tUPL Parallel Programming
Paradigm



Data Flow Computing

Traditionally, compilers analyze program source code for
data dependencies between instructions in order to

better organize the instruction sequences in the binary
output files.

A dataflow compiler records these dependencies by
creating unique tags for each dependency instead of
using variable names. By giving each dependency a
unique tag, it allows the non-dependent code segments
in the binary to be executed out of order and in parallel.



Dataflow Execution

* Programs are loaded into the Content Addressable Memory
(CAM) of a dynamic dataflow computer.

* When all of the tagged operands of an instruction become
available (that is, output from previous instructions and/or user
input), the instruction is marked as ready for execution by an
execution unit. This is known as activating or firing the
instruction.

* Once an instruction is completed by an execution unit, its
output data is stored (with its tag) in the CAM. Any instructions
that are dependent upon this particular datum (identified by its
tag value) are then marked as ready for execution.
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Dataflow in Practice

However, in practice the following problems occurred:

— Efficiently broadcasting data tokens in a massively
parallel system.

— Efficiently dispatching instruction tokens in a massively
parallel system.

— Building Content Addressable Memory (Tag Memory)
large enough to hold all of the dependencies of a real
program.



Linda Coordination Language

Main usage: in combination with other existing languages,
e.g. C/Fortran, provide a mean to link less expensive desktop
computers together and combine their power so they can
jointly tackle problems.

A logically global associative memory, called a tuplespace, in
which processes store and retrieve tuples.

This model is implemented as a "coordination language" in
which several primitives operating on ordered sequence of
typed data objects, "tuples”

— in atomically reads and removes—consumes—a tuple from
tuplespace

— rd non-destructively reads a tuplespace
— out produces a tuple, writing it into tuplespace

— eval creates new processes to evaluate tuples, writing the result
into tuplespace



tUPL

* Free Computer Programming from common
artifacts like data structures, data
dependencies, explicit parallelism

* Harness a compilation framework such that

— Data structures are generated automatically

— Data dependencies are turned into opportunities
to optimize performance

— Parallel execution is guaranteed



Basic tUPL Data Type

< token, data >

Formally, this basic data type is even further
stripped down to

< token >,

with A an address function, s.t. data is stored at: @A [token]
and the value which is stored at @A [token] is: A [token]
So data == A [token]



Address function A(ddr)

A(ddr) can be any invertible function, i.e. affine
mapping, but mostly it is an affine function:

7" — 7"

So Addr can be represented as

mi myy Myo .. Mip
Addr(t) =m+MtT = .. |+| .. . . . |t
Mo M1 Mo . Min



NOTE!!!!
A[1,1]1=5.0

does NOT mean that element [ |, J ] of
Matrix A, or of a
2-Dimensional Array A

is assigned the value 5.0.

BUT:
5.0 is stored at location @A [ I, ] ], or that
the data value of <1, J >, becomes 5.0, or that
<| J,data>=<1J, 5.0>*

e Note that tokens can be more dimensional: token tuples t
e Notation: t.i, represents the ith field of t



SO, data structures as we know them do not
exists in tUPL, only

single storage locations for each data item,
represented by token tuples

We need a mean to express a collection or set
of these single storage locations

=» (Token) Tuple Reservoirs



Examples of Tuple Reservoirs ()

A Digraph G(V,E):
T={<u,v>|u veVand(u,v)ekE}
with Weigth [ u, v ] the weight of edge (u,v)

A Sparse Matrix A:
T={<i,j>| atrowiand column
there is a nnz element}
with Value [ i, j ] the value of matrix A [, ]



Examples of Tuple Reservoirs (lIl)

A Linked List (of single storage locations):
T={<ij>| 1<=k<=n,
foreveryj,,1<=k<n,

there exists exactly oneii_,
such thatj =i, and

forallj,,1<=k<=n,
the values are different}

Together with an address function Value [ i, j, |
representing the value at the kth position in the list.

