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On the modular n-queen problem in higher dimensions
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Abstract

The modular n-queen problem in higher dimensions was introduced
by Nudelman [6]. He showed that for a complete solution to exist in the
d-dimensional modular n-chessboard, it is necessary that gcd(n, (2d −
1)!) = 1, and that it is sufficient that gcd(n, (2d − 1)!) = 1. He con-
jectured that the last condition is also necessary and showed that this
is indeed the case for the class of linear solutions. In this notes, we
observe that the conjecture is true for the larger class of polynomial
solutions, which are solutions we present as a natural generalization of
the bidimensional solutions developed by Klöve [3]. We also generalize
constructions of bidimensional solutions developed also by Klöve [4].
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1 Introduction

Let d ≥ 1 and n ≥ 1 and from now on, let us denote by

Zd
n = {x = (x1, · · · , xd) : x1, · · · , xd ∈ Zn}

the d-dimensional modular n-chessboard. Let Od := {−1, 0, 1}d \ {0}d, and let
us define the graph G(n, d), the attacking graph, with vertex set Zd

n and for
every distinct x, y ∈ Zd

n, an edge x ∼ y iff x and y are contained in one of the n
parallel hyperplanes orthogonal to some ε ∈ Od. That is, x ∼ y iff x 6= y and
there exists ε ∈ Od such that ε · (x− y) ≡ 0 mod n; in this case we say that
the “queens” at the “squares” x and y attack each other. The d-dimensional
modular n-queen problem consists on finding

M(n, d) = max{|S| : S ⊂ Zd
n and x � y for every x, y ∈ S},
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Figure 1: Domain of attack of a queen in the bidimensional Z7 lattice.

the maximum among the cardinalities of those subsets of vertices having no
edges between them (for a graph G, such subsets of vertices are called inde-
pendent subsets, and the maximum among the cardinalities of the independent
subsets is called the independence number of G; hence the problem is to de-
termine the independence number of G(n, d)).

In [1], the condition gcd(n, 2) = 1 is proved to be necessary for M(n, 2) = n.
Then, in [3], the condition gcd(n, 6) = 1 is proved to be necessary and sufficient
for M(n, 2) = n. The case d = 2 is completed in [5] for the cases when
gcd(n, 6) > 1, with M(n, 2) = n − 1 if gcd(n, 12) = 2 and M(n, 2) = n − 2
otherwise. In [6], the condition gcd(n, (2d− 1)!) = 1 is proved to be necessary
for M(n, d) = n and the condition gcd(n, (2d−1)!) = 1 is proved to be sufficient
for M(n, d) = n (if d = 2, then (2d−1)! = 6 = (2d−1)! and hence gcd(n, 6) = 1
is necessary and sufficient for M(n, 2) = n).

2 Main Results

The domain of attak for x ∈ Zd
n, depicted in figure 2 for d = 2 and n = 7,

consists of the union of 3d−1
2

= |Od|
2

subspaces of codimension 1. For M(n, d) =
n, it is necessary and sufficient the existence of a n-subset S ⊂ Zd

n such that
the maps x 7→ ε·x are injective for every ε ∈ Od, where x ∈ S. In this case, the
set S is an independent set of vertices of G(n, d) of cardinality n and hence it
constitutes a complete (n, d)-solution. In particular, a complete (n, d)-solution
induces a complete (n, d′)-solution for every d′ ≤ d. The following is a simple
generalization to higher dimensions of a theorem in [3]; its proof is carried out
similarly. We will denote, as usual, [n] = {1, . . . , n}.
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Theorem 2.1 Let r, s be positive integers. Suppose that n =
s∏

k=1

pαk
k , with

αk ≥ 1 for every k ∈ [s], and let Pn =
∏s

k=1 pk. For every j = 0, · · · , r, let

a(j) = (a
(j)
1 , · · · , a

(j)
d ) ∈ Zd

n be such that

1. gcd(ε · a(1), n) = 1 for every ε ∈ Od.

2. a
(j)
i ≡ 0 mod Pn for every i ∈ [d] and j ≥ 2.

For every i ∈ [d], let fi(x) =
r∑

j=0

a
(j)
i xj and let

S = {f(x) = (f1(x), · · · , fd(x)) ∈ Zd
n : x ∈ Zn}.

