Encoding Information

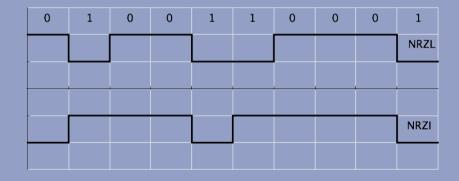
As we have seen earlier:

Information: Digital ↔ Analog

In the same way:

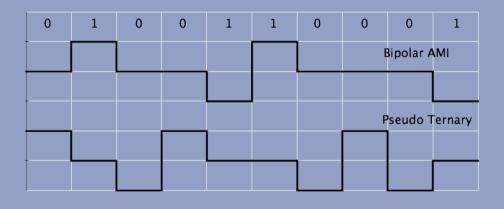
Medium: Digital ↔ Analog

- Digital: Twisted pair, coax
- Analog: Fiber, wireless (and these days also twisted pair and coax)

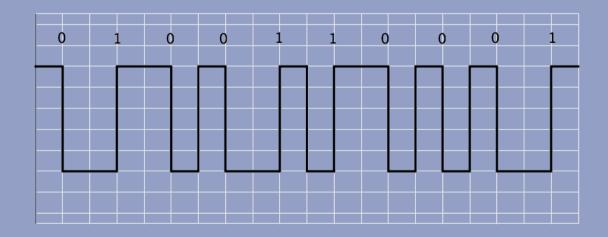

Encoding Information

• This results in 4 cases:

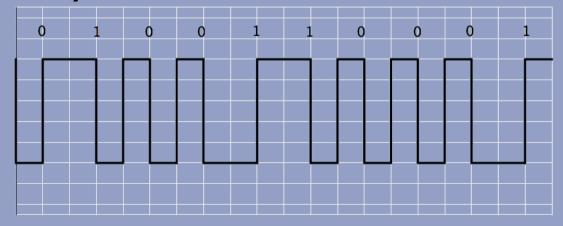
Medium Information		Analog
Digital		2
Analog	3	4


Case I: NRZL

- Non Return to Zero Level (NRZL)
 - Transition of $0 \rightarrow 1$ and $1 \rightarrow 0$
- Non Return to Zero Invert
 - Transition on "ones"


Case I: Bipolar AMI and Pseudo ternary

- Alternate MarkInversion
 - Bipolar AMI
 - Alternate on I
 - Pseudo ternary
 - Alternate on 0

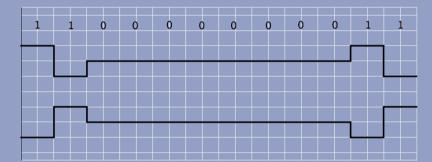

Case I: Manchester

- Manchester: Transit in middle.
 - I: L→H
 - 0: H→L

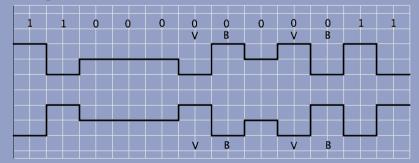
Case I: Differential Manchester

- Differential Manchester
 - 0: Transition at the start
 - I: No transition
 - Always transition in middle

Synchronization


- Problem: Synchronisation! How to agree on when clock ticks occur for sender and receiver?
- Avoiding clock skew.

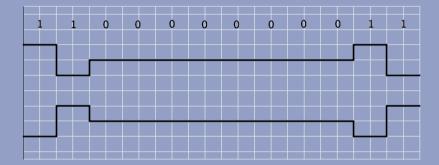
Synchronization


- Synchronisation:
 - NRZL: At long sequences of 0 or long sequences of 1.
 - NRZI: At long sequences of 0
 - Bipolar AMI: At long sequences of 0
 - Pseudo Ternary: At long sequences of I

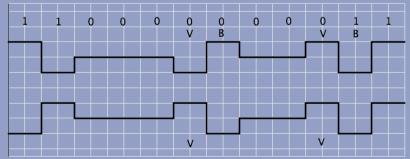
Scrambling

For bipolar AMI the signal is scrambled

B8ZS (bipolar 8-zero substitution): Substitute eight '0' with:



