
Operating Systems 2014 Assignment 3: Virtual Memory

Deadline: Sunday, May 4 before 23:59 hours.

1 Introduction

Each process has its own virtual memory address space. The pages allocated in this virtual memory
area are either backed by a page in physical memory (RAM) or by a page stored on secondary
storage (such as a hard disk). Though, note that the kernel we use for this lab does not support
paging to secondary storage. The virtual memory (VM) subsystem of an operating system kernel
keeps track of the virtual memory address space of each process and where the physical pages are
located. Furthermore, it handles allocation and deallocation of pages.

Figure 1: Illustration of current VM system. The page descriptors (type pmap region t in the
array ram pages (shown here as pd0...) are mapped using simple equations between the position
of the page descriptor in the ram pages array and the physical address of the physical page.

The VM implementation you will be provided with is far from optimal, for example, the physical
page tracking system (that tracks which physical pages are allocated and which are not) is based
on one linked list of free and one linked list of used pages. The information about these pages is
stored in page descriptors. There is one page descriptor object per RAM page (which are 4KiB
each on ARM), and there is a simple linear translation between the address of the page descriptor
and the page that it represents. That is, one page descriptor object is needed per physical page
available in the system. This is suboptimal for several reasons. Primarily, the method at the
moment requires a lot of memory (about 1 MiB) to store all the page descriptors. Secondly,
allocating new contiguous segments may be very slow in case of memory fragmentation as the list
of free pages needs to be scanned for a contiguous sequence of pages. It also slows down allocation
of non-contiguous memory as the system needs to traverse and reserve the same number of page
descriptors that are needed to be allocated. There are better ways to do this! And this will be
your task for this assignment. In short, you will improve the physical page allocation system by
(partly) implementing the basic algorithm used in Linux.

VM programming is about memory allocation, it is in many cases necessary to carry out unsafe
casts and data reinterpretation. This is the main reason that operating systems are written in a
low-level language like C, that supports type coercion. Java, for instance, does not support this
kind of type coercion. An interesting problem when writing VM code is that the VM needs to
allocate data structures to bookkeep allocated and available pages. A chicken and egg problem,
which we will also have to solve in this assignment.
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2 Requirements

You may work in teams of at most 2 persons. You have to modify existing operating system source
code written in C and therefore you will be writing C code. Your submissions must adhere to the
following requirements:

• Submit the source code of the operating system with your functioning Virtual Memory
implementation. The requirements are:

– The VM system should be robust so that mmaptest can be repeatedly executed suc-
cessfully.

– The code must implement the physical page allocation system as outlined in section 4
below.

– The code should properly allocate pages for use by the VM system to store adminis-
trative data.

– The code must make use of region splitting.

– The should use 17 levels of region lists, so the highest level represents all memory on the
beagle board (216 pages = 256MiB). Note that level 0 represents single page regions.

– It should be possible to both allocate and free pages.

• Your submission should include a small README file, which details the data structures you
modified and/or designed for the assignment and how you solved the problem of allocating
new physical pages for storing the physical page descriptors.

When grading the submissions, we will look at whether your source code fulfills these require-
ments and the source code looks adequate: good structure, consistent indentation and comments
where these are required. Comments are usually required if the code is not immediately obvious,
which often means you had to make a deliberate decision or trade-off. Document these decisions,
trade-offs and why in the source code. Note that we may always invite teams to elaborate on their
submission in an interview in case parts of the source code are not clear.

Make sure that the files you have modified contain your names and student IDs. Remove any
object files and binaries by removing the build directory. Include the README file in the root
directory of the source code. Create a gzipped tar file of the directory:

tar -czvf assignment3.tar.gz assignment3/

Mail your tar files to krietvel (at) liacs (dot) nl and make sure the subject of the e-mail contains
OS Assignment 3. Include your names and student IDs in the e-mail.

Deadline: We expect your submissions by Sunday, May 4 before 23:59.

