
Parallel Programming 2015, Assignment 3:

Parallel Sparse LU Factorization

Deadline: Monday, June 29 before 23:59 hours.

The task in the third and final assignment is to implement Parallel Sparse LU Factorization. After
completing and testing your implementation, you will perform a thorough experimental evaluation
of your implementation.

The deadline for the assignment is Monday, June 29. The assignment has to be completed
individually. You are expected to hand in a tarball containing your source code and an extensive
report in PDF format that describes your implementation and contains a thorough experimental
evaluation. The assignments can be handed in by e-mail to krietvel (at) liacs (dot) nl.

1 Implementation

You need to implement a Parallel Sparse LU Factorization kernel that applies partial pivoting.
Parallelization must be carried out using the MPI framework. You can assume that only one
process will be running per node, so within your parallelized program you do not have to account
for multiple processes that execute within the same address space (threading). The program must
be written in C/C++.

Describe in your report how you have parallelized the LU Factorization kernel and how you
solved the problems you encountered.

2 Experimental Evaluation

The final part of the assignment is to perform a thorough experimental evaluation of your imple-
mentation. The target machine will be the DAS-4 cluster at Leiden University. Think about what
you want to show and how you need to show this: so, what experiments do you need to carry out.
Examples are: performance / execution time, amount of communication between nodes, memory
usage, norm of the result, impact on addition of compute nodes, etc., etc.

As test data, you can again use matrices from the University of Florida Sparse Matrix Collec-
tion (http://www.cise.ufl.edu/research/sparse/matrices/). We selected the following test
matrices:

Simon/raefsky6
Garon/garon1
Grund/poli4
Schenk IBMNA/c-25
Bai/cryg10000

To test your implementation you can generate solution vectors as follows: Given a matrix A, you
need to construct the B vector as follows: B(i) = sum(ith row of A). This will cause the solution
vector to consists of all ones.

1


