
EFFICIENT FEATURE DETECTION FOR

SEQUENCE CLASSIFICATION IN A RECEPTOR DATABASE∗

Edgar H. de Graaf Walter A. Kosters

Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands
{edegraaf,kosters}@liacs.nl

Abstract

The analysis of sequences is one of the major research areas of bio-informatics. Inspired

by this research, we investigate the discovery of sequential patterns for use in classification.

We will define variations of a fit function that enables us to tell if one pattern better fits to

a class than another. Furthermore we will show how domain knowledge can be used for faster

discovery of better sequential patterns in specific types of databases, in our case a receptor

database.

1 Introduction

Sequence analysis has many application areas, e.g., protein sequence analysis and customer behavior
analysis. We investigate extraction of features for protein sequence classification where features are
sequential patterns : ordered lists of items (for proteins the items are amino acids). As a motivating
example, we would like to know if a protein sequence, an ordered list of amino acids, belongs
to the olfactory family or not, where the olfactory family is a group of proteins that deals with
smell. We focus on a special group of proteins called GPCRs. These G-protein-coupled receptors
(GPCRs) play fundamental roles in regulating the activity of virtually every body cell [12]. Usually
classification is done unsupervised using alignment, however in the case of GPCRs this turned out
to be difficult. Fortunately, we know for some protein sequences whether they are of the olfactory
family or not. These sequences can thus be divided into two disjoint classes: olfactory and no-
olfactory, and from these classes we can extract sequential patterns to be used as attributes in a
classification algorithm (as is being proposed in [9]). The question we try to answer in this paper
is: which sequential patterns are the best features? And how can domain knowledge be used to
improve the search for such patterns?

Classification based on sequential patterns is also applicable in many other areas. For example,
in the case of customer behavior analysis, we might want to characterize groups of clients based on
sequential patterns in their behavior.

The “best” sequential patterns are discovered through a function that judges patterns. In Sec-
tion 2 we will discuss different instances of this function and select one for our purposes. Section 3
adapts the PrefixSpan algorithm of [10] to deal with this function. In addition, a pruning strategy
is introduced in Section 4 increasing efficiency by first searching in a certain area of the sequence,
the probable time window. Section 4 also describes how preferring small patterns can further increase
classification performance. The effectiveness of these improvements will be shown in Section 5.

2 Related Work

Our algorithms will be based on the pattern growth approach called PrefixSpan proposed in [10].
Classification by means of patterns has been done before but not so much in the sequence domain.
We now mention related work in the non-sequence domain. Apriori-C [6] constructs classification

∗This research is carried out within the Netherlands Organization for Scientific Research (NWO) MISTA Project
(grant no. 612.066.304).

rules by extending the Apriori algorithm [2, 3]. Apriori-C discovers a large number of rules from
which a fixed number of rules with the highest support are selected. Apriori-SD [7] solves the
problem of selecting the right rules with subgroup discovery. This algorithm selects a subgroup of
rules by calculating their weighted relative accuracy. This means that the probability of a pattern
occurring in a class is compared with the probability of its occurrence outside the class. This is
weighted with the probability of a class. Most class association rule mining algorithms work with
unordered sets of items frequently occurring together in item sets. CorClass [13] describes an
algorithm that also works with item sets. It introduces a new method of pruning. Specialized rules
are only added if the upper bound of its correlation is higher than the minimal correlation of k rules.
In our work we use a similar method of pruning. Much work has been done in the field of molecular
feature mining, e.g., the MolFea algorithm described in [8]. MolFea employs a level-wise version
space algorithm to discover those molecule fragments often occurring in one data set and less often
in another.

3 The Maximal Discriminating Patterns

One would like to select the best patterns for use as attributes in a classification algorithm. But
how can we tell if one pattern is better than the other? In this section we will first explain the
notion of support and why it is less useful for selecting the best pattern. Next we introduce the
notion of confidence which will give more useful patterns, but it also has disadvantages. Finally we
will discuss and motivate so-called maximal discriminating patterns, enabling us to have patterns
specific to one class, but without the disadvantages of confidence.

Assume given a database D with D = D1 ∪D2 ∪ . . . ∪Dc, with c classes. The Di’s (1 ≤ i ≤ c)
are mutually disjoint and not empty.

