
Leiden University. The university to discover.

VM and ARM MMU
Overview

Mattias Holm & Kristian Rietveld

Leiden University. The university to discover.

Outline

- Memory management overview.
- ARM MMU Specifi cs.
- SMACK VM.

Leiden University. The university to discover.

Memory Management
Overview

Leiden University. The university to discover.

Memory Management

- Needed to protect applications from each
other.

- Necessary if an application requests more
memory than is physically available.

- Every process can behave as if it is the
only process running on the machine.

Leiden University. The university to discover.

Memory Management (cont.)

- Two major technologies:
- Segmentation
- Paging

Leiden University. The university to discover.

Segmentation

- Memory segments are defi ned by a start
address and a certain length.

- Each segment has access attributes:
- Read, write, execute, etc.

- Violation of attributes results in a segment
violation or segfault (UNIX SIGSEGV).

Leiden University. The university to discover.

Paging

- Introduced to allow memory to be
swapped out to disk.

- Memory divided into pages of fi xed size
(usually 4 KB).

- Pages have access attributes like
segments.

- Has mostly replaced segmentation: we
will focus on paging.

Leiden University. The university to discover.

Address spaces

- Every process gets its own address
space.

- Loads/stores occur within this address
space, using “virtual addresses”.

- To be able to access physical memory,
the virtual address must be translated to a
physical address.

Leiden University. The university to discover.

OS & CPU

- Address translation and enforcement of
page access attributes is in general
performed by the CPU.

- Addresses spaces are created and
managed by the operating system.

- So, we need to give the CPU the
necessary information to perform
translation & protection.

Leiden University. The university to discover.

Page tables

- Page Table Pointers (PTPs) identify
paging tables.

- Page Table Entries (PTEs) map virtual to
physical addresses and track page
attributes.

- Translation Lookaside Buffer (TLB)
caches PTEs for quick access.

- If an entry is not in the TLB, memory
system will do a page walk.

Leiden University. The university to discover.

Page Table Walk

- Processor performs a
load/store to an
address that is not in
the TLB.

- Assume address
0x10020345

- Processor uses the
page table pointer
(stored in special
register) to fi nd the
page table.

CPUCPU
Root PTPRoot PTP

MemoryMemory

Page
Table
Page
Table

Leiden University. The university to discover.

Page Table Walk (1)

Root PTPRoot PTP

0x100203450x10020345

L1
Page
Table

L1
Page
Table

Leiden University. The university to discover.

Page Table Walk (2)
- Processor extracts

high bits of the
virtual address and
loads PTP from L1
table.

Root PTPRoot PTP

0x100203450x10020345

L1
Page
Table

L1
Page
Table

L2
Page
Table

L2
Page
Table

100

Leiden University. The university to discover.

Page Table Walk (3)
- Processor extracts

high bits of the
virtual address and
loads PTP from L1
table.

- Processes uses
mid bits to load L2
PTE.

Root PTPRoot PTP

0x100203450x10020345

L1
Page
Table

L1
Page
Table

L2
Page
Table

L2
Page
Table

PagePage

100

20

Leiden University. The university to discover.

Page Table Walk (4)
- Processor extracts

high bits of the
virtual address and
loads PTP from L1
table.

- Processes uses
mid bits to load L2
PTE.

- Use the PTE and
lower bits to
compute the
physical address.

Root PTPRoot PTP

0x100203450x10020345

L1
Page
Table

L1
Page
Table

L2
Page
Table

L2
Page
Table

PagePage

100

20

345

Leiden University. The university to discover.

ARM MMU

Leiden University. The university to discover.

ARMv7

- ARMv7 comes in 3 variants:
- ARMv7-A with MMU (paging).
- ARMv7-R for hard realtime applications

with MPU (segmentation, no virtual
addressing).
- ARMv7-M micro-controller version, no

memory protection.

Leiden University. The university to discover.

ARMv7-A/R

- VMSA – Virtual Memory System
Architecture (paging).

- PMSA – Protected Memory System
Architecture (segmentation).

- Our kernel runs on ARMv7-A (Cortex-A8).

Leiden University. The university to discover.

ARMv7-A MMU

- Control using coprocessor 15 and mrc +
mcr instructions.

- 2 level page tables.
- Page sizes: 4KB, 64KB, 1MB, 16MB.
- Permissions for supervisor and user

(read/write).
- No-Execute (NX) bit.

Leiden University. The university to discover.

Level 1 Table Entries

Leiden University. The university to discover.

Level 2 Table Entries

Leiden University. The university to discover.

Page attributes

- Global
- Memory region attributes:
- Cacheable, Bufferable, TEX.

- Shareable.
- Domain.

Leiden University. The university to discover.