3 Kernel

We will use the same kernel as with the second assignment, however, you will be provided with a
new starting point. For more information about the kernel and programming language, please see
the text of the second assignment and the additional information on the course website.

4 Assignment

The assignment is to modify the page allocation system in the Virtual Memory (VM) subsystem
so that the current big global array of page descriptors and linked lists of used and free pages are
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no longer needed. There are several potential solutions to this problem. We want you to improve
the physical page allocation system by implementing the basic algorithm used in Linux.

In the Linux kernel, the free physical pages are stored in a region list, that stores one page
descriptor entry per free page region. The page regions are in turn aligned and sized at power of
2 sizes, where there is one list per size quanta. For example, one list of page groups of 210 pages,
one of groups of 29 pages and so on (aligned on their own sizes).

The difficulty in this approach lies with splitting and merging of page groups. For example,
if there are no free groups of size 8, but there is a free group of size 9, then the free size 9 group
should be split into two size 8 groups. When a group is split in two, a new page descriptor has to
be created to point to this new group. This in turn may require the allocation of an additional
page of page range descriptors.

Figure 2: Illustration of VM system you will implement. The page descriptors (type
pmap region t) are allocated as needed. In the illustration you see four page lists, where fpl0
represents 20 sized free page blocks, fpl1 represents 21 sized free page blocks, and so on. In this
case, a descriptor in fpl4 (not in the picture) has been split into two fpl3 descriptors, the first
fpl3 descriptor in turn was split to two fpl2 descriptors, the first of who was split into two fpl1

descriptors and in turn split into two fpl0 descriptors.

After a brief introduction of the VM layer that is implemented in the kernel, we will briefly
describe the steps that have to be taken to come to a solution.

5 VM System Overview

The VM system is divided into two layers (with some minor cross layer interactions). The functions
and structures are divided into two namespaces, the vm namespace and the pmap namespace. The
vm namespace contains the public access functions (that the rest of the kernel uses) and the func-
tions and types required for managing virtual address allocation. The pmap namespace contains the
functions and structures used for managing the physical RAM pages. All of the platform indepen-
dent code is available in the file kernel/src/vm.c. In addition to this, an important architecture-
specific function exists. This is the function hw_map, defined in kernel/src/arch/arm/mmu.c,
which is used to for example map in page tables for processes.

5.1 Types

Essentially there are three very important types in the VM system, the vm_map_t type represents
a virtual memory address range. For example, the user space (in one application) goes from
0x00001000 to (non inclusive) 0x80000000, this region is represented by one vm_map_t object. The
map objects contain a list of vm_region_t objects, each vm_region_t object represents a mapped
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virtual memory address region within the map object. The pmap_region_t object represents a
physical memory region (mapped or not). Each pmap_region_t object represents one page in
the starting point you received, your task will be to ensure that a pmap_region_t can point to
multiple consecutive pages. The pmap regions contain a few fields, both flags and ref_count

are unused at present. The logsize field defines the size of the region in log2(pages), since all
regions consist of one page in starting point, the logsize will be set to 0. In order to complete
the assignment, you might have to add additional fields to pmap_region_t.

5.2 Bookkeeping

In the starting point, there is an array called ram_pages, this array consists of a pmap_region_t

object per physical page in the system. The elements of this array are then connected in a large list
called free_ppages. When a region of physical pages is allocated, the page range for that region is
removed from the free_ppages list and appended to the used_ppages list (or the wired_ppages

list when dealing with special kernel data).

5.3 Initialization

The VM system is initialized using the vm_init function. This function initializes the MMU
(and enables it with a minimum mapping needed to run the kernel with virtual memory enabled),
calculates the amount of physical RAM in the system and calls the pmap_init function.

pmap_init allocates a few pages starting at the address of the _free_ram_start symbol (that
is set by the linker script (kernel/src/arch/arm/bsp/beagle/beagle.ld)). These pages are
then initialized in order to start tracking the free physical pages. Note that one pmap_region_t

is created for every page. _free_ram_start is the first memory address after the kernel code
and data from where pages may be allocated. The symbol _stext is located at the start of the
physical memory in the system.