Each record in the database is a non-empty finite sequence (i.e., an ordered list) of items from
the set Σ = {A,B,C,. . . }, e.g., (C,B,G,A,A,A,C,B). Now fit0 is defined as support (as used in association
rule mining algorithms like Apriori [3]), because support can be seen as a measure of how well
a pattern fits the data. Commonly a sequence d is said to support a pattern s if the pattern is
contained (in the set sense) in the sequence:

supp0(s, d) =

{

1 if for all i (1 ≤ i ≤ k) there is a j (1 ≤ j ≤ ℓ) with si = dj ;
0 otherwise,

for s = (s1, s2, . . . , sk) and d = (d1, d2, . . . , dℓ), k ≥ 1 and ℓ ≥ 1. This means that s is a subset of d.
We then can define fit0:

fit0(s,Di) =
1

|Di|

∑

d∈Di

supp0(s, d)

(1 ≤ i ≤ c), where s is a pattern.
We now specialize support to sequences. A sequence d = (d1, d2, . . . , dm) is called a super-

sequence of a sequence s = (s1, s2, . . . , sk) if k ≤ m and for each si (1 ≤ i ≤ k) there is a dji
(1 ≤ ji ≤ m) with si = dji and ji−1 < ji (i > 1). We denote this with s ≺ d. The sequence s is
called a sub-sequence of d. This defines sequential patterns on sequences items. (Another definition
of sequential patterns was given by Agrawal et al. in [3], in which they define sequential patterns
on sequences of item sets). We now let

supp1(s, d) =

{

1 if s ≺ d;
0 otherwise,

and define fit1 in the same way as fit0 was defined using supp0.
Now fit1 or fit0 by itself is not useful for selection of features for classification. One of the

patterns of size 1 will always have the highest fit and these small patterns are probably often
present in more than one Di. Thus the presence of such a pattern will not give a good distinction
between classes.

The next most logical step is to use confidence to select the best patterns. The patterns xr (1 ≤
r ≤ c), one for each class, are then chosen to maximize confidence (fit1(xr, Dr)|Dr|)/(fit1(xr, D)|D|).

The class t of sequence s is the t (1 ≤ t ≤ c) where xt ≺ s. If more than one t is possible we select
based on the highest confidence. One is selected at random if more than one class t has a pattern
with the highest confidence. If there is no t where xt ≺ s then the sequence could be said to be
“undecided”.

A problem is that we only pick one pattern per class. This is plausible if a family of a sequence is
only decided by one sequence of features. However, it is often the case that the class of a sequence
is decided by multiple patterns. Moreover there can be constraints on the pattern. This means
that the class deciding pattern xt with the constraint is not necessarily equal to the xt without
the constraint, e.g., patterns are in different areas of the sequence. As a consequence it is usually
possible to find a combination of patterns with a better classification performance. Finally it is
possible that a single sequential pattern xt is equal for two or more classes, and as a consequence
a classification will be done at random. This problem will occur with a lower probability if we use
multiple patterns for each class.

Another major drawback of the confidence method is that the size of theDi’s seriously influences
the classification. E.g., assume we have databases D1 and D2. Furthermore assume D1 contains
500 sequences and D2 only 100. The pattern p1 occurs 100 times in D2 and 60 times in D1, thus a
confidence with respect to D2 of 0.625. Another pattern p2 occurs 70 times in D2 and 10 times in
D1, giving a confidence of 0.875. The pattern p2 will be used for classification if no other pattern
has a higher confidence. However p1 occurs in every sequence of D2 and only in a small percentage
of the sequences in D1. One could argue that p1 should be preferred over p2.

Therefore we define fit2, which we use in the remainder of this paper:
for a pattern s and 1 ≤ q, r ≤ c we define δ(s,Dq, Dr) = fit1(s,Dq)− fit1(s,Dr),
and we let fit2 (s ,Dr) = min{δ(s,Dr, Dq) | 1 ≤ q ≤ c ∧ q 6= r}.

