
Mattias Holm, M.Sc.
holm@liacs.nl

Leiden University. The university to discover.

Advanced Compilers
and Architectures

ARM MMU Overview

1

Thursday, February 24, 2011

mailto:holm@liacs.nl
mailto:holm@liacs.nl

Leiden University. The university to discover.

Outline

• Memory Management Overview

• ARM Overview

• ARM MMU Specifics

2
Thursday, February 24, 2011

Leiden University. The university to discover.

VM and MMU

3
Thursday, February 24, 2011

Leiden University. The university to discover.

Memory Management

• Needed to protect applications from each
other.

• Necessary if an application requests more
memory than is physically available.

4
Thursday, February 24, 2011

Leiden University. The university to discover.

Memory Management

• Two Major Technologies:

• Segmentation

• Paging

5
Thursday, February 24, 2011

Leiden University. The university to discover.

Segmentation

• Processor tracks start and length attributes
for memory segments using registers.

• Each segment has access attributes:

• Read, write, execute et.c.

• Violation of attributes results in a segment
violation or segfault (UNIX SIGSEGV).

6
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging

• Introduced to allow memory to be
swapped out to disk.

• Memory divided into pages of fixed size
(usually 4 KiB).

• Memory pages specified using page tables.

• Pages have access attributes like segments.

• Has mostly replaced segmentation.

7
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Page Table Pointers (PTPs) identify page

tables.

• Page Table Entries (PTEs) map virtual to
physical address and track page attributes.

• Translation Lookaside Buffer (TLB) caches
PTEs for quick access.

• If an entry is not in the TLB, memory
system will do a page table walk.

8
Thursday, February 24, 2011

Leiden University. The university to discover.

CPU

Paging
• Table Walk

• Processor performs a
load or store to an
address that is not in
the TLB (assume
address is
0x10201234).

• Processor uses the
page table pointer
(stored in a special
register) to find the
page table.

Root PTP Memory

Page
Table

9
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
Root PTP

0x 10 20 1234

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

Root PTP

0x 10 20 1234

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

Root PTP

0x 10 20 1234

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

Root PTP

0x

L1
Page
Table

10 20 1234

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

Root PTP

0x

L1
Page
Table

10 20 123410

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

Root PTP

0x

L1
Page
Table

10 20 1234 10

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

Root PTP

0x

L1
Page
Table

L2
Page
Table

10 20 1234 10

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

• Processor uses mid
bits to load the L2
PTE.

Root PTP

0x

L1
Page
Table

L2
Page
Table

10 20 1234 10

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

• Processor uses mid
bits to load the L2
PTE.

Root PTP

0x

L1
Page
Table

L2
Page
Table

10 20 1234 1020

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

• Processor uses mid
bits to load the L2
PTE.

Root PTP

0x

L1
Page
Table

L2
Page
Table

10 20 1234 10

20

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

• Processor uses mid
bits to load the L2
PTE.

• Use the PTE and
lower bits to compute
the physical address.

Root PTP

0x

L1
Page
Table

L2
Page
Table

10 20 1234 10

20

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

• Processor uses mid
bits to load the L2
PTE.

• Use the PTE and
lower bits to compute
the physical address.

Root PTP

0x

L1
Page
Table

L2
Page
Table

Page

10 20 1234 10

20

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

• Processor uses mid
bits to load the L2
PTE.

• Use the PTE and
lower bits to compute
the physical address.

Root PTP

0x

L1
Page
Table

L2
Page
Table

Page

10 20 1234 10

20

1234

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Paging
• Table Walk

• Processor extracts
the high bits of the
virtual address and
loads PTP from L1
table.

• Processor uses mid
bits to load the L2
PTE.

• Use the PTE and
lower bits to compute
the physical address.

Root PTP

0x

L1
Page
Table

L2
Page
Table

Page

10 20 1234 10

20

1234

10
Thursday, February 24, 2011

Leiden University. The university to discover.

Page Allocation

• How do we allocate virtual memory?

• How do we allocate physical memory?

11
Thursday, February 24, 2011

Leiden University. The university to discover.

Allocating virtual
addresses

• Each process has its own VM table.

• Process associated with a sorted linked list
that track the allocated VM blocks.

• Can place allocated page list in a balancing
tree for faster search.

12
Thursday, February 24, 2011

Leiden University. The university to discover.

Allocating physical
addresses

• Kernel needs to track which physical pages
has been allocated.

• Needs a list of free pages.

• Linux has lists of 2n sized blocks that are
free. If a block of power a is requested, but
does not exist, split block of power a+1.

13
Thursday, February 24, 2011

Leiden University. The university to discover.

Allocating space for the
VM structures

• Cannot use the kernel’s generic VM code to
allocate space for VM structures (turtles all
the way down).

• Break the chain of recursion by special
casing the VM structure allocation.

• Steal one physical page and use this for
storing VM structures, and to describe
itself.