V:Violation


B: Balancing

Scrambling

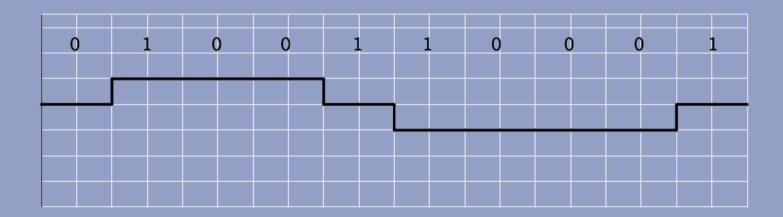
Bipolar AMI:

• HDB3 (High-Density Bipolar Order 3):

B8ZS and HDB3

- B8ZS: 00000000 → 000VB0VB
- HDB3: 0000 → 000V (if odd number of ones between) or B00V
- B needed to balance the current flow

Self clocked


- Scrambling not possible on NRZL and NRZI.
- Manchester and differential manchester is self clocked but cost twice the bandwidth.

Fast Ethernet

- 10 Mbit/s Ethernet: Diff. Manchester.
- 100 Mbit/s Ethernet: Diff. Manchester not usable.
- STP/UTP(CAT5) $\leq 10^8 \text{ Hz}$
 - Nyquist max 2×10⁸ bps ~ 200 Mbit/s, but twice as many transitions needed, so max 100 Mbit/s. In practice lower!

MLT-3

- 100 Mbit/s Ethernet (100 BASE_TX) uses
 Multi Level Transmit, MLT-3 (NRZI-3)
- For 0, do nothing.
- For I, transit + 0 0 + 0 0 + 0 ...

MLT-3

- With MLT3, synchronization problem appears again.
- "Scrambling" done in different way.
 - Every group of 4 bits of data is transmitted as 5 bits so that there are at least two transitions per 5 bits.
 - Predetermined code words.

4b/5b

Data	4b/5b encoded	
0000	11110	
0001	01001	
0010	10100	
•••	•••	
1101	11011	
1110	11100	
1111	11101	

The 5 bit encoded data is transmitted using MLT3

Gigabit Ethernet

Basically five standards available, including 1000BASE-X for optical fiber and 1000BASE-T for twisted pair and 1000BASE-CX for Coax. More precisely:

Name	Medium	Specified distance
1000BASE-CX	Twin axial cabling	25 meters
1000BASE-KX	Copper backplane	l meter
1000BASE-SX	Multi-mode fiber	220 to 550 meters
1000BASE-LX	Multi-mode fiber	550 meters
1000BASE-LX	Single-mode fiber	5 km
1000BASE-LX10	Single-mode fiber using 1,310 nm wavelength	I0 km
1000BASE-EX	Single-mode fiber at 1,310 nm wavelength	~ 40 km
1000BASE-ZX	Single-mode fiber at 1,550 nm wavelength	~ 70 km
1000BASE-BX10	Single-mode fiber, over single-strand fiber: 1,490/1,310 nm	10 km
1000BASE-T	Twisted-pair cabling (Cat-5, Cat-5e, Cat-6, or Cat-7)	100 meters
1000BASE-TX	Twisted-pair cabling (Cat-6, Cat-7)	100 meters

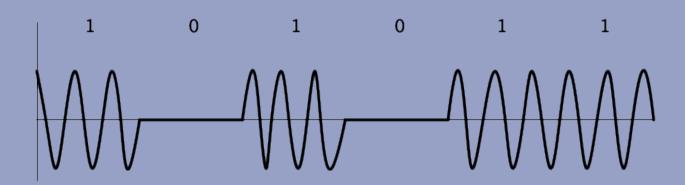
10 Gigabit (10GE, 10GbE, or 10GigE) Ethernet also available but not for cat. 5e twisted pair 100m cabling

1000BASE-T

- All four copper wires are used at the same time
- Every 8 bits are split up in 4 groups of 3 bits ensuring enough transitions
- Each group represents 2 bits giving 4 valid three bit combinations
- Every three bits are mapped to a voltage level, for example:

3 bits	voltage
000	0
001	+
010	+2
011	7
100	0
101	+
110	-2
111	-1

• These mappings change during transmission (preventing DC current)


PAM-5 technique (Pulse Amplitude Modulation)

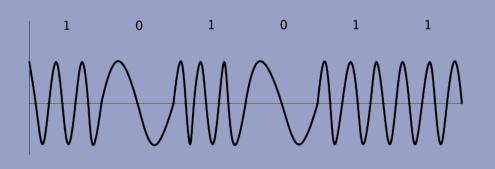
Case 2: Digital Data over Analog Medium

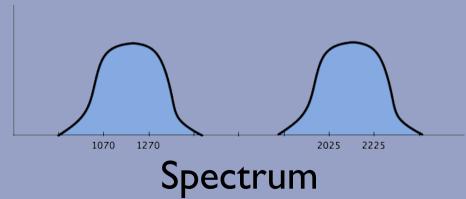
- Most common way to transmit digital data.
 Three primary techniques:
 - Amplitude shift keying (ASK)
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)
- Used when transmitting data over fiber, wireless and telephone lines.