OR address function Value [ i, ] ! (tUPL allows both)



Examples of Tuple Reservoirs (llI)

Relational Database Tables

T={<i>]| 1<=i<=n,withirepresenting the
ith record in the database table}

and associated address functions:
field, [i], field, [i], ..., field, [ 1]




tUPL Loop Structures

Two BASIC Loop Structures:

forelem ( t; £t ¢ T )
whilelem ( t; t ¢ T )

Both structures are inherently
parallel and non-deterministic

This means that any tuple of T can be taken at any time!!

In the forelem structure every tuple is taken exactly once,
while in the whilelem every tuple can be taken an
arbitrary number of times (details later)



Example |

Sparse Matrix-Vector Multiplication

forelem ( t; t ¢ T )

{

Value C[t.1]+= Value A[t.1,t.]J]
* Value Blt.]]



Example Il (LU factorization)

for (k; keN)
{
pivot = IDX A sopk,x01 ()7
forelem (t; t & A.<i,j>[<(k,*),k>])
{
mult = Value[t.i,t.j]l/Valuel[t.pivot,t.pivot];
Valuel[t.i,t.J] = mult;
forelem (r; r ¢ A.<i,3>[<t.]j, (t.],>)>])
{
cand = NULL
forelem (g; g ¢ A.<i,j>[<t.i,t.3j>])
cand = q;
if (cand == NULL)
{
cand = <t,1,t.j>
A = A U cand;
Value[cand.i,cand.j] = 0

}

Value[cand.i,cand.]j] -= mult*Valuel[r.i,r.]]



Example Il

SORTING

whilelem ( t; t ¢ T )
{
if ( X[t.i] > X[t.j] )
swap ( X[t.1], X[t.j]1 )



Example IV: MaxFlow

T={<u,v,w> | (u,v) and (v,w) edges of G and w !=u and (including back edges)}*

whilelem ( t; t ¢ T )
{ if (Deltal[t.u,t.v] > 0 && Remainder[t.v,t.w] > 0)
{
delta change = min(Remainder[t.v,t.w],Deltalt.u,t.v]);
Deltal[t.v,t.w]+= delta change;
Remainder[t.v,t.w] -= aelta_change;
Remainder([t.w,t.v] += delta change;
F[t.u,t.v] += delta change;

Delta[t.u,t.v] —-= delta change
}
if (Deltal[t.u,t.v] > 0 && Remainder[t.v,t.w] == 0)
{

if (t.v == ‘s’ || t.v = ‘t’)

{
Flt.u,t.v] += Deltal[t.u,t.v];

Deltal[t.u,t.v] = 0

1

else

{ # Reverse Flow
Deltal[t.v,t.u] += Deltalt.u,t.v];
Remainder[t.v,t.u]-= Deltal[t.u,t.v];
Deltalt.u,t.v] = 0

! } *|T| = aver_out*|V|

} = aver_out"2*|V|



tUPL Loop Body

One or more conditionally executed serial codes operating on data
items which are defined by the tokens from the Tuple Reservoir and
their associated address functions™, i.e.

tUPL Loop Body:

if ( Cond 1)
{
Serial Code 1 (< t >)
}
if ( Cond 2 )
{
Serial Code 2 (< t >)

}

if ( Cond n )
{
Serial Code n (< t >)

}
» All Cond 1i’s are exclusive for forelem. For whilelem multiple conditions

can be true at the same time for a tuple.
» ncanbelandCond 1 canbe true.

*Except for local/temporary variables with respect to the Loop Body



tUPL Loop Bodies: Two Cases

| Forall i, j, k, and m there is no flow (anti)
dependence between

Serial Code 1 (< t, >) and
Serial Code j (< t, >)

Il There exists i, j, k, and m for which there is flow
(anti) dependence between

Serial Code 1 (< t, >) and
Serial Code 37 (< t, >)



Case

=»There are no Read on Write Dependencies, and/
or Write on Read Dependencies

=>» For all i and k: repeated execution of just
Serial Code 1 (< t, >)

does not have any effects, even when these
executions are interleaved with the execution
of other

Serial Code j (< t, >)
=» Use of
forelem ( t; t ¢ T )

