
Operating Systems 2014 Assignment 2: Process Scheduling

Deadline: April 6, 2014, at 23:59.

1 Introduction

Process scheduling is an important part of the operating system and has influence on the achieved
CPU utilization, system throughput, waiting time and response time. Especially for real-time and
modern interactive systems (such as smart phones), the scheduler must be tuned to perfection.
The task of the scheduler is to decide which process will be run next, based on a list of processes
which are ready to run (and are not blocking on for example I/O).

In this assignment you will write your own scheduler in a real, functional, operating system.
The operating system is supplied to you with a First Come First Serve (FCFS) scheduler. We will
see that this scheduler is not sufficient for an interactive system when jobs are being run in the
background. It is your task to improve this situation by writing a Round Robin scheduler with
preemption. In this case, all processes get to run in turn for a given period of time.

The Round Robin scheduler does make the system work, however, the wait time for interactive
processes is not as good as it could be. Therefore, the next part of the assignment is to implement
a Multi-Level Feedback Queue scheduler. This scheduler will keep the system interactive while
computation jobs are going on in the background.

Next to the abovementioned schedulers for interactive systems, embedded systems often de-
ploy hard real-time schedulers, to guarantee that applications will meet their given tight deadlines.
Missing deadlines will, otherwise, cause system failure, or even life danger. This can be seen for
example in air-bag systems and engine control used in cars. To this end, Earliest Deadline First
(EDF) scheduling is an optimal scheduling policy. In this assignment, you will implement a sim-
plified version of an EDF scheduler.

You will have three lab sessions to complete this work. Next to these three lab sessions you
will have to work most of the time on your own. So it is extremely important that you do

your own installation of the required software, for example on your laptop. We can
provide help with this during the lab hours.

2 Requirements

You may work in teams of at most 2 persons. You have to modify existing operating system source
code written in C and therefore you will be writing C code. Your submissions must adhere to the
following requirements:

1. Submit the source code of the operating system with your functioning Round Robin sched-
uler. The source code should:

• Make use of a single run queue for non-idle processes.

• Run each process on the run queue in turn, for a fixed time quantum.

• Preempt the process (take it off the CPU) when its allocated time quantum has been
exceeded.

1



• Only schedule the idle process when there is no other process to run.

• Provide a function to resume a process and immediately run this process by preempting
the currently running process. This function should be used in the interrupt handler of
the serial port (UART) driver.

2. Submit the source code of the operating system with your functioning Multi-Level Feedback
Queue scheduler. The source code should:

• Make use of three run queues (high, normal and low), optionally also a queue for the
idle process.

• Run high priority processes for 1 time quantum, normal priority for 2 time quanta and
low priority for 5 time quanta.

• Only schedule the idle process when there is no other process to run (e.g. the low
priority queue is empty).

• Once a process has used its full allocated time quantum, it should be demoted to a
lower priority run queue (high is demoted to normal, normal is demoted to low).

• After any job has run for a single time quantum, it must be checked whether the job
has run through its entire allocated time quantum, in which case it is taken off the
CPU (unless there is no other process ready). Otherwise, if the job is not of the highest
priority, it must be checked whether any job is ready in the run queues of a higher
priority than the current job. If so, the process should be preempted.

3. Submit the source code of the operating system with your functioning Earliest Deadline
First scheduler. The source code should:

• Correctly compute a process’ release time and deadline based on the given parameters
at the appropriate times.

• Place processes which release time has not passed in the unreleased queue, processes
which release time has passed in the released queue. On each run of the scheduler,
eligible processes should be moved from the unreleased to the released queue.

• Consistently schedule the process in the released queue with the earliest deadline to
run first.

• Check at every clock tick if the deadline of the current process has passed and whether
there is another process ready to run with an earlier deadline than the current pro-
cess. Note that this does not apply to the idle process, this process should always be
preempted if there is another process to run.

