How are high speeds being realized?

e Faster and faster processors (implicit
parallelism and/or fine grain
parallelism)

 More and more parallelism (explicit
parallelism and/or medium/coarse
grain parallelism)

Implicit Parallelism

Serial Parallelism, Peephole Optimizations,
Pipelining
Mostly in the order of 2-6

Inherently part of processor/cache/memory
design

Requires no active involvement of the
programmer (it’s for free)

Enabled through the explosion of transistor on
chip (billions on a processor IC, tens of billions on
a memory IC)

Trends in Processor Architectures:

=» Substantial Increase in clock speeds and
transistor counts

e How best to utilize these resources.

* Current processors use these resources in
multiple functional units and execute multiple
instructions in the same cycle.

* The precise manner in which these
instructions are selected and executed
provides impressive diversity in architectures.

Pipelining and Superscalar Execution

* Pipelining overlaps various stages of instruction
execution to achieve better performance.

 An instruction can be executed while the next one is
being decoded and the next one is being fetched.

0

- lF -

Isstrection cycles
"

.
D

¥

| OF | load R2. p100C

_or |
| or |
| D
TF

4) £

IF: Instruction Fesch
1D lastruction Decode

| oF | lead Rz, plo0% OF: Operasd Fetch

E: Instruction Execule
WEB: Wrne-back
£] add R2. plo0C NA: No Action

E l sdd R1. B10O04

| NA | E | add m1. m2

. D NA . wWB I atarqe R1l, pa00o

Pipelining and Superscalar Execution

Pipelining, however, has several limitations.

The speed of a pipeline is eventually limited by the slowest
stage.

For this reason, conventional Proce_ssors rely on very dee
pipelines (up to 20 stage pipelines in state-of-the-art Inte
Core processors).

However, in ty,oical pro%ram traces, every 5-6th instruction
is a conditional jump! This requires very accurate branch
prediction.

The penalty of a miss-prediction grows with the depth of
the pipeline, since a larger number of instructions will have
to be flushed.

= =>=> Multiple Pipelines (Superscalar)

Speedup of a pipeline of depth k and average number of pipelined
instructions n:

S(n,k)=k*n/(n+k-1)
So, for k =20:S (n, 20) = 20n / (n+19).
n=10: 6.9
n=100: 16.8
n=1000: 19.6 > 20 (k)

However, with p% miss prediction and branch every 5 instructions: average
length (100/p)*5 = 500/p. So

p = 10%: average length = 50. So for all n: maximal speedup = 14.5
p = 20%: average length = 25. So for all n: maximal speedup =11.4
p = 30%: average length = 16. So for all n: maximal speedup = 9.4

Considering the fact that implementing pipelines generates delays (latches),
in general there is a performance loss of 50%, making the maximal speedups:

7.2 (p=10%)
5.7 (p=20%)
4.7 (p=30%)

Superscalar Execution

Scheduling of instructions is determined by a number of
factors:

— True Data Dependency: The result of one operation is an
input to the next.

— Resource Dependency: Two operations require the same
resource.

— Branch Dependency: Scheduling instructions across
conditional branch statements cannot be done
deterministically a-priori.

— The scheduler looks at a large number of instructions in an
instruction queue and selects appropriate number of
icnstructions to execute concurrently based on these

actors.

— The complexity of this scheduler is an important constraint
on superscalar processors.

Instruction Issue Mechanisms

* instructions can be issued only in the order in which
they are encountered. That is, if the second instruction
cannot be issued because it has a data dependency
with the first, only one instruction is issued in the
cycle. This is called in-order issue.

* |In a more aggressive model, instructions can be issued
out-of-order. In this case, if the second instruction has
data dependencies with the first, but the third
instruction does not, the first and third instructions can
be co-scheduled. This is also called dynamic issue.

* Performance of in-order issue is generally limited.

Superscalar Execution:
Efficiency Considerations

Not all functional units can be kept busy at all times.

If during a cycle, no functional units are utilized, this is
referred to as vertical waste.

If during a cycle, only some of the functional units are
utilized, this is referred to as horizontal waste.

Due to limited parallelism in typical instruction traces,
dependencies, or the inability of the scheduler to
extract parallelism, the performance of superscalar
processors is eventually limited.

Conventional microprocessors typically support four-
way superscalar execution.

Very Long Instruction Word (VLIW)
Processors

The hardware cost and complexity of the superscalar
scheduler is a major consideration in processor design.

To address this issues, VLIW processors rely on compile
time analysis to identify and bundle together
instructions that can be executed concurrently.

These instructions are packed and dispatched
together, and thus the name very long instruction
word.

This concept was used with some commercial success
in the Multiflow Trace machine (circa 1984).

Variants of this concept are employed in the Intel IA64
processors.

Very Long Instruction Word (VLIW)
Processors: Considerations

Issue hardware is simpler.

Compiler has a bigger context from which to select co-
scheduled instructions.

Compilers, however, do not have runtime information
such as cache misses. Scheduling is, therefore,
inherently conservative.

Branch and memory prediction is more difficult.

VLIW performance is highly dependent on the
compiler. A number of techniques such as loop
unroIIiIng, speculative execution, branch prediction are
critical.

Typical VLIW processors are limited to 4-way to 8-way
parallelism.

Limitations of
Memory System Performance

Memory system, and not processor speed, is
often the bottleneck for many applications.

Memory system performance is largely captured
oy two parameters: latency and bandwidth.

_Latency can be improved by providing caches
petween processor and memory

Bandwidth can be improved by increasing the
amount of memory interleaving (banks) and
thereby increasing memory block size.

Impact of Memory Bandwidth: an Example

Consider the following code fragment, which sums columns of
the matrix b into a vector column sum:

for (i = 0; 1 < 1000; i++)
column sumf[1] = 0.0;
for (3 = 0; 3 < 1000; j++)
column sum[i] += b[j][1];

=» Normally the vector column sum is small and easily fits
into the cache.

=» The matrix b is accessed in a column order, resulting in very
bad striding behavior, reducing memory bandwidth

significantly

Impact of Memory Bandwidth: an Example

We can fix the code as follows:
for (1 = 0; 1 < 1000; 1i++)
column sumf[i] = 0.0;
for (7 = 0; 7 < 1000; J++)
for (1 = 0; 1 < 1000; 1i++)
column sum[i] += b[J][1];

In this case, the matrix is traversed in a row-order and
performance can be expected to be significantly
better.

Other ways of reducing (memory) latencies

» Multithreading allows delays to be hidden by
delaying execution of one thread in favor of a
thread which is not delayed.

» Prefetching allows data to be put in cache
before the processor actually needs the data