14
Thursday, February 24, 2011

Leiden University. The university to discover.

ARM

15
Thursday, February 24, 2011

Leiden University. The university to discover.

ARM Overview

• ARM Developed by Acorn Computers Ltd
in the UK, ARM 1 released 1985.

• Acorn + Apple worked on new chip design
for the Newton PDA, ARM 6 released in
1994.

• Processors are licensed, not manufactured.

16
Thursday, February 24, 2011

Leiden University. The university to discover.

ARM Overview

• Used in around 98% of all mobile phones.

• Has around 90% of the embedded
processor market.

• Very power efficient.

17
Thursday, February 24, 2011

Leiden University. The university to discover.

ARM Overview

Family Architecture Core Chips

ARM1 ARMv1 ARM1 ARM1

ARM6 ARMv3
ARM60,
ARM600,
ARM610

ARM60,
ARM600,
ARM610

Cortex-A ARMv7-A Cortex-A8,
Cortex-A9

OMAP3xxx,
Apple A4

18
Thursday, February 24, 2011

Leiden University. The university to discover.

ARM Characteristics

• 32 bit architecture

• Load-store architecture (RISC)

• Normally little-endian, but may vary
between processors

• 16 GPRs (r15 = pc)

• Multiple ISAs (ARM, Thumb, Jazelle)

19
Thursday, February 24, 2011

Leiden University. The university to discover.

Modes and Registers
• ARM processor banks

registers, depending on
mode.

• USR: User applications

• SYS: System mode, with
access to USR registers.

• SVC, ABT, UND, IRQ:
banks r13-r14

• FIQ: banks r8-r14

USR SYS SVC ABT UND IRQ FIQ

r0

r1

r2

r3

r4

r5

r6

r7

r8 r8_fiq

r9 r9_fiq

r10 r10_fiq

r11 r11_fiq

r12 r12_fiq

r13 (sp) r13_svc r13_abt r13_und r13_irq r13_fiq

r14 (lr) r14_svc r14_abt r14_und r14_irq r14_fiq

r15 (pc)

cpsr

spsr_svc spsr_abt spsr_und spsr_irq spsr_fiq

20
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7

• ARMv7 comes in 3 variants:

• ARMv7-A with MMU (paging).

• ARMv7-R for hard realtime applications
with MPU (segmentation).

• ARMv7-M micro-controller version, no
memory protection.

21
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A/R

• VMSA - Virtual Memory System
Architecture

• PMSA - Protected Memory System
Architecture

• Our kernel runs on ARMv7-A (Cortex-A8)

22
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU

23
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU

• Control using coprocessor 15 and mrc +
mcr instructions.

• 2 level page tables.

• Page sizes: 4 KiB, 64 KiB, 1 MiB and 16 MiB

• Permissions for supervisor and user (read /
write).

• No-Execute (NX) bit

24
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU
Level 1 Table Entries

25
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU
Level 2 Table Entries

26
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU

• More page attributes:

• Global

• Memory region attributes

• Cacheable, Bufferable, TEX

• Shareable

• Domain

27
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU
TEX[2:0] C B Description

000 0 0 Strongly ordered

000 0 1 Shareable device

000 1 0 Outer and inner write-through, no write-allocate

000 1 1 Outer and inner write-back, no write-allocate

001 0 0 Outer and inner non-cacheable

001 0 1 Reserved

001 1 0 IMPLEMENTATION DEFINED

001 1 1 Outer and inner write-back, write-allocate

010 0 0 Non-shareable device

010 0 1 Reserved

010 1 - Reserved

011 - - Reserved

1BB A A Cacheable memory; outer = AA, inner = BB

28
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU

AA/BB Attribute

00 Non-cacheable

01 Write-back, write-allocate

10 Write-through, no write-allocate

11 Write-back, no write-allocate

29
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU

• TEX remapping can be used to change
TEX, C and B bits to an attribute index.

• Useful for operating systems to define a set
of logical memory types using PRRR and
NMRR registers.

• TEX[0]:C:B = 0 → Device memory

• TEX[0]:C:B = 1 → Normal memory

30
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU

• Large pages do not decrease table sizes.

• Sections and super-sections reduce the
need for L2 table blocks and the penalty for
walking the full table.

• Large pages, sections and super-sections
increase the memory covered by the TLB.

31
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A MMU

• Two root pointers, with configurable
address coverage.

• TTBR0: Recommended for user
applications (non-global)

• TTBR1: Recommended for system
(global)

32
Thursday, February 24, 2011

Leiden University. The university to discover.

ARMv7-A TLBs

• The TLB caches the PTEs.

• PTE in TLB is if it is non global bound to an
ASID which must be synced to the root
PTP.

• No TLB flush necessary on context
switch as ASID will change.

33
Thursday, February 24, 2011

Leiden University. The university to discover.

Q&A

34
Thursday, February 24, 2011