ASK

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & 1\\ 0 & 0 \end{cases}$$

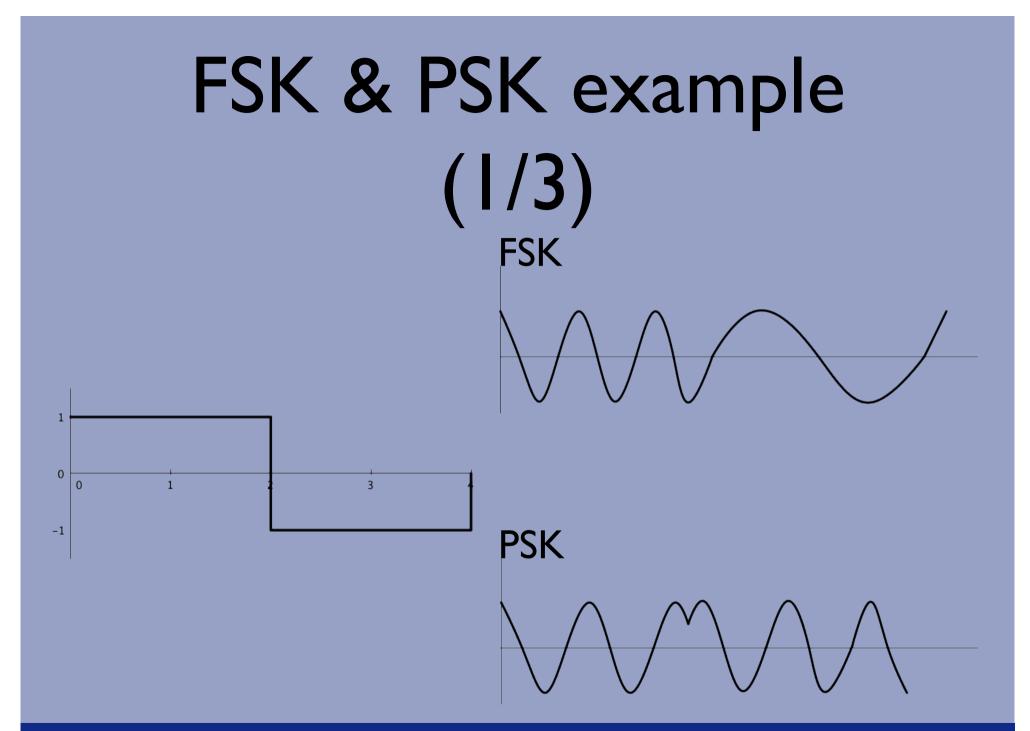
< 1200 bps on telephone lines

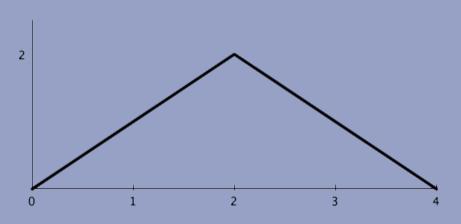

FSK

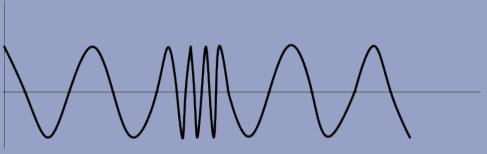

$$s(t) = egin{cases} A\cos(2\pi f_1 t) & 1 & <$$
 I 200 bps on telephone lines $A\cos(2\pi f_2 t) & 0 & \text{full duplex possible:} \end{cases}$