• Launch edftest instead of init during boot.

4. This means that we will receive three tar files from each team, one with the Round Robin
scheduler, one with the Multi-Level Feedback Queue scheduler and one with the EDF sched-
uler.

When grading the submissions, we will look at whether your source code fulfills these require-
ments and the source code looks adequate: good structure, consistent indentation and comments
where these are required. Comments are usually required if the code is not immediately obvious,
which often means you had to make a deliberate decision or trade-off. Document these decisions,
trade-offs and why in the source code. Note that we may always invite teams to elaborate on their
submission in an interview in case parts of the source code are not clear.

Make sure that the files you have modified contain your names and student IDs. Remove any
object files and binaries by removing the build directory. Create a gzipped tar file of the directo-
ries:

2



tar -czvf assignment2-round-robin.tar.gz assignment2-rr/

tar -czvf assignment2-mlfq.tar.gz assignment2-mlfq/

tar -czvf assignment2-edf.tar.gz assignment2-edf/

Mail your tar files to krietvel (at) liacs (dot) nl and make sure the subject of the e-mail contains
OS Assignment 2. Include your names and student IDs in the e-mail.

Deadline: We expect your submissions before April 6, 2014, at 23:59. No exceptions; points
are deducted for late delivery.

3 Programming language

Because you will be extending an existing operating system kernel, which has been written in C,
you will have to complete this assignment using the C language. This means that you cannot
use C++ features such as classes, virtual methods and cout and cin for I/O. Also note that a C
library is not available in the kernel! Only a very small amount of familiar C library functions are
available.

Some notes:

• For outputting text, use puts or printf.

• For this assignment you should not have a need to dynamically allocate memory. (Otherwise
look at uses of slab_alloc and slab_free).

• When you make a mistake using pointers in your kernel code, you will not get a segmentation
fault, but instead the kernel will crash and cannot continue. The kernel will tell you which
instruction made the faulty memory access, which can be used in debugging.

• You will most likely want to temporarily include printf statements to debug the code and
verify that it works as expected.

• Ask the assistants for help if you have problems!

4 Quick start guide to modifying the kernel

All software and additional files required to complete this assignment are installed on the lab
machines in room 411, which you can use during the lab hours on Wednesdays. During the lab
hours we can help you to install the software on your own machine. Also refer to the getting
started guide which is available on the website.

Once the software has been setup, your work flow will be:

• Compile the kernel: create a build directory in the kernel source directory, use cmake (see
the README file) and make.

• Copy kernel.bin to sdcard.img: mcopy -i sdcard.img kernel.bin ::.

• Run qemu, refer to the getting started guide to see which arguments to pass to qemu.

• The kernel will launch automatically, or when you give the boot command at the command
prompt.

• Once the kernel is running, it will give you a shell. You can try to run ls, ps and cat.

• The secondary window displays a graph of the CPU time used by each process.

Important: when using the machines in room 411, make sure to take a back up of your assign-
ment with you (on a USB key or through e-mail) at the end of the day.

Testing your code on the BeagleBoard hardware is possible during the lab hours.

3



5 First Come First Serve Scheduling

Before you start making modifications, try the kernel as has been supplied to you. You can start
the program stress to launch a couple of background processes (it will launch 4 more background
processes every 10 seconds). What happens as soon as stress starts running? Can you explain
this behavior?

6 Round Robin scheduling

In Round Robin scheduling, each process is run in turn for a fixed time quantum. The time
quantum is already defined for you as PROC_TIME_QUANTA in the file kernel/include/process.h.
This header file also contains the definition of the process structure (struct _proc_t), in which
all information related to a process is stored.

To implement this scheduling algorithm, you will mainly be modifying the code in
kernel/src/process.c. Notice that the functions proc_enqueue() and proc_dequeue() are
used to put processes on the run queue and to remove them. The function proc_schedule() is
supposed to make a decision on which process to run next.