5.4 Allocation

Allocation of virtual addresses is done with vm_map, vm_map_align and vm_map_physical.
Allocation of physical pages is done with pmap_alloc and pmap_alloc_contiguous. The first

function being simple, just allocating free physical pages, and the second one allocating contiguous
physical pages.

5.5 Other Functions

For a comprehensive description of other functions in the VM layer, refer to Appendix C.

6 Working Towards A Solution

In order to complete this lab you need to modify the pmap_init, pmap_get_pa, vm_get_pmap,
pmap_alloc_contiguous, pmap_alloc, pmap_alloc_wired and pmap_free functions. You will
have to add a function called pmap_steal_region_desc. In this section, we describe in which
order the functions are best modified and give a few hints on what has to be changed. Because
the VM system is an integral part of the system, it is not possible to test intermediate versions of
your code, one of the other interesting properties of VM programming. You will have to complete
most of the implementation before you can commence testing.

6.1 Initialization

We strongly recommend you to start with modifying pmap_init. Start with thoroughly under-
standing what this function is currently doing. After modification, the function has to map a
single memory page and initialize as many region descriptors (pmap_region_t) that will fit on
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this single page. These initialized region descriptors should be added to a linked list of free (as in
unused) region descriptors. You are responsible for adding this linked list.

It is very important to understand the difference between a free region descriptor and a free
region. A free region descriptor refers to a region descriptor which is currently unused, that is, the
descriptor is not pointing at any physical memory. A free region, is a region descriptor pointing at
memory which is currently free. In this latter case, the region descriptor is used, but the physical
memory it is pointing at is available to be mapped.

Secondly, a region descriptor has to be created that covers all system memory. Obtain a region
descriptor from the list of free region descriptors you have just created and properly initialize
the descriptor. This descriptor has to be inserted into the region lists (you have to add these
region lists). You can assume that the value of the parameter nrampages always is a power of
two. Finally, you compute the number of pages that are taken by kernel data (plus the page you
allocated at the beginning of the function!). Allocate this amount of pages using pmap_alloc,
so that pages which are taken by the kernel are no longer listed as free pages. Initializing the
VM system this way makes things easier, because you do not have to write tedious code which
will insert only non-kernel pages into the region lists taking into account power of two sizes and
alignments.

A logical next step is to implement a function to get a free region descriptor from the linked
list of free region descriptors. Note that when the linked list of free region descriptors is empty,
another page to place region descriptors has to be allocated (see further down this section). In
conjunction with this, implement a function which inserts a pmap_region_t into the region lists.

NOTE: Use 17 levels of pmap_region_t lists so the highest level represents all memory on the
beagle board (216 pages = 256MiB).

6.2 Allocation

Next, you likely want to rework the allocation functions pmap_alloc and pmap_alloc_contiguous.
These functions have to allocate the requested number of pages. The return value for pmap_alloc
should be the first entry in a linked list of pmap_region_t objects referring to the allocated page
regions. pmap_alloc_contiguous must return a consecutive range of pages. You may assume the
number of pages requested from pmap_alloc_contiguous is always a power of 2. Thus, returning
a single pmap_region_t is sufficient. Calls to pmap_alloc_wired can for now simply be forwarded
to pmap_alloc. Do not forget to rework pmap_free as well.

To satisfy the allocation requests, you will have to split regions. Region splitting can be done in
a very simple way, essentially you need a list of free pmap_region_t objects. Splitting a descriptor
on level N is then done by removing the descriptor from the free page list, and by taking one
descriptor out of the free region object list (an unused region descriptor), you then set the fields
in the two descriptors properly and append the descriptors to level N − 1 free page list. Now,
if there are no free descriptors you need to call the pmap_steal_region_desc function to make
some.

We expect that both allocation and freeing of pages will work, however, you do not need to
implement region merging (the inverse of region splitting).