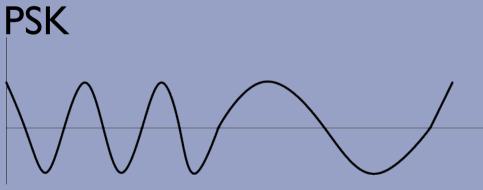
 \rightarrow 1070 & 1270 Hz

←2025 & 2225 Hz

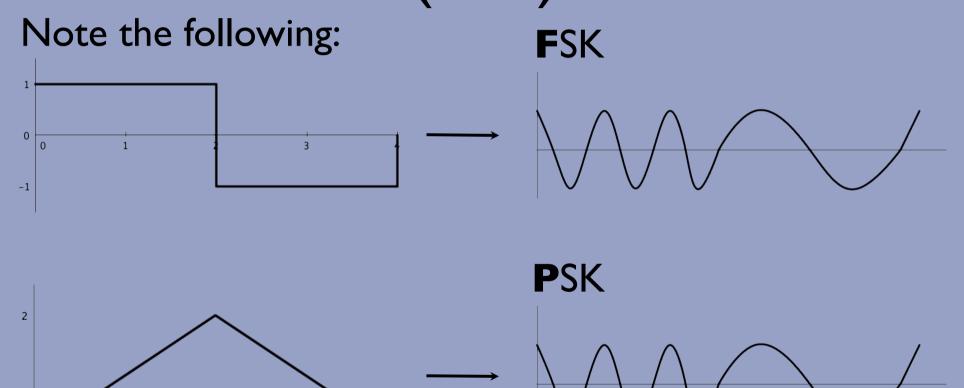

f₁ and f₂ are offsets to a carrier


PSK

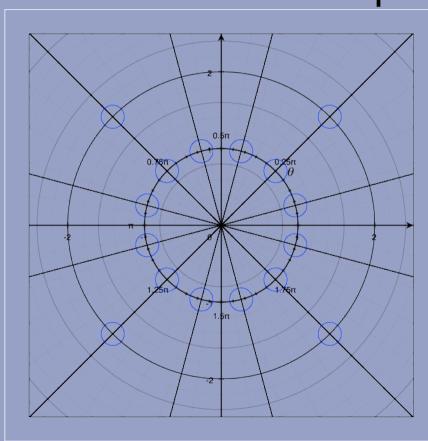

$$s(t) = \begin{cases} A\cos(2\pi f_c t + \pi) & 1\\ A\cos(2\pi f_c t) & 0 \end{cases}$$



FSK & PSK example (2/3)


FSK

FSK & PSK example (3/3)

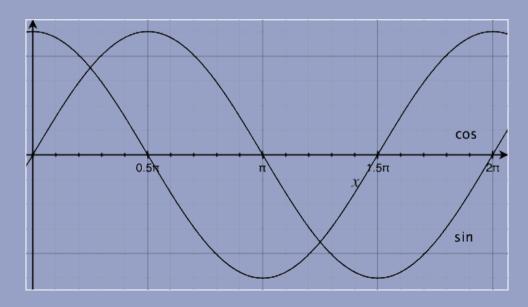

QPSK

Used for phone lines (modems and ADSL) when frequency > 1200 bps.

$$s(t) = \begin{cases} A\cos(2\pi f_c t + \pi/4) & 11\\ A\cos(2\pi f_c t + 3\pi/4) & 10\\ A\cos(2\pi f_c t + 5\pi/4) & 00\\ A\cos(2\pi f_c t + 7\pi/4) & 01 \end{cases}$$

QPSK (2)

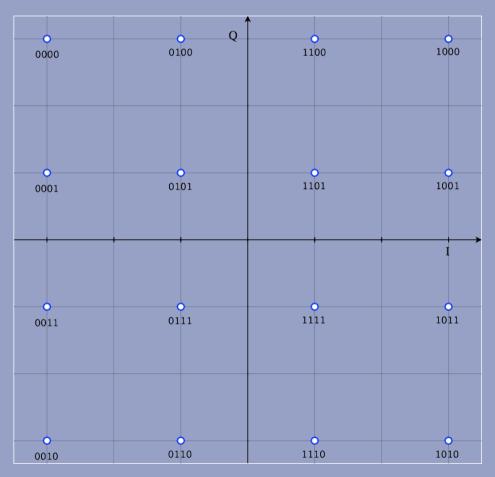
Include Amplitude Modulation



Total of 16 points = 4 bits

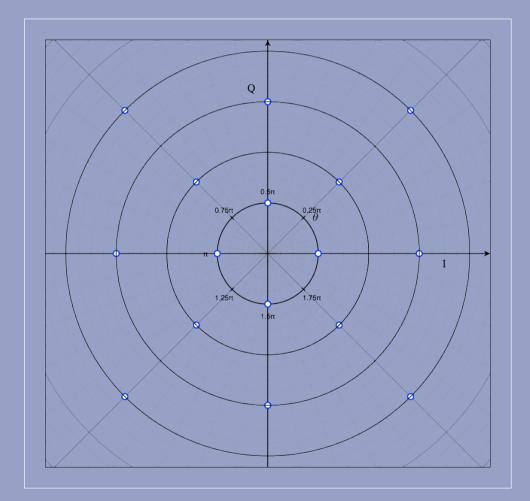
QAM(I)