Currently, proc_schedule() will select a next process to run if the current process has been
blocked or when the current process is the idle process (kernel_proc, which does nothing and
puts the system to sleep until it is woken again by an interrupt), otherwise the current process
will continue to run.

It is your task to change this function to select a next process to run from the run queue.
It should remove the process to run next from the run queue and place the process that will be
suspended (which is the process that is currently running) at the tail of the run queue. Beware
that when the current process is blocked (current->state equals PROC_BLOCKED), it is not ready
to run and should not be placed on the run queue.

Important is that the idle process should get special treatment. It is not placed on the usual run
queue, because we only want to run the idle process when there is no useful work to do. Therefore,
you should implement an exception for the idle process in proc_enqueue(), proc_dequeue() and
proc_schedule() to ensure this. The is_idle_process function will be useful to use.

Secondly, you want to make sure that a process is taken off the CPU when it has used its full
time quantum. The time quantum is stored in the field time_quanta of proc_t. It is your task
to modify the function proc_tick() to do this. The argument p of proc_tick() points at the
current process. On each call to proc_tick() (which is triggered by a clock tick), you should
decrease the time_quanta field. When this field reaches zero, you have to schedule a next process
and preempt the current one. Note that the idle process is always ready to run.

If you try your kernel now, you should notice that as soon as you start stress, the system con-
tinues to be interactive. From the displayed graph you can observe that the groups of 4 processes
launched by stress all get equal time to run.

However, the response and waiting times are not great. One explanation for this is that as
soon new input comes in, it has to wait until the process acting on this input may run next. When
the number of processes pending in the ready queue is high, this takes a long time. To alleviate
this, we want to modify the kernel so that when new interactive input (e.g., from keyboard) comes
in, the process blocking for (waiting for) this input is immediately run next (the current process
is preempted).

To do this, make a new function called proc_resume_and_preempt() based on proc_resume()

that immediately runs process p (using proc_preempt) instead of putting p on the ready queue.
queue.

Secondly, modify the input driver (kernel/src/arch/arm/serial.c) to call
proc_resume_and_preempt() instead of proc_resume() in the function uart_irq_handler().

4



Try to run the kernel now and see if response time for input has improved after you have launched
stress.

7 Multi-Level Feedback Queue

The Round Robin scheduler has made the system functional and we also implemented a trick that
made the response time for input reasonable. Nevertheless, when starting a new command from
the shell while stress is running, there still is a noticeable delay before the program will actually
start. To solve this, we will implement a more advanced Multi-Level Feedback Queue scheduler.

Three ready queues have already been defined at the top of process.c: high, normal and low
priority. Each process is assigned to one of these queues. The time quanta handed out to a process
depends on which queue the process is part of. Again, we make an exception for the idle process,
which should not appear in the low priority queue but should be treated on its own.

We suggest that you first change the code so that proc_enqueue() and proc_dequeue() do
not append the process to the normal priority ready queue, but to the ready queue that belongs
to the process’ priority. Make sure to initialize the process’ priority in proc_create() and also
in the definition of static proc_t kernel_proc at the top of the file.

Second, when you reset the time quantum (in proc_tick() and proc_enqueue()), use the
correct time quantum according to the process’ priority. Processes in the high priority queue get a
single time quantum (PROC_TIME_QUANTA), normal priority 2 times the default time quantum and
low priority 5 times the default time quantum. For the idle process we will use the same quanta
allocation as for low priority processes.

Third, modify proc_schedule() to take all three ready queues and how you desire to handle
the idle process into account. Of course, processes in the higher priority queues get precedence
over the lower priority queues.

Fourth, you want to implement process demotion. All processes start in the highest priority
(modify proc_create() and kernel_proc for this). In proc_tick() bookkeep whether or not a
process has used its full time quantum. Based on this you should demote the process to a lower
priority run queue.