=» As aresult each serial Code i (< t, >)iS
executed exactly once, albeit in arbitrary order



Case ll

=>» There are dependencies between the
execution of one conditional serial code using
one tuple with the execution of (possibly
another) conditional code on another (the
same) tuple

=2 tUPL relies on tuples to be taken at any time
= These dependencies have to be broken

=» Leading to possible repetitive execution of
the same tuples (see next slides)

=» Use of
whilelem ( t; t ¢ T )



Case Il

In case, a prefixed order of tuples is required for
the execution of the tUPL loop body, then tUPL

foresees in the use of a ready clause in the
condition clause of the whilelem construct.

whilelem ( t; t ¢ T )
if ( ready(q) [g.1i<t.3j]) )

The use of this clause will severely limit the
optimization possibilities of the tUPL framework.



Example

T = {<1>,<2>, ..,<100>}; # <iter>

whilelem ( t; t ¢ T )

{
if ( ready(g) [g.1iter < t.iter] )

{

}
Note that:

» tUPL also allows the following notation (tuples t have only 1 field)
if ( ready(q) [g < t] )

» |If there are no tuples found which fulfill the ready clause condition then ready
evaluates to true

» The use of ready does not prevent that for each iteration the loop body is being
executed multiple times. Use of forelem is recommended in combination with
the ready clause if only one execution per iteration is meant.



Example (continued)

T = {<1>,<2>, ..,<100>}; # <iter>

whilelem ( t; t ¢ T )

{
if ( ready(q)[g < t] )
{

}
}

In this case tUPL allows the following shorthand notation:

for (k; keN* ) *
{

}
*  keN*,,, isusedfor keT={<1>,<2>, ..,<100>},

keN,,, isusedforkeT={<0>,<1>, ..,<100>}



Case IV

As a last resort the programmer can of use the condition
clause in the whilelem loop body to explicitly control the
order in which the tuples are visited.

whilelem ( g; g ¢ T )
{ 1f ( g.row > g.col &&

Count[g.col] == 0 &é&
Visited[qg] = False )
{
Blg.row] = B[g.row] - Value[g]*B[g.col];
Count[g.row + 1]--;

Visited[qg] = True;



Data Dependencies Denial (DDD) in tUPL

The tUPL compiler framework will (by default):
translate data dependent instructions into independent instructions,

by introducing an extra address function (SOId_....) for each address function on
which a data dependence occurs.

Suppose w.l.o.g. that data dependence occurs on address function X, so that
for tuple t,: X[t,] = ...

fortuplet,:y=..X[t,] ..
and that the storage locations are equal: @X[t,] == @X[t,]

tUPL automatically transforms this into:
Initialize new address function.
forall t: SOId_X[t] = NULL
And the read instructions are transformed into:

while (X[t] = $OId_X[t]) y = ... X[t] ... ; $OId_X[t] = X[t]

The “while” construct in merged into the whilelem construct.



forall t: SOId_X[t] = NULL

X[t1] =5;

while (X[t,] != $OId_XIt,]) v = X[t,]; $OId_X[t,] = XIt,]

= y=5

forall t: SOId_X[t] = NULL

while (X[t,] = SOId_X[t,]) y = X[t,]; SOId_X[t,] = X[t,]
(y=..)

X[tl] =5,

while (X[t,] != $OId_XIt,]) y = X[t,]; $OId_X[t,] = XIt,]

2> y=5

Xt @3$0Id_X[t,]

@X[t,)]

Xt @3$01d_X[t,]

@X[t,]

@S0ld_X[t,]

@X[t,]
@XI[t,]

Xt @$01d_X[t,]

@XIt,]

@xit, @S$0Id_X[t,]

@X[t,

—

oxtt, @$01d_X[t,]

@XI[t,

—

Xt @$0Id_X[t,]

@X[t,]

@S0ld_XI[t,]

@S0ld_X][t,]

@3$0ld_X[t,]

@S0Id_X[t,]

@SO0ld_X[t,]

@$0ld_X]t,]



Why not use the same construct
for write instructions ?