QAM (quadratic amplitude modulation) Higher bit rates possible


$$s(t) = I(t) \cos(2\pi f_c t) + Q(t) \sin(2\pi f_c t)$$

Sufficiently different in phase so that I(t) and Q(t) can be isolated.

QAM (2)


16-QAM

Rectangular constellation

QAM (3)

Circular 16-QAM

Circular constellation

QAM (3)

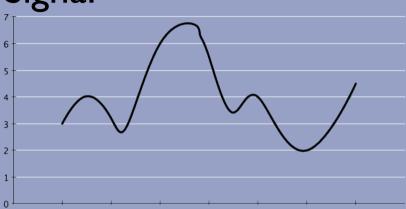
- Infinite possibilities with different characteristic
 - Error sensitivity
- Circular constellation better, but harder to modulate and demodulate, than rectangular constellation.

Case 3: Analog Data over Digital Medium

Two reasons

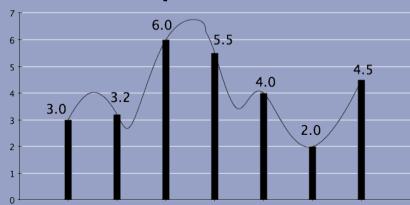
- I. Nothing else possible, available medium is digital.
- 2. Preventing errors.

Case 3: Analog Data over Digital Medium

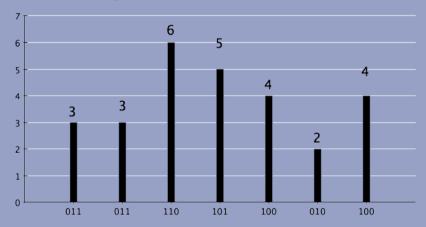


Digitisers

- Pulse Code Modulation (PCM)
- Delta Modulation (DM)

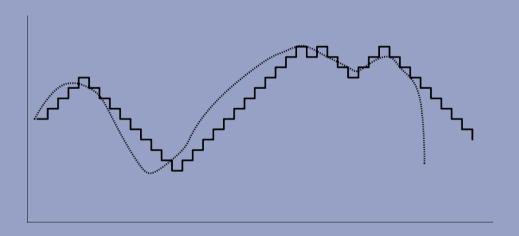

PCM (1/2)

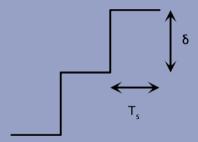
Bandwidth: B


Pulse Amplitude Modulation

Sampling Rate: 2B

PCM (2/2)


Approximate amplitude with n bits (e.g. n = 3)



Output: 011011110101100010100...

Delta Modulation

(More efficient than PCM)

T_s: sample time

 δ step up: I δ step down: 0

Example: Voice 4 kHz

PCM

- 8000 samples/s
- 128 quant. levels: 7 bits
- 56 kbps
- (Nyquist) 28 kHz

DM

- 8000 samples/s
- I bit/sample
- 8 kbps
- (Nyquist) 4 kHz

Digital Transmission

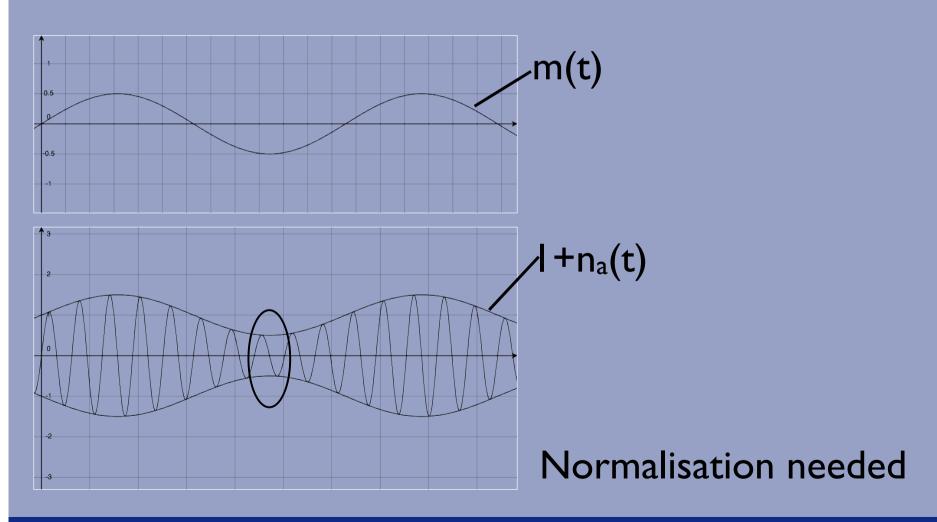
Advantages:

