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Memory Management 
Overview
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Memory Management

- Needed to protect applications from each 
other.

- Necessary if an application requests more 
memory than is physically available.

- Every process can behave as if it is the 
only process running on the machine.
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Memory Management (cont.)

- Two major technologies:
- Segmentation
- Paging
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Segmentation

- Memory segments are defi ned by a start 
address and a certain length.

- Each segment has access attributes:
- Read, write, execute, etc.

- Violation of attributes results in a segment 
violation or segfault (UNIX SIGSEGV).
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Paging

- Introduced to allow memory to be 
swapped out to disk.

- Memory divided into pages of fi xed size 
(usually 4 KB).

- Pages have access attributes like 
segments.

- Has mostly replaced segmentation: we 
will focus on paging.
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Address spaces

- Every process gets its own address 
space.

- Loads/stores occur within this address 
space, using “virtual addresses”.

- To be able to access physical memory, 
the virtual address must be translated to a 
physical address.
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OS & CPU

- Address translation and enforcement of 
page access attributes is in general 
performed by the CPU.

- Addresses spaces are created and 
managed by the operating system.

- So, we need to give the CPU the 
necessary information to perform 
translation & protection.
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Page tables

- Page Table Pointers (PTPs) identify 
paging tables.

- Page Table Entries (PTEs) map virtual to 
physical addresses and track page 
attributes.

- Translation Lookaside Buffer (TLB) 
caches PTEs for quick access.

- If an entry is not in the TLB, memory 
system will do a page walk.
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Page Table Walk

- Processor performs a 
load/store to an 
address that is not in 
the TLB.

- Assume address 
0x10020345

- Processor uses the 
page table pointer 
(stored in special 
register) to fi nd the 
page table.

CPUCPU
Root PTPRoot PTP

MemoryMemory

Page
Table
Page
Table
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Page Table Walk (1)

Root PTPRoot PTP
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Page Table Walk (2)
- Processor extracts 

high bits of the 
virtual address and 
loads PTP from L1 
table.

Root PTPRoot PTP

0x100203450x10020345

L1
Page
Table

L1
Page
Table
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Page
Table

L2
Page
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Page Table Walk (3)
- Processor extracts 

high bits of the 
virtual address and 
loads PTP from L1 
table.

- Processes uses 
mid bits to load L2 
PTE.

Root PTPRoot PTP

0x100203450x10020345
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Page Table Walk (4)
- Processor extracts 

high bits of the 
virtual address and 
loads PTP from L1 
table.

- Processes uses 
mid bits to load L2 
PTE.

- Use the PTE and 
lower bits to 
compute the 
physical address.

Root PTPRoot PTP

0x100203450x10020345
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Page
Table
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ARM MMU
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ARMv7

- ARMv7 comes in 3 variants:
- ARMv7-A with MMU (paging).
- ARMv7-R for hard realtime applications 

with MPU (segmentation, no virtual 
addressing).
- ARMv7-M micro-controller version, no 

memory protection.
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ARMv7-A/R

- VMSA – Virtual Memory System 
Architecture (paging).

- PMSA – Protected Memory System 
Architecture (segmentation).

- Our kernel runs on ARMv7-A (Cortex-A8).
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ARMv7-A MMU

- Control using coprocessor 15 and mrc + 
mcr instructions.

- 2 level page tables.
- Page sizes: 4KB, 64KB, 1MB, 16MB.
- Permissions for supervisor and user 

(read/write).
- No-Execute (NX) bit.
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Level 1 Table Entries
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Level 2 Table Entries
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Page attributes

- Global
- Memory region attributes:
- Cacheable, Bufferable, TEX.

- Shareable.
- Domain.
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Memory Access Attributes
TEX[2:0]TEX[2:0] CC BB DescriptionDescription

000 0 0 Strongly ordered

000 0 1 Shareable device

000 1 0 Outer and inner write-through, no write-allocate

000 1 1 Outer and inner write-back, no write-allocate

001 0 0 Outer and inner non-cacheable

001 0 1 Reserved

001 1 0 IMPLEMENTATION DEFINED

001 1 1 Outer and inner write-back, write-allocate

010 0 0 Non-shareable device

010 0 1 Reserved

010 1 - Reserved

011 - - Reserved

1BB A A Cacheable memory; outer = AA, inner = BB



Leiden University. The university to discover.