If you try to run the kernel now and launch stress, you should observe that the processes spawned
by stress are demoted to lower priorities. While the interactive processes, like the shell and ls,
always remain in the higher priority queues. Due to this prioritized scheduling, the groups of four
processes will still be visible, but not as clear as before.

There is still a single problem: you will notice that as soon as new background processes are
started, it takes one or two seconds before the system becomes fully interactive again. You will
resolve this as follows. Even though the lower priority processes will be allowed to run for 2 or 5
time quanta, we will check if there is a higher priority process pending in the ready queue each time
after a single quantum has passed. You should modify proc_tick() to implement this behavior.

When you try the kernel with these last changes, you will notice that the system stays fully
responsive.

8 Earliest Deadline First

In Earliest Deadline First (EDF) scheduling, we will focus on a simplified version of EDF schedul-
ing, which schedules a set of periodic processes. A periodic process has several parameters, i.e.,
start time S (when the process should initially start running), period T (the process is released
every time T ), and deadline D (once a process is released, it must must finish an execution before
its deadline). For each process, the absolute release time ri of the ith execution can be computed
as: ri = S + i · T . The absolute deadline di of ith execution can be thus obtained as: di = ri +D.
Here we see an example consisting of three processes with their parameters shown in Figure 1(a).
An EDF schedule is shown in Figure 1(b). The upper arrows denote the release time and the gray

5



Processes start time Period Deadline

P1 0 80 80

P2 0 40 40

P3 0 20 20

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

P1
P2
P3

(b)

Figure 1: (a) Three processes and their parameters and (b) an EDF schedule.

bars indicate the execution. Note that multiple feasible EDF schedules might exist depending on
the implementation. In general, a good schedule should have the least amount of preemption.

To implement an EDF scheduler, two priority queues are maintained, i.e., the unreleased queue
and the released queue. The unreleased queue contains processes whose release time has not ar-
rived. This is compared to the system time, which can be obtained with timer_get_system_ticks().
The released queue contains processes whose release time has passed. Because both queues are
priority queues, the process with the smallest absolute release time or absolute deadline, respec-
tively, is at the front of the queue. As data structure we will use a heap, which has already been
implemented. You will use the variables released_queue and unreleased_queue in process.c.
For how to use the heap, refer to kernel/include/heap.h. Note that the heaps are already
initialized in proc_schedule_init().

It is your task to implement a functional EDF scheduler. First, you need to make sure the
EDF parameters (refer to kernel/include/process.h) are initialized to sane defaults for a new
process. This is done in rt_proc_create. For example, you need to initialize start time, dead-
line, and period. As start time, you can use a value of 100 for all processes. Also, initialize
n_periods_executed and compute the absolute release time and deadline using
proc_update_edf_parameters. A process has finished its period when it performs the sleep(-1)
system call, which will call proc_yield in the kernel. In this case, the parameters must be updated
to reflect the next period.

Secondly, in proc_enqueue you must place the process p in the correct priority queue.
Third, proc_schedule should move all eligible processes from the unreleased queue to the

released queue. The current process should be placed back in the queues using proc_enqueue,
with as exception the idle process, which we will not place in the priority queues. After that, find
out if the released queue contains a process to run. If there is no process to run, schedule the idle
process.

Fourth, proc_tick should invoke proc_schedule to determine the next scheduled process. If
it is different from the current one, the current one should be preempted. An idle process must
be pre-empted if there is another process to run.

To test your code we have provided an executable called edftest. You should modify
kernel/src/boot.c to launch this executable instead of init. This executable will fork 5 pro-
cesses, with the following parameters (values are in system ticks):

1. D = 500, T = 500

2. D = 700, T = 700

3. D = 900, T = 900

4. D = 1000, T = 1000

5. D = 4000, T = 4000

Each process will indicate on the console when it gets a turn to perform its useful work in the
infinite loop. To validate your scheduler, work out in which order the processes should run and
check this with the output from the operating system.

6