X[t,] = 5
X[t,] = 10

and @X[t,]== @X[t,], then

while (X[t,] 1= $OId_X[t,]) X[t,] =5; $OId_X[t,] = X[t,]
while (X[t,] I= $OId_X[t,]) X[t,] = 10; $OId_XI[t,] = X[t,]
while (X[t,] 1= $OId_X[t,]) X[t,] =5; $OId_X[t,] = X[t,]
while (X[t,] I= $OId_X[t,]) X[t,] = 10; $OId_XI[t,] = X[t,]

=>»RACE CONDITION



Example

T = {<1,3>,<2,1>,<3,2>};#<4,3>
All,11=6;A[1,3]1=2;A[2,1]=-1;A[2,2]=5;A[3,2]1=2;A[3,3]1=4
B[1]=8;B[2]=9,B[3]=8;

X[1]1=0,X[2]1=0,;X[3]1=0;

whilelem ( t; t ¢ T )

{
X[t.i]=(B[t.i]-X[t.9]*A[t.1i,t.5])/A[t.i,t.1]

}

(What is being computed???)

Forinstance  <1,3>:X[1] = (B[1]-X[3]*A[1,3])/A[1,1]
<2,1>:X[2] = (B[2]-X[1]*A[2,1])/A[2,2]



Loop is transformed

T = {<1,3>,<2,1>,<3,2>}; #<i,3>
A[l,1]=6;A[1,3]1=2;A[2,1]=-1;A[2,2]=5;A[3,2]1=2;A[3,3]=4
B[1]=8;B[2]=9,;B[3]=8;

X[1]1=0,;X[2]1=0,;X[3]1=0;

$01d X[<1,3>]=NULL;$01d X[<2,1>]=NULL;$01d X[<3,2>]=NULL;

whilelem ( t; t ¢ T )
{
if (X[t.j]!= $01d X[t])
{
X[t.i]=(B[t.1]1-X[t.J]*A[t.i,t.J])/A[t.i,t.1];
$O01d X[t]=X[t.]]



Resulting Execution Orders

<1,3> # X[t.j] = X[3] =0 and SOId_X[t] = NULL
X[1] = (8-X[3]*2)/6 = 8/6 = 1.333
$0ld_X[<1,3>] = 0.000

<2,1> # X[t.j] = X[1] = 1.333 and $0Id_X[t] = NULL
X[2] = (9-X[1]*-1)/5 = 10.333/5 = 2.067
$0ld_X[<2,1>] = 1.333

<3,2> # X[t.j] = X[2] = 2.067 and $0Id_X[t] = NULL
X[3] = (8-X[2]*2)/4 = (8-4.134)/4 = 1.466
$0ld_X[<3,2>] = 2.067

<1,3> # X[t.j] = X[3] = 1.466 and $OId_X[t] = 0.000
X[1] = (8-X[3]*2)/6 = (8-2.932)/6 = 0.845
$OIld_X[<1,3>] = 1.466

<2,1> # X[t.j] = X[1] = 0.845 and $OId_X[t] = 1.333
X[2] = (9-X[1]*-1)/5 = (9+0,845)/5 = 1.969
$0ld_X[<2,1>] =0.845

<3,2> # X[t.j] = X[2] = 1.969 and $OId_X][t] = 2.067
X[3] = (8-X[2]*2)/4 = (8-3.938)/4 = 1.015
$0ld_X[<3,2>] = 1.969

<1,3> # X[t.j] = X[3] = 1.015 and $OId_X[t] = 1.466
X[1] = (8-X[3]*2)/6 = (8-2.030)/6 = 0.995
$0ld_X[<1,3>] = 1.015

<2,1> # X[t.j] = X[1] = 0.995 and $OId_X][t] = 0.845
X[2] = (9-X[1]*-1)/5 = (9+0.995)/5 = 1.999
$0ld_X[<2,1>] = 0.995