- Repeaters instead of amplifiers (more exact)
- Time Division Multiplexing (TDM) instead of Frequency Division Multiplexing (FDM) (less inter modular noise)
- Digital switching technology is more advanced.

Case 4: Analog Data Over Analog Medium

Using AM (Amplitude Modulation), FM (Frequency Modulation) and PM (Phase Modulation), comparable to ASK, FSK and PSK

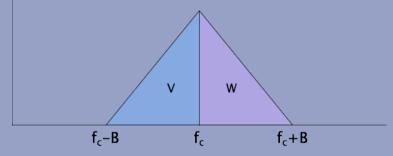
Amplitude Modulation (AM)


```
s(t) = [I + n_a x(t)] \cos(2\pi f_e t)

x(t): the signal

m(t) = n_a x(t): normalized x(t) so that:

|n_a x(t)| < I, \forall t
```


AM

AM

Spectrum:

B: bandwidth of x(t)

V≡W, so all frequencies between f_c-B and f_c can be filtered away.

Single Sided Band (SSB) instead of Double

Sided Band Transmitter Carrier (DSBTC)

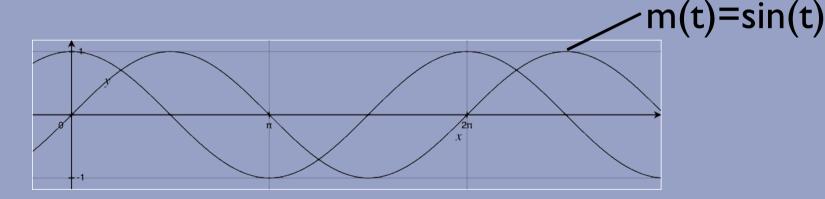
Frequency and Phase Modulation (FM & PM)

$$s(t) = A \cos(2\pi f_c t + \phi(t))$$

 ϕ (t): angle modulation

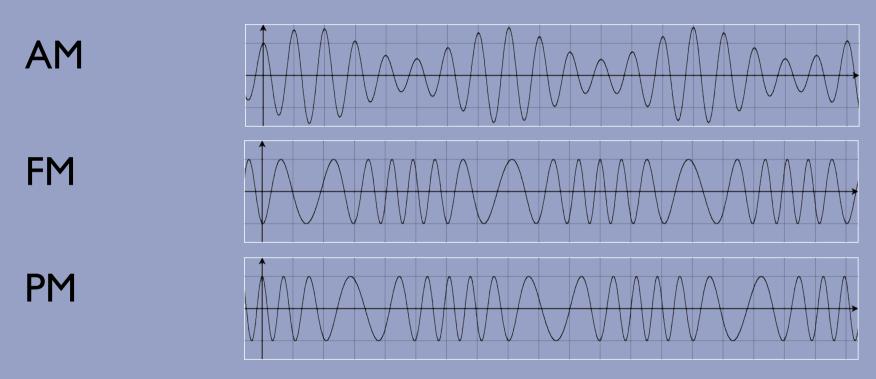
• PM:
$$\phi(t) = n_p \times m(t)$$

• FM:
$$\phi'(t) = n_f \times m(t)$$


Thus with PM, the phase change in s(t) is proportional with the change in m(t) (x(t)), for FM, m(t) is proportional with the frequency change.

FM & PM

Change in frequency of s(t):


$$\frac{d}{dt}[2\pi f_c + \varphi(t)] = 2\pi f_c + \varphi'(t)$$

For:

PM:
$$\phi$$
 (t) = ... sin(t) $\frac{d}{dt}cos(t) = sin(t)$
FM: ϕ (t) = ... cos(t) $\frac{d}{dt}cos(t) = sin(t)$

FM & PM

Thus, PM is shifted FM in the case x(t) is a sine wave. See also the PSK/FSK relation.