Then S is a complete (n, d)-solution.

Proof. Suppose that for x, y ∈ S and ε ∈ Od, ε ·f(x) ≡ ε ·f(y) mod n. Then
d∑

i=1

εifi(x) ≡
d∑

i=1

εifi(y), which implies that

d∑
i=1

εi

(
r∑

j=0

a
(j)
i xj

)
≡

d∑
i=1

εi

(
r∑

j=0

a
(j)
i yj

)
mod n

and hence
d∑

i=1

εi

(
r∑

j=0

a
(j)
i (xj − yj)

)
≡ 0 mod n. (1)

If Mj =
r∑

j=2

a
(j)
i

(
j−1∑
k=0

xkyj−k−1

)
, then 1 implies

(x− y)
d∑

i=1

εi(a
(1)
i + Mi) ≡ 0 mod n

which implies that

(x− y)

(
ε · a(1) +

d∑
i=1

εiMi

)
≡ 0 mod n. (2)

If p is a prime such that p| gcd

(
ε · a(1) +

d∑
i=1

εiMi, n

)
, then p|n, and hence

p|Pn and Pn|Mi for every i ∈ [d]. Then p|
d∑

i=1

εiMi which implies that p|ε · a(1),

but this is imposible since gcd(ε · a(1), n) = 1. Then

gcd

(
ε · a(1) +

d∑
i=1

εiMi, n

)
= 1
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Figure 2: A linear solution in the 3-dimensional modular 11-chessboard.

and hence 2 implies that x ≡ y mod n.
�

Definition 2.2 A complete (n, d)-solution S ⊂ Zd
n of the kind described in

Theorem 2.1 is said to be a polynomial solution. If, in addition, a
(j)
i ≡ 0

mod n for every j ≥ 2 and i ∈ [d], then S is said to be a linear solution.

A linear solution exists iff gcd((2d − 1)!, n) = 1 (see [6]). A polynomial
solution exists iff there exists a(1) ∈ Zd such that gcd(ε · a(1), n) = 1 for every
ε ∈ Od, that is, iff a linear solutions exists. Hence a polynomial solution exists
iff gcd((2d − 1)!, n) = 1. It was shown in [3] that the number Nn of distinct
(n, 2)-solutions which are polynomial is

Nn = n
∏
p|n

(p− 3)
∏
k≥1

n∗

gcd(n∗, k!)
,

where n∗ = n/Pn. For example, N13 = 130. With an exhaustive search
algorithm (see also [2]) we found that the number of all the complete (13, 2)-
solutions is 4524, hence there exist non-polynomial solutions. For n = 5, 7 and
11, every (n, 2)-solutions are polynomial.

The following two propositions and their proofs are straightforward gener-
alizations of those found in [4].

Proposition 2.3 If {x(j) = (x
(j)
1 , · · · , x

(j)
d ) : j ∈ [n]} is a complete (n, d)-

solution and k, `1, · · · , `d ∈ Z, with gcd(k, n) = 1, then

{y(j) = (kx
(j)
1 + `1, · · · , kx

(j)
d + `d) : j ∈ [n]}
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is a complete (n, d)-solution.

Proof. If ε · y(j) ≡ ε · y(j′) for some j, j′ ∈ [n] and ε ∈ Od, then

d∑
i=1

εi(kx
(j)
i + `i) ≡

d∑
i=1

εi(kx
(j′)
i + `i) mod n,

which implies that

d∑
i=1

εikx
(j)
i ≡

d∑
i=1

εikx
(j′)
i mod n,

that is, ε · x(j) ≡ ε · x(j′) mod n, and hence j = j′.
�

Proposition 2.4 Let

S1 = {x(j) = (x
(j)
1 , · · · , x

(j)
d ) : j ∈ [n]}

a complete (n, d)-solution and

S2 = {y(k) = (y
(k)
1 , · · · , y

(k)
d ) : k ∈ [m]}

a complete (m, d)-solution. For `
(j)
r ∈ Z, with j ∈ [n] and r ∈ [d], let

z(j,k) =
(
n(y

(k)
1 + `

(j)
1 ) + x

(j)
1 , · · · , n(y

(k)
d + `

(j)
d ) + x

(j)
d

)
.