We then choose patterns xr (1 ≤ r ≤ c) with maximal fit2 (xr ,Dr). We can then use them to
classify sequences as before, without the drawbacks mentioned above. Unlike confidence, it calculates
difference independent of the size of each database. We will usually find those patterns that are
characteristic for one class. With characteristic we mean that fit1 will have a high value in Dt and
a lower value in the other Di

′s, i 6= t.
Our new fit has some similarities with the concept of emerging patterns [4]. In order to discover

emerging patterns, patterns are preferred where the ratio fit1(s,D1)/fit1(s,D2) is the highest,
where D1 and D2 are two databases each containing one class of sequences. Bailey et al. [4] further
investigate jumping emerging patterns. These are patterns that have a support of zero in D2 and
a non-zero support in D1. Emerging patterns can also be defined in a way similar to fit2, but now
using fit1 (s ,Dq)/fit1 (s ,Dr) instead of δ(s,Dq, Dr).

Classification algorithms usually need a limited number of attributes. In order to classify
a sequence s we use a finite number of n sequential patterns pt

1
, pt

2
, . . . , ptn per class t, where

fit2(p
t
1
, Dt) ≥ fit2(p

t
2
, Dt) ≥ . . . ≥ fit2(p

t
n, Dt) and ptn has the n-th highest support for all possible

patterns. These patterns, the so-called maximal discriminating patterns, could be used by any clas-
sification algorithm when we first convert each sequence into a vector indicating for each pattern
if it is contained in the sequence, see [9]. However it is possible that, e.g., pt

1
is supported by all

or most of the sequences supporting pt
2
. Thus pt

2
might not improve classification. This problem

could be solved by removing all sequences containing pt
1
from Dt. The algorithm for searching the

sequence with maximal fit is then again applied to this subset of Dt in order to find pt
2
. In this paper

we do not further focus on the precise classification performance, but rather on the discovery of the
discriminating patterns. Our algorithm aims at finding the set P = P t of maximal discriminating
patterns.

4 Algorithm without Domain Knowledge

Our pattern search algorithm, coined PrefixTWEAC (Time Window Exploration And Cutting),
is based on PrefixSpan. The algorithm does not generate candidates, but it grows patterns from
smaller patterns. This principle makes it faster than most Apriori like algorithms because it
doesn’t generate candidates that do not exist in the database [10]. PrefixSpan is a depth first
algorithm, which will be explained in more detail in Section 5 when we adapt this algorithm to

our current needs (see Table 1 and Table 2). PrefixSpan as described in [10] searches for those
patterns with support larger than or equal to a given support threshold minsupp, where support
is defined as fit1. The algorithm starts with all frequent sub-sequences of size one. For each sub-
sequence a projected database is created. These frequent sub-sequences are extended to all frequent
sub-sequences of size two by only looking in the projected database. This projected database is a
database of pointers to the first item occurring after the current pattern, also called the prefix.
A sequence is only in the projected database if it contains the prefix, making PrefixSpan faster
than other algorithms that count in the entire database. Again for each frequent sub-sequence of
size two a corresponding projected database is created. This process continues recursively until no
extension is frequent anymore.

PrefixTWEAC (Table 1) is different from PrefixSpan in that it searches for the maximal
fit2 instead of the maximal support fit1 . The function fit2 is by definition not anti-monotone
(so fit2(s1, Dt) > fit2(s2, Dt) might happen, where s1 is a super-sequence of s2). However the
anti-monotone property for fit1 can still be used in two ways, when looking for the one pattern
with maximal fit2. First of all in PrefixTWEAC we only examine an extended pattern p if
fit1(p,Dt) ≥ minsupp where minsupp is the support threshold. Secondly p is not further examined
if fit1(p,Dt) < current maximal fit, where current maximal fit is the current best fit of all patterns
found while searching. The value of fit2(p,Dt) will never become larger than the current maximal
fit, because it can at most become fit1(p,Dt). Note that CorClass uses similar methods to prune
[13].

