

How to share one medium while facilitating multiple channels of communication:

Frequency Division and Time Division Multiplexing

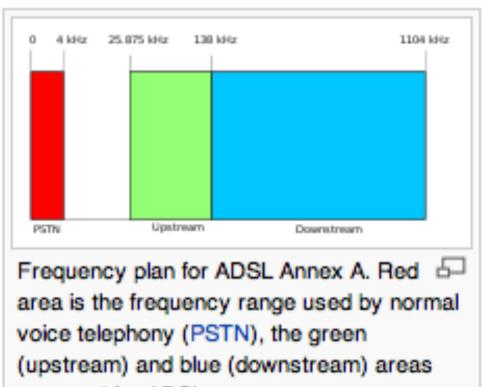
Frequency Division Multiplexing (FDM alla FSK)

Standards

# voice channel	bandwidth	spectrum	US/AT&T	ΙΤU_Τ
12	48 kHz	60-108 kHz	Group	Group
60	240 kHz	312-552 kHz	Super Group	Super Group
300	1,23 MHz	812-2044 kHz	Super Group	Master Group
600	2,52 MHz	564-3084 kHz	Master Group	Master Group
900	3,87 MHz	8,52-12.39 MHz	Master Group	Super Master Group
3600	16,98 MHz	0.56-17,55 MHz	Jumbo Group	Jumbo Group
10800	57,44 MHz	3,12-60,57 MHz	Jumbo Group Multiplexed	Jumbo Group Multiplexed

Example: ADSL

ADSL Asymmetric Digital Subscriber Line

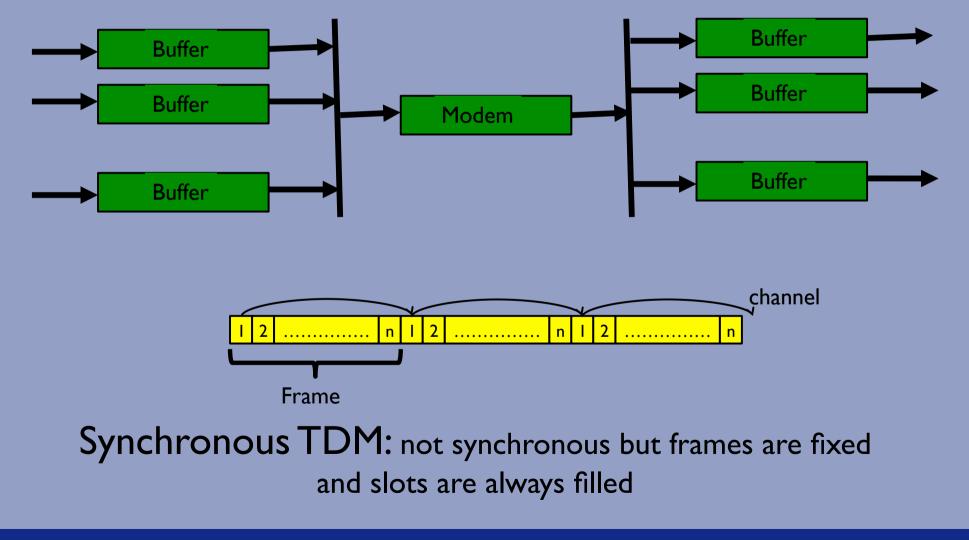

Originally for Video-on-Demand: less control going up – lots of image going down

Very similar to internet usage !!!!!!

Multiple "regular" phone connections at the same time on which QAM (Quadratic Amplitude Modulation) is implemented

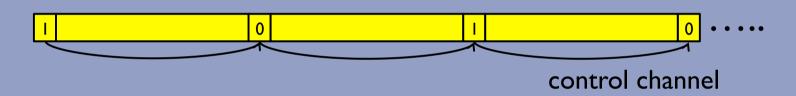
- Reserve lowest 25 kHz for Voice (POTS, Plain Old Telephone Service) 25 instead of 5 to prevent cross talk between voice&data
- Facilitate two bands: small upstream / big downstream
- Use FDM within upstream and downstream band

ADSL 4 kHz channels



are used for ADSL.