Then

S1 × S2 = {z(j,k) : j ∈ [n] and k ∈ [m]}

is a complete (nm, d)-solution.

Proof. If ε · z(j,k) ≡ ε · z(j′,k′) mod mn for some j, j′ ∈ [n], k, k′ ∈ [m] and
ε ∈ Od, then

d∑
i=1

εi(ny
(k)
i + n`

(j)
i + x

(j)
i ) ≡

d∑
i=1

εi(ny
(k′)
i + n`

(j′)
i + x

(j′)
i ) mod mn. (3)

Then

n

d∑
i=1

εi(y
(k)
i + `

(j)
i ) +

d∑
i=1

εix
(j)
i ≡ n

d∑
i=1

εi(y
(k′)
i + `

(j′)
i ) +

d∑
i=1

εix
(j′)
i mod mn,
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which implies that
d∑

i=1

εix
(j)
i ≡

d∑
i=1

εix
(j′)
i mod n,

and hence ε · x(j) ≡ ε · x(j′) mod n. Then j = j′, x
(j)
i = x

(j′)
i and `

(j)
i = `

(j′)
i

for every i ∈ [d]. Substituting in 3, cancellation yields

n
d∑

i=1

εiy
(k)
i ≡ n

d∑
i=1

εiy
(k′)
i mod mn,

and hence ε · y(k) ≡ ε · y(k′) mod m, implying k = k′, and hence we get
z(j,k) = z(j′,k′).

�

3 Remarks

First, let us restate the Nudelman’s conjecture.

Conjecture 3.1 (Nudelman) Let d ≥ 2 and n ≥ 1. Then M(n, d) = n
if and only if gcd(n, (2d − 1)!) = 1.

The conjecture is true when d = 2, as said before. Following [3], we can
prove this by solving a system of congruences, roughly as follows. Suppose
that f : Zn → Zn constitutes a (n, 2)-solution. Let

S1 = 1 + · · ·+ n =
n(n + 1)

2
(4)

and

S2 = 12 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
. (5)

Since both {x + f(x) : x ∈ [n]} and {x − f(x) : x ∈ [n]} form a complete set
of residues mod n, then

S1 ≡
n∑

x=1

(x + f(x)) ≡
n∑

x=1

(x− f(x)) mod n,

yielding S1 ≡ 0 mod n, which is possible only if gcd(n, 2) = 1. Assuming
gcd(n, 2) = 1, let

T ≡
n∑

x=1

xf(x) mod n.
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By hypothesis,

S2 ≡
n∑

x=1

(x + f(x))2 ≡
n∑

x=1

(x− f(x))2 mod n,

that is, we have S2 ≡ 2S2 + 2T ≡ 2S2 − 2T mod n, yielding 2S2 ≡ 0 mod n,
which is possible only if gcd(n, 3) = 1.

The same argument works for S4 and leads the conclusion that gcd(n, 5) =
1 is necessary for M(n, 3) = n, as it was already known. However, when
trying to carry out this procedure to the next prime number, the crossed terms
T ’s become rather complicated when raising to powers higher than two and
cancellation is no longer possible. This obstruction, that we call the Bernoulli
obstruction, makes us believed that the conjecture could be false (observe that
the denominators in 4 and 5 are the first two Bernoulli, hence the name). But,
if a counterexample exists, in the light of Theorem 2.1, new techniques would
be required to find it.

On the other hand, trying to solve Nudelman’s Conjecture in the positive
direction, we arrived to the following

Conjecture 3.2 If p|n and M(n, d) = n then M(p, d) > 1.

Remark 3.3 If conjecture 3.2 is true, as pointed out by Nudelman, conjec-
ture 3.1 follows from the fact that a single queen attacks any other position if
the chessboard is small enough, viz. n ≤ 2d − 1.

Finally, besides the previous two obstructions, we found out a combinatorial
one.

Remark 3.4 (Hyperplane complexity). If gcd(n, 6) = 1 and d ≥ 3,
then Aut(Zd

n) does not act transitively on the hyperplanes determined by Od,
that is to say, Od determines different types of hyperplanes in Zd

n.

So, for example, in the 3-dimensional cheesboard of size 7, there are posi-
tions which attack each other by exactly 1, 2, 3 or 4 hyperplanes. This makes
impossible to use a simple combinatorial approach to solve the problem.
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