PrefixTWEACCore(prefix, projected database)
1. For all items i that can extend the prefix
2. new prefix = prefix extended with item i
3. Count w1 = fit1 in the projected databaset for new prefix
4. Calculate f2 = fit2 for new prefix
5. Create a projected database new projected database with new prefix
6. Get δmin , the lowest fit2 in P
7. Get smin , fit1 corresponding with the lowest fit2 in P
8. if w1 ≥ minsupp and |P | < n then
9. Add new prefix to P
10. Call PrefixTWEACCore(new prefix, new projected database)
11. else if w1 ≥ minsupp and w1 ≥ δmin then
12. if f2 > δmin or
13. (f2 = δmin and w1 > smin) or
14. (f2 = δmin and w1 = smin and new prefix ≺ pn) then
15. Remove pn from P and add new prefix to P
16. Call PrefixTWEACCore(new prefix, new projected database)

Table 1: The PrefixTWEAC algorithm

5 Domain Specific Improvements

In the previous section we stated that fit2 can be used to “prune”: certain pattern extensions are
not further examined because they can never lead to the maximal fit2. The faster we get to a large
fit2 for the n-th pattern in P = P t the better, because all extensions with a lower fit1(p,Dt) can
be pruned. The improved version of PrefixTWEAC will be explained in the sequel.

If we consider protein sequences then pattern discovery might be done faster when using certain
knowledge about the sequences:

• Protein sequences are sequences of amino acids. Certain parts of such a sequence are shaped
like a helix in 3D space. These helices will probably contain most of the maximal fitting
sequences since parts outside the helix have more variation in size and content. Patterns
(partially) outside the helix are less likely to occur in most members of the protein family.

• Small patterns are preferred. Smaller patterns are less specific and biologists prefer smaller
patterns in their analysis.

PrefixTWEACExt(prefix, projected database)
1. For all items i that can extend the prefix
2. new prefix = prefix extended with item i
3. Count fit1 for new prefix:
4. w1 = fit1 in the projected databaset without the inclusion vector, using supp1

5. w2 = fit1 in the projected databaset with the inclusion vector, using suppPTW
1

6. Calculate f2 = fit2 for new prefix (without the inclusion vector)
7. Create new projected database (without using the inclusion vector)
8. Get δmin , the lowest fit2 in P
9. Get smin , fit1 of the lowest fit2 in P
10. if w1 ≥ minsupp and |P | < n then
11. Add new prefix to P
12. Call PrefixTWEACExt(new prefix, new projected database)
13. else if (w1 ≥ minsupp and w2 < minsupp) or
14. (w2 ≥ minsupp and w1 ≥ δmin and w2 < δmin) then
15. storeState(S,new prefix, new projected database)
16. else if w2 ≥ minsupp and w2 ≥ δmin then
17. if f2 > δmin or
18. (f2 = δmin and w1 > smin) or
19. (f2 = δmin and w1 = smin and new prefix ≺ pn) then
20. Replace pn with new prefix
21. Call PrefixTWEACExt(new prefix, new projected database)

Table 2: PrefixTWEAC Extended: extension using the probable time window

For certain problems we know the approximate area of important features, e.g., protein sequences
should have most of the discriminating patterns in the helix. Also in other problems this might be
the case, for example — in the case of customer relations — customers tend to behave differently
during the night. These probable time windows can easily be defined with an inclusion vector. An
inclusion vector is a vector v = (v1, v2, . . . , vn), vi ∈ {0, 1} (1 ≤ i ≤ n). This vector will indicate
where to search in the first phase of the algorithm, see Table 2. We then let

suppPTW

1
(s, d) =

{

1 if s ≺ d/v;
0 otherwise,

where (d/v)i = di if vi = 1 and $ otherwise ($ 6∈ Σ).
First PrefixTWEACExt (Table 2) is applied to the databases Dt, one at a time, each time

starting with an empty P = P t. After using PrefixTWEACExt with the inclusion vector we
apply PrefixTWEAC (Table 1) without the vector to the remaining states stored in the state
database S.

Figure 1 shows an example of the extensions made to a sequence A. The dotted lines are exten-
sions that do not have a high enough fit1 and fit2 inside and outside the probable time window.
These extensions and their extensions are pruned. The dashed lines indicate extensions that are
currently good enough with regards to the entire sequence only. Finally the solid lines are already
good enough when we only count patterns inside the probable time window.

If we prefer small patterns, then we can add new rules, using so-called smallest maximal dis-
criminating patterns :

• fit1(s,Dr) = 0 for all r (1 ≤ r ≤ n, r 6= t). Then fit2 of the extended patterns will never
increase.