ADSL standards

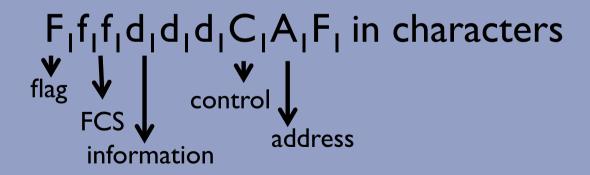

Version	Standard name	Common name	Downstream rate €	Upstream rate	Approved in
ADSL	ANSI T1.413-1998 Issue 2	ADSL	8.0 Mbit/s	1.0 Mbit/s	1998
ADSL	ITU G.992.1	ADSL (G.DMT)	12.0 Mbit/s	1.3 Mbit/s	1999-07
ADSL	ITU G.992.1 Annex A	ADSL over POTS	12.0 Mbit/s	1.3 Mbit/s	2001
ADSL	ITU G.992.1 Annex B	ADSL over ISDN	12.0 Mbit/s	1.8 Mbit/s	2005
ADSL	ITU G.992.2	ADSL Lite (G.Lite)	1.5 Mbit/s	0.5 Mbit/s	1999-07
ADSL2	ITU G.992.3	ADSL2	12.0 Mbit/s	1.3 Mbit/s	2002-07
ADSL2	ITU G.992.3 Annex J	ADSL2	12.0 Mbit/s	3.5 Mbit/s	
ADSL2	ITU G.992.3 Annex L	RE-ADSL2	5.0 Mbit/s	0.8 Mbit/s	
ADSL2	ITU G.992.4	splitterless ADSL2	1.5 Mbit/s	0.5 Mbit/s	2002-07
ADSL2+	ITU G.992.5	ADSL2+	24.0 Mbit/s	1.1 Mbit/s	2003-05
ADSL2+	ITU G.992.5 Annex M	ADSL2+M	24.0 Mbit/s	3.3 Mbit/s	2008

Time Division Multiplexing(TDM)

How is framing implemented

Added digit framing

Pulse Stuffing


Frequency > Σ (freq. of the sources)

additional bits are added at fixed position in the frame

Relationship with data link framing

$$F_1f_2A_1F_2C_1A_2d_1C_2d_1d_2$$

for

Example: Telephony

DS-I transmission format

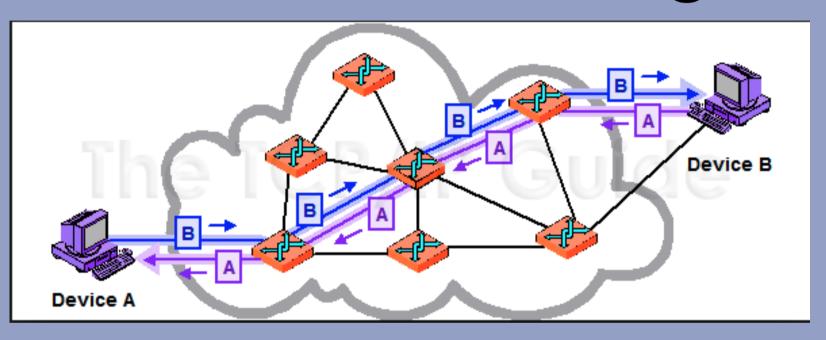
Voice → PCM (8000 samples per second, 8-bit)
TDM-frame = 24 (channels) x 8 bits +1 (frame bit)
= 193 bits
Data rate: 8000 x 193 = 1.544 Mbps
DATA only 23 out of 24 channels used,
24th channel has special SYNC BYTE

per channel I bit for user/system data

→ 7 x 23 x 8000 = 56 x 23 kbps = 56 kbps p. channel

Standards Telephony

US/JAPAN			ІТО-Т		
	# channels	Mbps	Level	#channels	Mbps
DS-1	24	1.544	I	30	2.048
DS-IC	48	3.152	2	120	8.448
DS-2	96	6.312	3	480	34.368
DS-3	672	44.736	4	1920	139.264
DS-4	4032	274.176	5	7680	565.148


Network SWITCHING

Next to multiplexing: **switching** is required to realize multi to multi connections

