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Memory Management

• Needed to protect applications from each 
other.

• Necessary if an application requests more 
memory than is physically available.
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Memory Management

• Two Major Technologies:

• Segmentation

• Paging
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Segmentation

• Processor tracks start and length attributes 
for memory segments using registers.

• Each segment has access attributes:

• Read, write, execute et.c.

• Violation of attributes results in a segment 
violation or segfault (UNIX SIGSEGV).
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Paging

• Introduced to allow memory to be 
swapped out to disk.

• Memory divided into pages of fixed size 
(usually 4 KiB).

• Memory pages specified using page tables.

• Pages have access attributes like segments.

• Has mostly replaced segmentation.
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Paging
• Page Table Pointers (PTPs) identify page 

tables.

• Page Table Entries (PTEs) map virtual to 
physical address and track page attributes.

• Translation Lookaside Buffer (TLB) caches 
PTEs for quick access.

• If an entry is not in the TLB, memory 
system will do a page table walk.
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CPU

Paging
• Table Walk

• Processor performs a 
load or store to an 
address that is not in 
the TLB (assume 
address is 
0x10201234).

• Processor uses the 
page table pointer 
(stored in a special 
register) to find the 
page table.

Root PTP Memory

Page 
Table
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Paging
Root PTP

0x 10 20 1234
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Paging
• Table Walk

• Processor extracts 
the high bits of the 
virtual address and 
loads PTP from L1 
table.

Root PTP

0x 10 20 1234
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Paging
• Table Walk

• Processor extracts 
the high bits of the 
virtual address and 
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• Processor uses mid 
bits to load the L2 
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Page Allocation

• How do we allocate virtual memory?

• How do we allocate physical memory?
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Allocating virtual 
addresses

• Each process has its own VM table.

• Process associated with a sorted linked list 
that track the allocated VM blocks.

• Can place allocated page list in a balancing 
tree for faster search.
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Allocating physical 
addresses

• Kernel needs to track which physical pages 
has been allocated.

• Needs a list of free pages.

• Linux has lists of 2n sized blocks that are 
free. If a block of power a is requested, but 
does not exist, split block of power a+1.
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Allocating space for the 
VM structures

• Cannot use the kernel’s generic VM code to 
allocate space for VM structures (turtles all 
the way down).

• Break the chain of recursion by special 
casing the VM structure allocation.

• Steal one physical page and use this for 
storing VM structures, and to describe 
itself.
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ARM
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ARM Overview

• ARM Developed by Acorn Computers Ltd 
in the UK,  ARM 1 released 1985.

• Acorn + Apple worked on new chip design 
for the Newton PDA,  ARM 6 released in 
1994.

• Processors are licensed, not manufactured.
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ARM Overview

• Used in around 98% of all mobile phones.

• Has around 90% of the embedded 
processor market.

• Very power efficient.
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ARM Overview

Family Architecture Core Chips

ARM1 ARMv1 ARM1 ARM1

ARM6 ARMv3
ARM60, 
ARM600, 
ARM610

ARM60, 
ARM600, 
ARM610

Cortex-A ARMv7-A Cortex-A8, 
Cortex-A9

OMAP3xxx, 
Apple A4
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ARM Characteristics

• 32 bit architecture

• Load-store architecture (RISC)

• Normally little-endian, but may vary 
between processors

• 16 GPRs (r15 = pc)

• Multiple ISAs (ARM, Thumb, Jazelle)
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Modes and Registers
• ARM processor banks 

registers, depending on 
mode.

• USR: User applications

• SYS: System mode, with 
access to USR registers.

• SVC, ABT, UND, IRQ: 
banks r13-r14

• FIQ: banks r8-r14

USR SYS SVC ABT UND IRQ FIQ

r0

r1

r2

r3

r4

r5

r6

r7

r8 r8_fiq

r9 r9_fiq

r10 r10_fiq

r11 r11_fiq

r12 r12_fiq

r13 (sp) r13_svc r13_abt r13_und r13_irq r13_fiq

r14 (lr) r14_svc r14_abt r14_und r14_irq r14_fiq

r15 (pc)

cpsr

spsr_svc spsr_abt spsr_und spsr_irq spsr_fiq
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ARMv7

• ARMv7 comes in 3 variants:

• ARMv7-A with MMU (paging).

• ARMv7-R for hard realtime applications 
with MPU (segmentation).

• ARMv7-M micro-controller version, no 
memory protection.
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ARMv7-A/R

• VMSA - Virtual Memory System 
Architecture

• PMSA - Protected Memory System 
Architecture

• Our kernel runs on ARMv7-A (Cortex-A8)
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ARMv7-A MMU
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ARMv7-A MMU

• Control using coprocessor 15 and mrc + 
mcr instructions.

• 2 level page tables.

• Page sizes: 4 KiB, 64 KiB, 1 MiB and 16 MiB

• Permissions for supervisor and user (read / 
write).

• No-Execute (NX) bit
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ARMv7-A MMU
Level 1 Table Entries
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ARMv7-A MMU
Level 2 Table Entries
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ARMv7-A MMU

• More page attributes:

• Global

• Memory region attributes

• Cacheable, Bufferable, TEX

• Shareable

• Domain

27
Thursday, February 24, 2011



Leiden University. The university to discover.

ARMv7-A MMU
TEX[2:0] C B Description

000 0 0 Strongly ordered

000 0 1 Shareable device

000 1 0 Outer and inner write-through, no write-allocate

000 1 1 Outer and inner write-back, no write-allocate

001 0 0 Outer and inner non-cacheable

001 0 1 Reserved

001 1 0 IMPLEMENTATION DEFINED

001 1 1 Outer and inner write-back, write-allocate

010 0 0 Non-shareable device

010 0 1 Reserved

010 1 - Reserved

011 - - Reserved

1BB A A Cacheable memory; outer = AA, inner = BB
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ARMv7-A MMU

AA/BB Attribute

00 Non-cacheable

01 Write-back, write-allocate

10 Write-through, no write-allocate

11 Write-back, no write-allocate
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ARMv7-A MMU

• TEX remapping can be used to change 
TEX, C and B bits to an attribute index.

• Useful for operating systems to define a set 
of logical memory types using PRRR and 
NMRR registers.

• TEX[0]:C:B = 0 → Device memory

• TEX[0]:C:B = 1 → Normal memory
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ARMv7-A MMU

• Large pages do not decrease table sizes.

• Sections and super-sections reduce the 
need for L2 table blocks and the penalty for 
walking the full table.

• Large pages, sections and super-sections 
increase the memory covered by the TLB. 
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ARMv7-A MMU

• Two root pointers, with configurable 
address coverage.

• TTBR0: Recommended for user 
applications (non-global)

• TTBR1: Recommended for system 
(global)
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ARMv7-A TLBs

• The TLB caches the PTEs.

• PTE in TLB is if it is non global bound to an 
ASID which must be synced to the root 
PTP.

• No TLB flush necessary on context 
switch as ASID will change.
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Q&A
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