Figure 1: Extending the single item sequence A

• fit1(s,Dt) ≤ fit2(p,Dt) where both p and s are sequences and s is created by extending p.
Then fit2 of the extended patterns will never be better than the fit2 of p.

These rules sacrifice some completeness for classification performance; if extensions do not improve
a smaller pattern then they are not always explored further. Patterns that normally would have been
added are now skipped because the extended pattern doesn’t distinguish more sequences. These
pruning rules will not lower classification performance because they leave out only non-improving
extensions. Rather the classification is expected to improve because the set of patterns will contain
less small variations of the same pattern.

Protein sequences usually are very long, about 300 amino acids. However these sequences are
constructed out of only 20 types of amino acids. We need to use constraints to make the problem
tractable. It was chosen to use the time window constraint, because the discovered patterns will
be concentrated in one area. The time window constraint means that the distance between the
first and last item of the sequence is bounded by some constant. For example if all sequences in
a database are equal to (A,C,G,Q), and the time window is 2, then (A,Q) is not a frequent pattern
because the distance between the A and Q in the occurrences is more than 2. This constraint is easily
implemented in the algorithm used. It was also considered to use the gap constraint [1], that allows
some gaps in the matches. However this constraint would have required more memory, e.g., if we
count fit1 of (A,C,G) and we want to know whether the sequence (A,C,C,C,G) contains it. Furthermore
assume the maximal gap is 1, thus in the sequence one letter is allowed between two letters of the
pattern. If the algorithm only looks at the first C then the gap constraint will be broken because the
gap between the C and the G is 2. An algorithm has to check two C’s to match (A,C,G). PrefixSpan
will have to add both projections to the projected database for at least two C’s. One other reason
for not using the gap constraint is that it would allow patterns to be spread all over the sequence
as long as it doesn’t break the gap constraint.

6 Experimental Results

The experiments are aimed at showing the effectiveness of the pruning rules we described. The
protein sequences used during our experiments where extracted from the GPCRDB website [5].
The effectiveness was also tested on a synthetic data set: the two classes consist of 1000 sequences
of length 130, having 20 item types. First each item is chosen with a uniform probability and then
we insert one of ten patterns at each starting position within the time window (position 20 to 60)
of class one with 80% probability.

The results are shown in Figure 2 and Figure 3. All experiments were done on a Pentium 4
2.8 GHz with 512MB RAM. On the horizontal axis in the graphs we have the number of used
elements in the data set. As both synthetic and protein data set have two classes, we take half
of these elements from the first class and the rest from the second class. On the vertical axis we
have the pruning effectiveness indicated by a real number between 0 and 1. This effectiveness is
calculated by dividing the search time by the worst search time in the experimental results. During
the experiments we searched for the 100 maximal discriminating patterns in the GPCRDB and 10

in the synthetic data set, each with a time window of 8 and a minsupp of 0. Note that time window
and probable time window are different concepts.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 1000 1200 1400 1600 1800

P
ru

ni
ng

 E
ffe

ct
iv

en
es

s

Number of Sequences

PTW only
Using both

Not using PTW or SP

Figure 2: Effectiveness on the GPCRDB data set

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 1000 1200 1400 1600 1800

P
ru

ni
ng

 E
ffe

ct
iv

en
es

s

Number of Sequences

Using both
PTW only

Not using PTW or SP

Figure 3: Effectiveness on the synthetic data set

Figure 2 shows the effectiveness of using probable time windows (PTW) and pruning when
using “small patterns” (SP) on the GPCRDB data. Note that SP lowers pruning effectiveness with
regards to the GPCRDB data, because less variations of the same pattern fill up the set of patterns.
Some of the patterns discovered with this data set were used for classification: two protein families
could be correctly distinguished in more than 90% of the cases, depending on the chosen time
window size and the classification algorithm at hand.