<3,2> # X[t.j] = X[2] = 1.999 and $OId_X[t] = 1.969
X[3] = (8-X[2]*2)/4 = (8-3.998)/4 = 1.000
$0ld_X[<3,2>] = 1.999

<1,3> # X[t.j] = X[3] = 1.000 and $OId_X[t] = 1.015
X[1] = (8-X[3]*2)/6 = (8-2.000)/6 = 1.000
$0ld_X[<1,3>] = 1.000

<2,1> # X[t.j] = X[1] = 1.000 and $OId_X][t] = 0.995
X[2] = (9-X[1]*-1)/5 = (9+1.000)/5 = 2.000
$0ld_X[<2,1>] = 1.000

<3,2> # X[t.j] = X[2] = 2.000 and $OId_X[t] = 1.999
X[3] = (8-X[2]*2)/4 = (8-4.000)/4 = 1.000
$0ld_X[<3,2>] = 2.000

OR

<2,1> # X[t.j] = X[1] = 0 and $0Id_X[t] = NULL
X[2] = (9-X[1]*-1)/5=9/5 = 1.800
$0ld_X[<2,1>] = 0.000

<1,3> # X[t.j] = X[3] = 0 and $0Id_X[t] = NULL
X[1] = (8-X[3]*2)/6 = 8/6 =1.333
SOIld_X[<1,3>] = 0.000

<2,1> # X[t.j] = X[1] = 1.333 and $OId_X[t] = 0.000
X[2] = (9-X[1]*-1)/5 = 10.333/5 = 2.067
$0Id_X[<2,1>] = 1.333

<1,3> # X[t.j] = X[3] =0 and $OId_X[t] = 0.000
NOP

<2,1> # X[t.j] = X[1] = 1.333 and $OId_X[t] = 1.333
NOP

<3,2> # X[t.j] = X[2] = 2.067 and $0Id_X[t] = NULL
X[3] = (8-X[2]*2)/4 = (8-4.134)/4 = 1.466
SOIld_X[<3,2>] = 2.067

<1,3> # X[t.j] = X[3] = 1.466 and $OId_X[t] = 0.000
X[1] = (8-X[3]*2)/6 = (8-2.932)/6 = 0.845
$0Id_X[<1,3>] = 1.466

<3,2> # X[t.j] = X[2] = 2.067 and $OId_X][t] = 2.067
NOP

<2,1> # X[t.j] = X[1] = 0.845 and $OId_X[t] = 1.333
X[2] = (9-X[1]*-1)/5 = (9+0,845)/5 = 1.969
$0Id_X[<2,1>] = 0.845

Otherwise similar (except for interleaving with NOPs)



Scheduling whilelem (t; t & T)

» For each execution of a tuple exactly one of the

tuples with a valid conditional serial code is
chosen.

» If there are no tuples left with a valid conditional
serial code, then the whilelem loop terminates.

» Any loop scheduling for a whilelem loop must
guarantee that every tuple with a valid conditional
serial code that is continuously enabled beyond a

certain point is taken infinitely many times (cf. just
computation).



Scheduling forelem (t; t & T)

» For each execution of a tuple exactly one of the
tuples is chosen with a valid conditional serial
code and which has not been executed so far.

» If there are no tuples left with a valid conditional
serial code, then the forelem loop terminates.

Note that if the conditions are not carefully
chosen it can happen that the forelem loop
terminates before all tuples have been executed.



Automatic Data Structure Generation in tUPL




tUPL Intermediate

forelem ( t; t € T ) forelem ( i; 1 ¢ pT )
{ {
o . T[1]
\ }
whilelem ( 1; 1 ¢ pT )
whilelem ( t; t ¢ T ) {
{ . TT[1]
.t }

}

» pT and T[i] notation allows for a more clear expression of
the materialization and concretization phase
» tUPL allows mix use of tUPL notation and intermediate

notation



Tuple Selectors

(1;1 & pT. (row,col) [<10,100>]) means
choose only these tuples from the reservoir T
for which the row field equals 10 and col field
equals 100.