Memory Access Attributes
TEX[2:0]TEX[2:0] CC BB DescriptionDescription

000 0 0 Strongly ordered

000 0 1 Shareable device

000 1 0 Outer and inner write-through, no write-allocate

000 1 1 Outer and inner write-back, no write-allocate

001 0 0 Outer and inner non-cacheable

001 0 1 Reserved

001 1 0 IMPLEMENTATION DEFINED

001 1 1 Outer and inner write-back, write-allocate

010 0 0 Non-shareable device

010 0 1 Reserved

010 1 - Reserved

011 - - Reserved

1BB A A Cacheable memory; outer = AA, inner = BB

Leiden University. The university to discover.

Outer/inner attributes

AA/BBAA/BB AttributeAttribute

00 Non-cacheable

01 Write-back, write-
allocate

10 Write-through, no
write-allocate

11 Write-back, no write-
allocate

Leiden University. The university to discover.

Large Pages & Sections

- Large pages do not decrease table size.
- Sections and super-sections reduce the

need for L2 table blocks and the penalty
for walking the full table.

- Large pages, sections and super-sections
increase the memory covered by the TLB.

Leiden University. The university to discover.

Root Table Pointers

- There are two root table pointers, with
confi gurable address coverage:
- TTBR0: Recommended for user

applications (non-global).
- TTBR1: Recommended for system

(global).

Leiden University. The university to discover.

TLB & ASID

- The TLB caches the PTEs.
- PTE is in TLB if it is non-global, bound to

an ASID which must be synched with the
root PTP.
- No TLB fl ush necessary on context

switch as ASID will change.

Leiden University. The university to discover.

For the assignment, you
don't have to bother with any

of this.

Leiden University. The university to discover.

Implementation of
Virtual Memory

in SMACK

Leiden University. The university to discover.

Allocating Virtual Addresses

- Each process has its own VM table.
- Process associated with a sorted linked

list that tracks allocated VM blocks.
- Can place allocated page list in a

balancing tree for faster search (not done
at the moment).

Leiden University. The university to discover.

VM allocation

- Operating system needs to:
- Manage virtual memory (namespace

vm_) for every process.
- Manage physical memory (namespace

pmap_) globally.
- Create page tables (namespace hw_).

Leiden University. The university to discover.

Important Functions

- vm_map()
- vm_unmap()
- vm_map_physical()
- pmap_alloc()
- hw_map()

Leiden University. The university to discover.

Important Types

- vm_map_t: a valid range of virtual
memory addresses that can be mapped
and the mapped vm regions (within that
range).

- vm_region_t: a mapped region of memory
(i.e. The region has backing physical
memory).

- pmap_region_t: physically mapped set of
consecutive pages.

Leiden University. The university to discover.

Important Types

Leiden University. The university to discover.

Allocating Physical Addresses

- Kernel needs to track which physical
pages have been allocated.

- Need a list of free pages.

- Naive solution: linked list of free pages.
- Better solution: to be implemented by you.

Leiden University. The university to discover.

Naive solution

- One global array of pmap_region_t
objects. One object describes on page of
physical memory.

- Page region object pointers can be
directly mapped to the page's physical
address.

- List of free and used regions is
maintained.

- Goal: get rid of this array, allocate
pmap_region_t on demand.

Leiden University. The university to discover.

Naive solution

Leiden University. The university to discover.

Better solution

- Inspired by Linux.
- A descriptor points at a 2^n sized block of

consecutive pages.
- For each n, maintain a list of free blocks.
- If a block of power n is requested, but

does not exist, split block of power n+1.
- Much less descriptors necessary.
- We maintain blocks of consecutive pages.

Leiden University. The university to discover.

Better solution

Leiden University. The university to discover.

VM structure allocation

- The kernel needs to allocate VM
structures somehow.

- You cannot use generic code in the kernel
to allocate space for these structures.

- Why not?

Leiden University. The university to discover.

VM structure allocation

- The generic code will again call
vm_map(), pmap_alloc(), etc. to allocate
new pages to store data on.

- Infi nite recursion!
- To break this chain of recursion, you will

implement “page stealing”.
- Steal one physical page and use this for

storing VM structures and to describe
itself.

Leiden University. The university to discover.

Stealing pages

- A list of free vm_region_t objects is used.
- Steal fi rst free physical page, map it to

fi rst free virtual address.
- Initialize newly mapped page as an array

of region descriptors and place these in
the list of free vm_region_t objects.

- Use one of the descriptors to describe the
stolen page itself.

Leiden University. The university to discover.

Working towards a solution

- Start today, not two weeks before the
deadline!

- Phase 1: study assignment text and
starting point. E.g. how does pmap_init()
work and how is physical page allocation
carried out?

- Thoroughly understand this before
starting implementation!

- 2 weeks studying / 2 weeks coding.

Leiden University. The university to discover.

Practicum

- Practicum in zaal 411.
- Vanaf volgende week van 11:15 tot 15:30.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