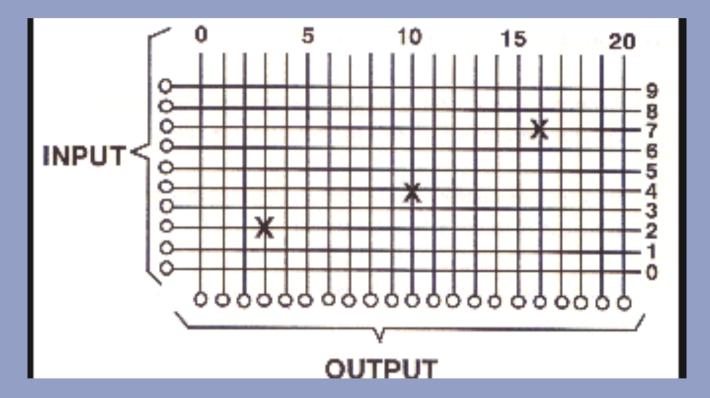
Especially needed in Wide Area Networks (WAN)

Also present in Local Area Networks (LAN) or in multi processors architectures.

Circuit Switching

- I. A dedicated path between two end stations is realized or channel (TDM/FDM)
- 2. Data is being transmitted (Switches don't inspect data)
- 3. Path is broken up

Circuit switching

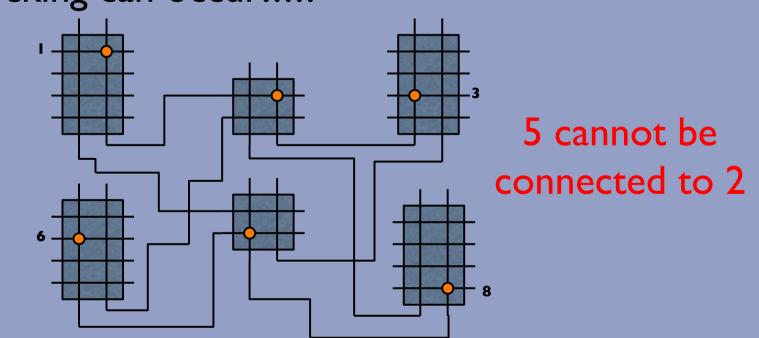

IMPORTANT CHARACTERISTIC:

BLOCKING VS NON-BLOCKING

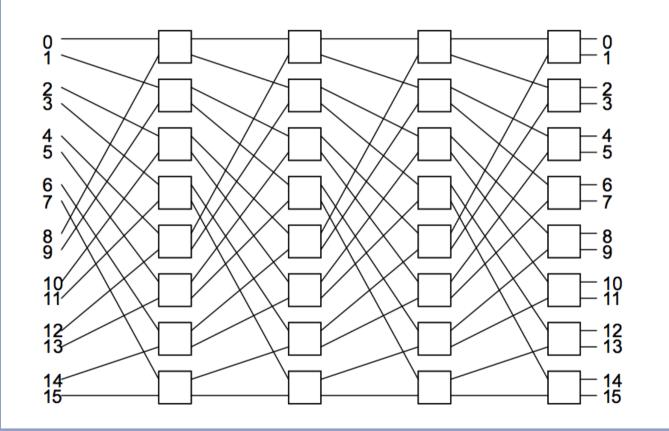
Connection cannot be realized because all paths are occupied