IDX T, . w col>[<10, 1005>] () Within the loop body
refers to the tuple i, for which row equals 10
and col equals 100.

[<10, (100, 1000)>]refers to the second
field to be of a value between 10 and 1000.



Some Code Transformations™

forelem (ii; 1i & A.fieldl)

forelem (i; 1 & pA)
) forelem (i; 1 ¢ pA.fieldl[11i])

A1)
CA[L]..

A.fieldl is the set of all possible field1 values of tuples in A: {i.field1 | ie A}

Encapsulation |

forelem (i; i ¢ pA.fieldl) f‘> forelem (i; i & Ny,)

If A.fieldl wouldbe{0, 1,3,4,7,9,10} forinstance. This transformation only
makes sense, if the execution of the inner loop for the other i-value’s results into a NOP. i.e

Cl[i] = C[i] + B[i], and B[i] == 0 for 2, 5, 6 and 8.

*forelem is used in the examples but the trafo’s equally apply to whilelem



Some Code Transformations (2)

Loop Collapse |

forelem (i; i1 & pA)
forelem (j; J ¢ pB.field b[A[1].field a])
. A[i].field ¢ .. B[J].field d ..

=

forelem (1; 1 ¢ pAxB.field b[field a]l)
. AxB[i].field ¢ .. AxB[1i].field d ..

AxB is the cross product of the two tuple sets Aand B: {<i,j>|icAandjeB}



Some Code Transformations (3)

forelem (i; i1 & pA) I forelem (j; j & pB)

forelem (j; j & pB) forelem (i; 1 & pA)
. A[1] .. B[]] ..

forelem (i; i ¢ pA) »
.. A[1].field2 .. A[1].field3 ..

forelem (i; 1 & pA’)

. A[il .. B[j] ..

. A'[1].f1eld2 .. A’ [1].fi1eld3 ..

With A’ = { <field2,field3> | <field1,field2,field3> ¢ A }



Materialization

forelem (1; 1 ¢ pA.fi1eld[X])
. Al1]..

=

forelem (i; 1 & N¥%)
. PA[1]..

N* represents theset{1, 2, ..., | PA| }, with PA an
enumeration of the set:
{i|ieAandi.field==X}

DO NOT CONFUSE PA with a linear array data structure



Some more code transformations

-

forelem (i; i ¢ A.field) forelem (i; 1 & Ny,)
forelem (k; k ¢ pB.field[i]) [> forelem (k; k & pB.field[i])
. B[k].value .. .. Blk].value ..

forelem (1; 1 ¢ Ny,) forelem (1i; 1 & Ny,)
[> forelem (k; k g N¥%) forelem (k; k & N¥%)

. B[1][k].value .. . B[1i] .value[k]

2 dimensional materialization into B[][] necessary because of outerloop dependence.



Some more code transformations (2)

forelem (i; i &€ Ny,)
forelem (k; k & N¥%)
. A[i][k] ..

'Y

forelem (i; i &€ Ny,)
forelem (k; k ¢ PA lenf[i])
. A[i][k] ..



Some more code transformations (3)

-

forelem (1; 1 ¢ pA)
. B [ A[1] ]

—~—

forelem (i1i; 1 € pA')
. A’ [1].f1eld B ..

Here the tuples in reservoir A are being extended to include the data at address
@B[A[1].field k}.SoA’ ={<t, B[t] > | teA}. Bydefault, this
transformation is only allowed for read only data at B.



Regrouping of Single Storage Locations (Tuples)

(112].) (1[3].) (110]..)

G121 <3|1D
>

@...) 214]..) (2|3D

Regrouping as a result of orthogonalization on the
first field




Regrouping after Materialization and
Loop Interchange




Regrouping after orthogonalization on the second field
followed by materialization and loop interchange




Concretization

forelem (i1; 1 & N¥%)
. PA[1]..

U

forelem (1; 1 ¢ PA len[1])
. PA[1] ..

~—

for (i=0;i<PA_len;i++)
... PA[i] ...