In the synthetic data set we have most of the best patterns in the probable time window. The n-
th pattern p will get a large fit2 earlier in the search, thus more extensions can be ignored. Figure 3
shows the effectiveness as the number of sequences in the synthetic data set increases when searching
for the 10 maximal discriminating patterns. The “small pattern” rules (SP) increase the effectiveness
even further, because in the synthetic data set many patterns are quickly non-improving.

classified as classified as
no-olfactory olfactory

no-olfactory 2015 22
olfactory 16 1909

classified as classified as
no-olfactory olfactory

no-olfactory 2024 13
olfactory 22 1903

Table 3: Confusion matrices of GPCRDB patterns without (left) and with (right) SP

The confusion matrices of Table 3 were generated using the C4.5 implementation by Weka [11]
with the 10 best patterns discovered in the GPCRDB data. If we use SP we get a slightly better
classification when doing 10-fold cross-validation: 99.12% instead of 99.04%. This is as expected
because the set of 10 patterns used in Table 3 will contain less small variations of the same pattern.
Unfortunately the difference in classification performance is not large because in this case only one
pattern is different.

7 Conclusion

In this paper we introduced and compared two sequential pattern mining algorithms by using
knowledge from the application area of protein sequence analysis. Given some assumptions, we can
improve mining for the maximal discriminating patterns. The effectiveness depends on the quality
of the assumptions, e.g., how probable a discriminating pattern is within a certain time window. It
is shown that using probable time windows in protein sequences can speed up the search. Protein
sequences are long but contain only a few types of items; constraints are required to make the
discovery of patterns in these sequences tractable.

In future research we will further investigate methods for automatically discovering the probable
time window. Furthermore we plan to use maximal discriminating patterns in other application
areas like work-flow analysis.

References

[1] Antunes, C., Oliveira, A.L.: Generalization of Pattern-Growth Methods for Sequential Pattern
Mining with Gap Constraints. In Machine Learning and Data Mining in Pattern Recognition
(MLDM 2003), Lecture Notes in Computer Science 2734, Springer, pp. 239–251.

[2] Agrawal, R., Imielinski, T., Srikant, R.: Mining Association Rules between Sets of Items in
Large Databases. In Proc. of ACM SIGMOD Conference on Management of Data (1993),
pp. 207–216.

[3] Agrawal, R., Srikant, R.: Mining Sequential Patterns. In Proc. International Conference Data
Engineering (ICDE 1995), pp. 3–14.

[4] Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast Algorithms for Mining Emerging Pat-
terns. In Proc. 6th European Conference on Principles of Data Mining and Knowledge Dis-
covery (PKDD 2002), Lecture Notes in Artificial Intelligence 2431, Springer, pp. 39–50.

[5] GPCRDB: Information System for G Protein-Coupled Receptors (GPCRs), Website
http://www.gpcr.org/7tm/.

[6] Jovanoski, V., Lavrac̃, N.: Classification Rule Learning with APRIORI-C. In Proc. 10th Por-
tuguese Conference on Artificial Intelligence (EPIA 2004), pp. 44–51.

[7] Kavsẽk, B., Lavrac̃, N., Jovanoski, V.: APRIORI-SD: Adapting Association Rule Learning
to Subgroup Discovery. In Proc. International Symposium on Intelligent Data Analysis (IDA
2003), Lecture Notes in Computer Science 2810, Springer, pp. 230–241.

[8] Kramer, S., Raedt, L. De, Helma, C.: Molecular Feature Mining in HIV Data. In Proc.
Conference on Knowledge Discovery in Data (SIGKDD 2001), pp. 136–143.

[9] Lesh, N., Zaki, M.J., Ogihara, M.: Mining Features for Sequence Classification. In Proc.
International Conference Knowledge Discovery and Data mining (KDD 1999), pp. 342–346.

[10] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Mining
Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE Trans. Knowl. Data
Eng. 16(11) (2004), pp. 1424–1440.

[11] Weka 3: Data Mining Software in Java, Website http://www.cs.waikato.ac.nz/ml/weka/.

[12] Wess, J.: G-Protein-Coupled Receptors: Molecular Mechanisms Involved in Receptor Activa-
tion and Selectivity of G-Protein Recognition, FASEB Journal 11 (5) (1997), pp. 346–354.

[13] Zimmermann, A., Raedt, L. De: CorClass: Correlated Association Rule Mining for Classifi-
cation. In Proc. International Conference on Discovery Science (DS-2004), pp. 60–72.