Connection can always be realized and at any time

Space Division Switching: non-blocking Crossbar Switch

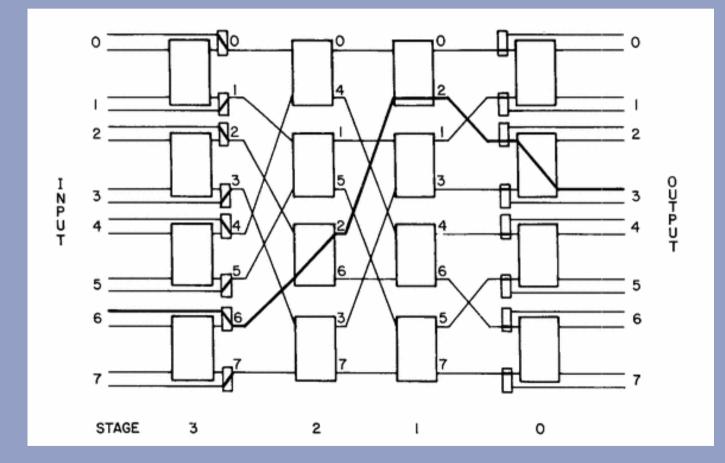


Very costly: N² switches

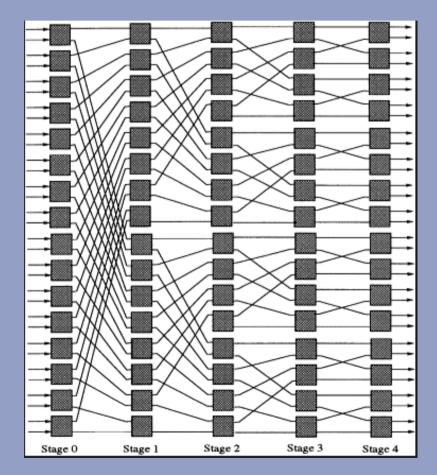

Multistage Networks

Use many small crossbar switches and connect them wisely.

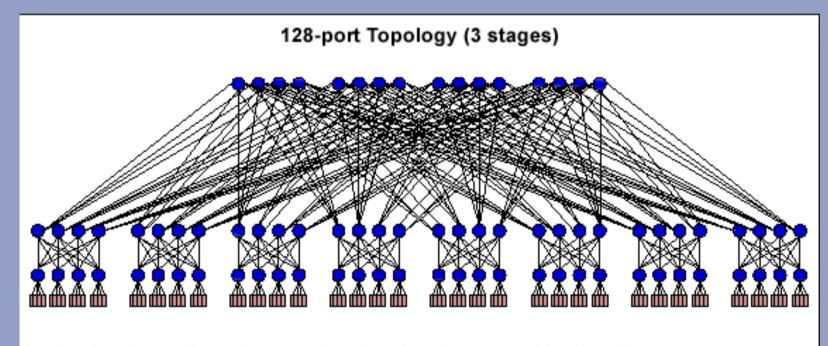
Blocking can occur!!!!!



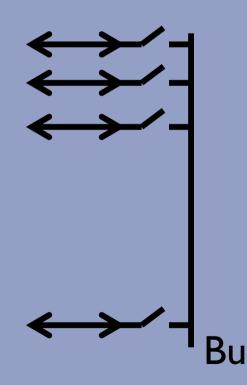
Omega Networks (based on Perfect Shuffles)



2logN + I stages: non blocking with O(NlogN switches)


Variants of PS networks Cube Network

Butterfly Network



Fat Tree Network

Copyright Quadrics, Ltd. May not be copied without the prior written consent of Quadrics, Ltd. Reproduced here with permission of Quadrics, Ltd.

Time Division Switching **Do not confuse with TDM !!!**

Bandwidth of Bus > Σ indiv. bandw. Then non-blocking!

Routing in Circuit Switched Networks

- Alternate Routing
 - → Each switching node has its own routing table

	First choice	Second choice
A to B	Via switch i	Via switch j
A to C	Via switch j	Via switch k

- Fixed Alternate Routing Routing tables do not change
- Dynamic Alternate Routing