Some Concretization Steps

forelem (i; i & pA) Linked list of struct’s
CA[i]..

forelem (i; i ¢ Ny,) An array of struct’s
CA[i]..

forelem (i; i ¢ Ny,) An array of arrays of struct’s
forelem (k; k ¢ PA len[1i])

. A[1] [k]
forelem (i; i ¢ Ny,) An array of arrays of struct’s

forelem (k; k ¢ PA lenf[i])
. A[i1] [k] .value ..

forelem (i; i ¢ Ny,) An array of arrays of values
forelem (k; k ¢ PA len[1i])
. A[i] .value[k]



forelem (i1i;1e pA)

Al1]]..

Data Localization

forelem (i°ie pA’

i].field

aterialization
forelem (i;is PA’
. PA" [1]
Tpple Splitting

forelem (1;1¢ pA’

.field B[1

Hprizontal Iteration Space Reduction
forelem (1;1¢ pA’

PA’ .field BI[i

.field

Example

)
B ..

_len)
B ..

_len)

]...

_len)

]...

A linked list of struct’s: A +
A multidimensional array: B

An linked list of struct’s: A

An array of struct’s A’

Several Arrays for each field
of A’

Just one array of field_B
values



The automatic generation of ITPACK data structure

(LTO1X2) (01 Xq)
(2]0] Xs5)

(2]2]X4) (1]1]X3)
(1]3]Xy)

/' Orthogonalization
Orthogonalization / on row

on column / \ No orthogonalization

(0]1] Xo)
¥ (113]X1) \
(110]X2)
(1]1] Xs)
(2]2] X4)
(2]0] Xs)

Materialization |

(011 Xo)
(L3 X0)(1]0] Xa)(1]| 1] X5)
(2|12]Xa)(2]0]| X5)




(011 Xo)
(L3 X)(1]0| Xa)(1]1]X5)
(2]12] Xq)(2]0]| X5)

Horizontal
Iteration Space
~ Reduction A
Dimensionality N* Sorting
Reduction (1| Xo)
(31 X0 ] X2)(1] X3) l
(2] Xa)(0 | X5)

Concretization

Structure Splitting l
"""‘.“"-"‘ ~ ...-\‘-_.A
o 1 Xo |
Dimensionality N* Sorting
Reduction 301 X, Xyp Xy
20 Xy X5
4 4
Y Concretization l Dimensionality Concretization
Concretization Reduction

Concretization




The Transformation Search Space for SpMxM
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Legend
loop interchange
orthogonalization row
orthogonalization col
materalize
padl rows
struct spiit
horiz, 1S reduction
dimensionality reduction
N* sort
Lranspose
concretize




Algorithmic Optimization

* tUPL will automatically choose sequences of valid
serial codes to be executed one after the other, so that
their execution is being optimized.

* So, next to the automatic generation of data structures
tUPL will also automatically optimize and change the
order in which operations are performed and by doing

so will change the actual algorithm being used to
compute the results.

 These sequences are being identified as chains of pairs
of tuples and serial codes:

(t,, Serial Code 1i)*
representing
Serial Code 1 (< t, >)
*Note that Cond i has to evaluate to true for every t,



Recap

tUPL Loop Body:
if ( Cond 1 )

{

Serial Code 1 (< t >)
}
if ( Cond 2 )

Serial Code 2 (< t >)

if ( Cond n )

Serial Code n (< t >)



Different kind of chains

* Mono Chains (MC), every element in the chain
has the same serial code:

(t;, Serial Code 1i),(t,, Serial Code 1i),..

 Two Typed Chains:

— Alternating Chains (AC), consecutive elements in the

chain alternate between serial Code i and
Serial Code j

— Cascading Chains (CC), first part of the chain uses
Serial Code i the second part of the chain uses

Serial Code 7
(t,, Serial Code 1i),(t, Serial Code 1i),..,
(t, Serial Code 7),(t,,;,Serial Code 7j),..

e Hybrid Chains (HC)



Profitable Chain

A chain Cis profitable™ iff

» The consecutive execution of the elements in

C can be optimized such that the execution
time of the whole chain is less than the sum of
the execution times of the individual elements

» AND the chain is minimal in such a way that

the chain C cannot be broken into smaller
chains C, and C,suchthatC=C, || C, and

Exec (C) = Exec (C,) + Exec (C,)
* Cis being referred to as a profit chain



Main Theorem |

For every profit chain C:

all consecutive elements in C:
(t,, Serial Code 1i),(t,, Serial Code j)
have a data dependence on an address function

A used in both serial codes: Serial Code i,
Serial Code 7, I.e.