When allocating physical pages, try to do the following: floor the page count you need to
allocate to the closest power of 2 (see bittools.h) and then compute the 2-logarithm of this,
since it is a power of two you can compute the logarithm with the count trailing zeroes routine.
This logarithm can then be used to index the array that contains the list of free page regions.
Obviously, if this list is empty, you need to split larger regions (or if there are no larger regions,
try with a smaller region).

When you have allocated one region, you may still need to allocate more pages. You have to
keep track on how many pages you have allocated so far and do the floor to power of 2 trick again
until you have allocated all the necessary pages.

For a given region, it must be possible to compute the physical (starting) address of the
pages described by that region. This is done by the function pmap_get_pa. In the current VM
implementation, we can essentially decode a pmap region pointer and compute the physical address
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since there is one pmap region per page. This will not be possible in the new physical page
management system you will implement, and you need to rework pmap_get_pa to return correct
physical addresses for regions corresponding to your implementation.

6.3 Allocating Memory for Page Descriptors

Memory has to be allocated for the page descriptors. It is the task of the VM system to handle al-
location and deallocation of pages, so it is obvious that the VM system itself cannot simply allocate
memory using for example slab_alloc(). (Observe that slab_alloc() calls vm_map(), resulting
in endless recursion). This problem is solved by handling the VM data structure allocation as a
special case.

On initialization of the VM system, you have allocated a single page dedicated for storing page
descriptors. As more regions are being split during runtime, more page descriptors will be in use.
At some point, another page will have to be allocated to provide space for more page descriptors.
To handle this special case, a free physical page has to be stolen and the page needs to describe
itself. The steal function needs to find a single free physical page from the free region lists and
find the first free virtual address in the kernel heap.

A good way to do this is to create a function, let’s call it pmap_steal_region_desc, that firstly
looks up a free virtual address (in the kernel heap), and secondly looks up a free physical page.
This physical page may be in any of the free page lists, so take it from the smallest one. Then, map
the page (only one page) with hw_map and initialize the following on that page: one vm_region_t

descriptor describing the page itself, and the remainder of the page as pmap_region_t descriptors
which you place in the list of free region descriptors. The extracted pmap_region_t entry describ-
ing the region where you just mapped in a page, must now be split so the descriptor itself only
refers to one page. Do not forget to insert the vm_region_t object in the kernel heap.

See also the function vm_steal_region_descriptor() for an example of how to do this.

7 Testing

We have provided an application, mmaptest, to test your virtual memory implementation. mmaptest
stresses the VM system by allocating eight pages (using separate calls to mmap) and freeing them
in a shuffled order in a loop. Since the freeing inserts the entries at the end of the free_ppages

list, this will reduce the number of entries that are available for contiguous page allocation sub-
stantially, since the pmap_alloc_contiguous function cannot find any contiguous blocks of the
right size. When mmaptest is started the next time, there will be so much fragmentation in the
free_ppages list, that the application will fail and in this case also crash the kernel that we
have provided to you. In your adapted kernel, it must be possible to run the mmaptest program
repeatedly without failing.

A The Bittools Header

In the kernel there is header file called bittools.h. You should study this header file and get to
know it well. You will most likely find the inline functions in it very helpful.

B Linked List API

Managing virtual memory and physical memory pages will more or less force you to use linked
lists. The kernel has a header file called list.h which contains macros for the definition of linked
lists and their operations (insert, remove etc.).

The most important operations here are:
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• LIST_HEAD(T) which expands to a list head type (a structure with a head and a tail pointer).
To declare a list of say pmap_region_t objects, write LIST_HEAD(pmap_region_t) mylist;.
Do not forget to set the head and tail pointers to NULL!

• LIST_ENTRY(T) which expands to a link type containing a next and previous pointer.

• LIST_EMPTY(L) is a predicate that checks if the list L is empty or not.

• LIST_FIRST(L) returns the first entry in the list L.

• LIST_NEXT(E, LNK) returns the next list entry after the entry E. LNK is the name of the link
in the type of E.