Outer/inner attributes

AA/BBAA/BB AttributeAttribute

00 Non-cacheable

01 Write-back, write-
allocate

10 Write-through, no 
write-allocate

11 Write-back, no write-
allocate
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Large Pages & Sections

- Large pages do not decrease table size.
- Sections and super-sections reduce the 

need for L2 table blocks and the penalty 
for walking the full table.

- Large pages, sections and super-sections 
increase the memory covered by the TLB.
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Root Table Pointers

- There are two root table pointers, with 
confi gurable address coverage:
- TTBR0: Recommended for user 

applications (non-global).
- TTBR1: Recommended for system 

(global).



Leiden University. The university to discover.

TLB & ASID

- The TLB caches the PTEs.
- PTE is in TLB if it is non-global, bound to 

an ASID which must be synched with the 
root PTP.
- No TLB fl ush necessary on context 

switch as ASID will change.
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For the assignment, you 
don't have to bother with any 

of this.
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Implementation of
Virtual Memory

in SMACK
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Allocating Virtual Addresses

- Each process has its own VM table.
- Process associated with a sorted linked 

list that tracks allocated VM blocks.
- Can place allocated page list in a 

balancing tree for faster search (not done 
at the moment).
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VM allocation

- Operating system needs to:
- Manage virtual memory (namespace 

vm_) for every process.
- Manage physical memory (namespace 

pmap_) globally.
- Create page tables (namespace hw_).
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Important Functions

- vm_map()
- vm_unmap()
- vm_map_physical()
- pmap_alloc()
- hw_map()
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Important Types

- vm_map_t: a valid range of virtual 
memory addresses that can be mapped 
and the mapped vm regions (within that 
range).

- vm_region_t: a mapped region of memory 
(i.e. The region has backing physical 
memory).

- pmap_region_t: physically mapped set of 
consecutive pages.
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Important Types
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Allocating Physical Addresses

- Kernel needs to track which physical 
pages have been allocated.

- Need a list of free pages.

- Naive solution: linked list of free pages.
- Better solution: to be implemented by you.
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Naive solution

- One global array of pmap_region_t 
objects. One object describes on page of 
physical memory.

- Page region object pointers can be 
directly mapped to the page's physical 
address.

- List of free and used regions is 
maintained.

- Goal: get rid of this array, allocate 
pmap_region_t on demand.
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Naive solution
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Better solution

- Inspired by Linux.
- A descriptor points at a 2^n sized block of 

consecutive pages.
- For each n, maintain a list of free blocks.
- If a block of power n is requested, but 

does not exist, split block of power  n+1.
- Much less descriptors necessary.
- We maintain blocks of consecutive pages.
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Better solution
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VM structure allocation

- The kernel needs to allocate VM 
structures somehow.

- You cannot use generic code in the kernel 
to allocate space for these structures.

- Why not?
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VM structure allocation

- The generic code will again call 
vm_map(), pmap_alloc(), etc. to allocate 
new pages to store data on.

- Infi nite recursion!
- To break this chain of recursion, you will 

implement “page stealing”.
- Steal one physical page and use this for 

storing VM structures and to describe 
itself.
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Stealing pages

- A list of free vm_region_t objects is used.
- Steal fi rst free physical page, map it to 

fi rst free virtual address.
- Initialize newly mapped page as an array 

of region descriptors and place these in 
the list of free vm_region_t objects.

- Use one of the descriptors to describe the 
stolen page itself.
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Working towards a solution

- Start today, not two weeks before the 
deadline!

- Phase 1: study assignment text and 
starting point. E.g. how does pmap_init() 
work and how is physical page allocation 
carried out?

- Thoroughly understand this before 
starting implementation!

- 2 weeks studying / 2 weeks coding.
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Practicum

- Practicum in zaal 411.
- Vanaf volgende week van 11:15 tot 15:30.
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