@A[t,] == @A[t,]



What about forelem loop structures?

There are no Read on Write Dependencies, and/
or Write on Read Dependencies in a forelem
loop

BUT

there can be input and output dependencies in
forelem loops

SO

Profit chains can only be based on read on read
dependencies or write on write dependencies



Profit Chains in SpMxV

forelem ( t; t ¢ T )

{
Value C[t.1]+= Value A[t.1,t.7J]
* Value B[t.]]

(<1,1>, Serial_Code_lL(<l,2>, Serial_Code_lL.“
can be optimized such that subsequent reads of
Value CI[t.1i] are eliminated. So these chains are
identified as profit chains.

In fact, the orthogonalization code optimization is a
direct result of this chaining



Covering Chain Set

A covering chain set CCS is a set of Chains C,
such that for every tuple (t,, Serial Code 1)
there is an i such that

(t,, Serial Code i)eC

Note that if the possible set of profit chains is

not covering then this set can be completed
with single (non-profit) chains, consisting out of
the (t,, Serial Code i) pairs which were not
covered, to obtain a covering chain set.



Main Theorem Il

If
whilelem ( t; t ¢ T )
is just scheduled, then if
whilelem ( C; C & CCS )
forelem ( t; t ¢ C )

is also just scheduled, then both loop structures are
semantically equivalent.




forelem ( t; t ¢ T )

and

forelem ( C; C ¢ CCS )
forelem ( t; t ¢ C )

are semantically equivalent just based on the
covering property of CCS.



Examples of profit chains |

whilelem ( t; t ¢ T )

{
if ( X[t.1i] > X[t.J] )

swap ( X[t.1], X[t.j] )

(<1,2>, Serial Code 1),

(<2,3>, Serial Code 1),

(<3,4>, Serial Code 1),..,(<n-1,n>, Serial Code 1)
with X[1]>X[2], X[2]>_X[3], eE, results in a sequence of n swap_s,
whereas it can be optimized by executing just one insert!!!



Examples of profit chains Il

whilelem ( t; t ¢ T )
{ if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] > 0)
{
delta change = min(Remainder[t.v,t.w],Deltalt.u,t.v]);
Serial_Code_1 Deltal[t.v,t.w]+= delta change;
Remainder[t.v,t.w] -= delta change;
Remainder[t.w,t.v] += delta change;
Flt.u,t.v] += delta change;
Deltal[t.u,t.v] —-= delta change
}
if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] == 0)
{

else

{ # Reverse Flow
Deltal[t.v,t.u] += Deltalt.u,t.v];
Serial_Code 2 Remainder[t.v,t.u]l-= Deltal[t.u,t.v];

]_
Deltal[t.u,t.v] = 0



Then (<s,4,6>,Serial Code 1), (<4,6,52>, Serial _Code_1),...,

(<100,105,107>, Serial _Code 1), (<105, 107,111>, Serial_Code 2),
(<111,107, 105>, Serial_Code_1), ... (<6,4,s>, Serial_Code 1) with
Remainder[4,06]>0, withRemainder[6,52]>0, ..
etc.,and Remainder [107,111]1==0 is a profit chain.

As well as

(<s,4,6>,Serial_Code 1), (<4,6,52>, Serial_Code_1),...,
(<100,105,107>, Serial_Code 1), (<105, 107, t>, Serial _Code 1),
with Remainder[4,6]>0, withRemainder|[6,52]>0, ..
etc.

Note that the latter profit chain is in fact the augmented
path as defined by Ford and Fulkerson!!!