• LIST_REMOVE(L, E, LNK) removes entry E from the list L, where LNK is the name of the link
in the type of E.

• LIST_APPEND(L, E, LNK) appends an entry E to the list L.

C Virtual Memory Layer Overview

C.1 pmap functions

The pmap functions are the following:

• pmap_get_pa computes or returns the physical address associated with the page region
descriptor.

• pmap_alloc_contiguous allocates a number of pages in contiguous physical memory. The
region may optionally be aligned at a specified size. You can assume that alignment is always
at power of 2 page counts. You do not need to handle wired memory in any special way.

• pmap_alloc allocates memory pages, make sure you return the head of a NULL-terminated
list of regions.

• pmap_alloc_wired allocates memory pages in wired memory (non swappable), but you can
essentially just forward the call to pmap_alloc.

• pmap_init initializes the physical memory tracking system. For example, you should ini-
tialize your pmap_region_t lists in here. The function also reserves memory for the kernel
itself (i.e. makes sure that there are no physical memory descriptors that indicate that the
kernel code and the initial page descriptors are free memory).

• pmap_free frees the physical pages associated with a specific vm region.

C.2 VM layer functions

The vm layer functions are the following

• vm_append appends a vm region descriptor to a virtual memory map.

• vm_insert inserts a vm region descriptor after a given position in the vm map.

• vm_insert_region_descriptor inserts a region descriptor on its correct location in the vm
map.

• vm_get_kernel_map returns a vm map object with the given name (see the kernel_region_type_t
enum), usually you use this to get the vm map for the kernel heap.

• vm_get_pmap returns the first pmap region object for the given vm region.
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• vm_get_first_free_kernel_heap_address returns the first free address in the kernel heap
that can be used to store ONE page. You can use this function when stealing pages to query
for a virtual address.

• vm_steal_page steals a page in the kernel heap, it returns the (virtual) pointer to the stolen
page, which includes the vm_region_t self descriptor.

• vm_steal_region_descriptor looks in the free region descriptor list and returns one entry
in it, if the free region descriptor list is empty, the function steals a page and initializes the
page contents (except the first entry which describes the page itself) as entries in the free
region list and returns the first of these.

• vm_release_region_descriptor frees the region descriptor and inserts it in the global free
region descriptor list (free_regions).

• vm_get_new_region allocates a new region descriptor without giving an address. The ad-
dress will be assigned based on where the vm system can find a free virtual address that
would allow size bytes to be allocated.

• vm_get_new_region_at_addr is the same as vm_get_new_region, but will use the user
supplied address instead of looking for one. Note that size bytes must still fit in the region.

• vm_init initializes the VM system by firstly calling hw_mmu_init that will enable the MMU
and map in the kernel, secondly it computes the total amount of RAM in the system and
calls pmap_init with the number of pages in the system.

• vm_is_in_region is a predicate for checking whether a given virtual address is in a vm_region_t
object.

• vm_are_disjoint_regions is a predicate that verify whether two regions are disjoint (i.e.
their address ranges do not overlap).

• vm_find_region locates the region for a specific address in a vm map object. If the address
does not exist in any of the regions in the map, the function returns NULL.

• vm_find_region_before returns the region which is located before the given address.

• vm_find_region_after returns the region which is located after the given address.

• vm_map is the main memory allocation function for the kernel, it allocates virtual and physical
pages (number computed from len which is in bytes) using an optional address. The user
may supply flags to the function that indicate the access privileges of the allocated pages
(i.e. read, write, execute) and other properties such as whether the pages are to be device
memory, wired, contiguous or shared.

• vm_map_align same as vm_map but the memory will be aligned at the user specified align-
ment.

• vm_unmap unmaps and frees the virtual memory segment associated with the given address
and map.

• vm_map_physical maps in a new virtual memory region to a given physical address, this is
predominantly used for mapping in memory mapped device driver registers.

• vm_probe_physical returns the physical address for a given virtual address.

• vm_map_exists is a predicate for checking whether a virtual address is mapped or not.
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