Depending on time (e.g. time of the day) routing tables will change

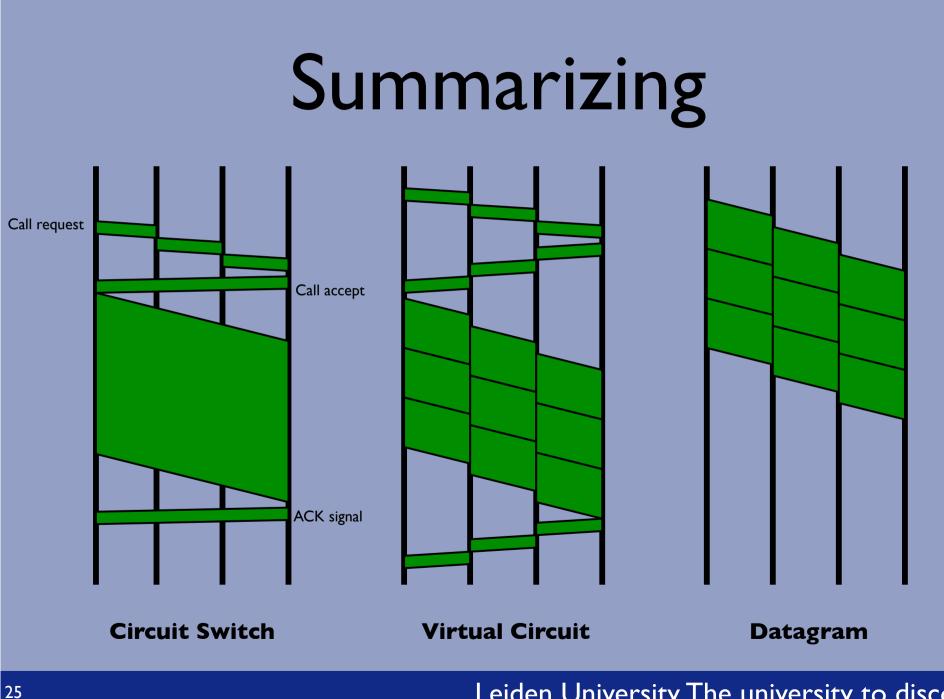
Adaptive Routing

Central Controller gets status of all switches and gives routing updates to all switches

Packet Switching

Data is sent by packets (usually < 1000 octets), Every switching nodes has buffers

• Datagram


Every packet is routed independently

As a consequence packets can arrive out of order

Virtual Circuit (Wormhole)

Before communication is initiated a Call-Request packet is sent on the network, which fixates a virtual path between sender and receiver.

Packets arrive in order, but it not as flexible as datagram

Different Combinations

- External Virtual Circuit & Internal Virtual Circuit
- External Virtual Circuit & Internal Datagram
- External Datagram & Internal Virtual Circuit
- External Datagram & Internal Datagram

Which one makes sense?

Routing for Packet Switched Networks

Like circuit switching can we differentiate between: Fixed Routing and Alternate Routing No difference between datagram and virtual circuit

Random Routing

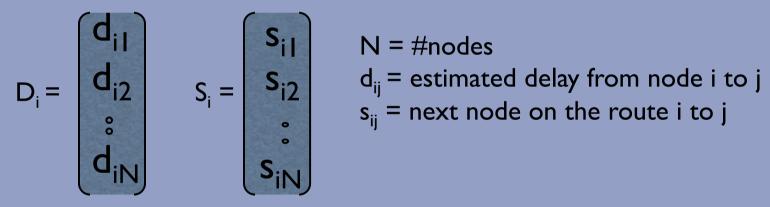
Every node chooses randomly outgoing link, based on some prob. Distribution, e.g. $P_i = R_i / \Sigma R_j$ with R_i data rate possible on link i. Flooding (very inefficient, very reliable)
Every node puts incoming packet on every outgoing link, except the incoming link
→ Exponential growth

Every node logs all the packets
If packets arrives a second time: discard

Every packet, contains counter: hop-count If hop-count > threshold: discard

Adaptive Routing (Central vs Distributed)
Every node gets network status information
Local, e.g. queue length of the outgoing links
Adjacent nodes

> All nodes


ARPANET

based on Adaptive Routing, Distr. & Adjacent Nodes

First Version: 1969

Based on **Bellman-Ford Algorithm**

Every node i has two vectors:

Disadvantages:

Every 128 ms every node exchanges delay vector with adjacent nodes. Then every node k: $d_{ki} = Min_{i \in A} [d^{new}_{ii} + d_{ki}]$ and $s_{ki} = i$, the node i which minimizes d_{ki}. Link delays are the queue length for that link.

> Link delays were not accurate Thrashing would occur

2^{de} Generation (1979)

Every node:

- > Timestamp on incoming message (arrival time)
- Departure time recorded
- If pos. ACK is received: delay = (dept. time arrival time)

Every 10 sec: every node computes the average delay per link If delay is different: **FLOODING** is used to inform all the other nodes Every node gets status of the whole network!!!!!!!! Dijkstra's shortest path algorithm is used to compute new routing table

3^{de} Generation (1987)

When load is heavy:

Observed delay under old routing \neq delay under new routing

- \rightarrow Oscillation effects
- → Instead of BEST route: a "good" route

Smoothening of link costs (delays)

Every 10 seconds:

 ρ =link utilization

- (Queuing theory) $\rho = 2(s-t)/(s-2t)$, with t = measured delayΙ.
 - s = service time
- $U(n+1) = 0.5\rho(n+1) + 0.5U(n), U(n)$ average utilization 2.
- 3. New delays are computed based on U(n), terrestrial: I Hop for U(n) < 0.5, 2 Hops for U(n) > 0.8sattelite: 2 Hops for U(n) < 0.8

Otherwise the same as 2-de generation