	sor)ng?	

•  		

Ø All	bits	which	are	equal	to	0	are	flagged	with	a	1	
Ø Compute	Prefix	Sum	of	this	flag	array	
Ø Store	all	flagged	(1)	entries	of	x[k]	in	the	loca)on	indicated	by	the	
prefix	sum	



Second	stage	

•  		

Ø All	bits	which	are	equal	to	1	are	flagged	with	a	1	
Ø Compute	Prefix	Sum	of	this	flag	array	
Ø Store	all	flagged	(1)	entries	of	x[k]	in	the	next	loca)ons	indicated	
by	the	prefix	sum	

	



What	about	parallel	execu)on?	

•  Computa)onally	the	sor)ng	algorithm	is	
reduced	to	compu)ng	the	prefix	sum	arrays	
for	each	bit	ranking.	

•  However,	compu)ng	these	prefix	sum	arrays	
seems	to	be	inherently	sequen)al.	Or	not?	



Parallel	Execu)on	of	Prefix	Sums	

Prefix_Sum (X) # X a n-bit array 
 for index from 0 to log n 
  DO	IN	PARALLEL	for	all	k 
   if k >= 2^index then 
    X[k] = X[k]+X[k-2^index] 

  X >> 1 #Shift all entries to the right 

Return ( X ) 
	



Illustra)on	of	parallel	Prefix	Sums	

•  		



Improving	Cache	Performance	
Ø  The	parallel	prefix	sum	algorithm	requires	the	whole	array	to	be	

fetched	at	each	itera)on	
Ø  Bad	cache	performance	
Ø  Through	Tiling	Techniques	the	X	array	can	be	cut	into	slices	()les)		
Ø Once	every	number	of	itera)ons	re-)le	!!	
Ø  A	CUDA	implementa)on	of	the	overall	alg.	can	be	found	on		

	 	h3ps://github.com/debda3abasu/amp-radix-sort	
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Bitonic	Sor)ng	
Based	on	bitonic	sequences:	
	
	A[1],	A[2],	….	,	A[n-1],	A[n]	is	bitonic,	iff	
	 	there	is	a	j	and	k	such	that	

• A[1]	…	A[j]	is	monotonic	increasing,		
• A[j]…A[k]	is	monotonic	decreasing,		
• A[k]…	A[n]A[1]!!	is	monotonic	increasing	

OR	vise	versa	



A	“be3er”	defini)on	of	Bitonic	Sequence	

A	bitonic	sequence	is	a	sequence	with		
	 	A[1]<=	A[2]<=	….<=A[k]>=	…	>=	A[n-1]>=A[n]		

	
for	some	k	(1<=k<=n),		
	 	or	a	circular	shio	of	such	a	sequence.	



In	a	picture	

Bitonic:	

Not	Bitonic	

If	rotated:	Two	Peaks	



A[1]>=	A[2]>=	….>=A[k]<=	…	<=A[n-1]<=A[n]	
leads	to	the	same	defini)on	



Bitonic	“Merge”	
Bitonic_Merge (A) # A is a bitonic sequence 
 n = |A| 
 if n == 1 then return A 
 half_n = floor(n/2) 
 for i from 1 to half_n 
  c[i] = min(A[i],A[i+half_n]) 
  d[i] = max(A[i],A[i+half_n]) 

 
 DO	IN	PARALLEL	 
  Bitonic_Merge (c[1]…c[half_n]) 
  Bitonic_Merge (d[1]…d[half_n]) 

 
Return ( ) 
	



Notes	Bitonic	Merge	

•  Each	c	and	d	sequence	is	a	bitonic	sequence	
again	

•  For	all	i: c[i] <= d[i] 
•  At	the	end	we	sorted	bitonic	sequences	of	
length	1,	hence	a	sorted	sequence	



Bitonic	Merge	always	yields	bitonic	sequences	

•  		



Bitonic	Merge	Network	
• 		



Bitonic	Merge	Network	(2)	
• 		



Bitonic	Merge	Network	(3)	

•  		



Parallel	Bitonic	Sort	

Bitonic_Sort (A) 
 n = |A| 

 if n == 1 then return A 
 for i from 0 to log(n) 
  DO	IN	PARALLEL	for	all	k	=		m.2^i,	k	<	n 
   Bitonic_Merge (A[k]…A[k+2^i-1])* 

   

Return ( ) 

	
*For	odd	values	of	m,	interchange	min	and	max	



Notes	Bitonic	Sort	

•  Each	itera)on	creates	longer	and	longer	
bitonic	sequences		

•  In	the	last	itera)on	the	whole	sequence	is	
bitonic	and	the	final	bitonic	merge	creates	a	
sorted	list	



Bitonic	Sort	Network	

•  		

four bitonic lists of length 2 constituting 2 bitonic lists of length 4 

2 Bitonic Merge Networks 

4 Bitonic Merge Networks 



Why	alterna)ng	max/min?	
Note	that	at	the	start	of	each	Bitonic	Merge	Network	we	have	
two	Bitonic	Sequences	which	cons)tutes	One	Bitonic	
Sequence!!!		
	
If	one	of	these	sequences	is	(monotonic)	increasing	and	the	
other	is	(monotonic)	decreasing	then	this	is	always	the	case.	If	
both	are	increasing	or	decreasing	this	is	not	necessarily	the	
case,	i.e.	

is	not	bitonic	



Notes	Bitonic	Sort	Network	
•  Assume	n	=	2^k	
•  The	bitonic	merge	stages	have	1,	2,	3,…,k	steps	
each,	so	)me	to	sort	is	

	T(n)	 	=	1	+	2	+	…	+	k	=	k	(k-1)/2	
	 	 	=	O	(k2)	=	O	(log2	n)	

	
•  Each	step	requires	n/2	processors,	so	the	total	
number	of	processors	is	O	((n/2)	log2	n)	

•  The	network	can	handled	mul)ple	pipelined	list	
producing	a	sorted	list	each	)me	step	


