
DF–1

APRIORI:

A Depth First Implementation

Walter Kosters, Universiteit Leiden

Wim Pijls, Erasmus Universiteit Rotterdam

The Netherlands

Presentation: Bart Goethals (thanks!)

http://www.liacs.nl/home/kosters/df/



DF–2 idea

Given a dataset of transactions, the Depth First implemen-

tation DF of APRIORI (Pijls & Bioch 1999) builds a trie

that contains all frequent itemsets.

4−∗

3−∗ 4−∗ 5−∗

2−28

4−33

3−42 4−67 5−91
º
¹

·
¸

º
¹

·
¸
º
¹

·
¸

º
¹

·
¸

For example, the itemset {3,4} has support 33, i.e., 33

transactions contain this itemset. Apparently, {4,5} is not

frequent. A ∗ denotes “not known yet”.

The right hand part of the trie has just been copied under-

neath bucket 2, providing the candidates for the next step.

Now every transaction is in a depth first way “pushed”

through this subtrie, meanwhile updating the counters.



DF–3 algorithm

Suppose the frequent items i1, i2, . . . , in are sorted with re-
spect to increasing support. Then DF proceeds as follows:

T := the trie including only bucket in;

for m := n− 1 downto 1 do

T ′ := T ;

T := T ′ with im added to the left and

a copy of T ′ appended to im;

S := T\T ′ (= the subtrie rooted in im);

count(S, im);

delete the infrequent itemsets from S;

procedure count(S, im) ::

for every transaction t including item im do

for every itemset I in S do

if t supports I then I.support++;



DF–4 remarks

• The sorting requires some simple preprocessing.

• Counting is done “efficiently”: once a bucket is not

included in a transaction, the transaction does not go

any deeper in the trie.

• The newest implementation (that combines and im-

proves upon the two versions included in the FIMI’03

comparison) avoids unnecessary copying of buckets and

deletions of subtries.

• Both the database and the trie reside in main memory.



DF–5 complexity

The number of database queries equals

m(n− 1) +
∑

A 6=∅
A frequent

sm(A)−1∑

j=1

supp({j} ∪A \ {la(A)}) ,

where m is the number of transactions, n is the num-

ber of frequent items, and for a non-empty itemset A ⊆
{1,2, . . . , n} sm(A) is its smallest number and la(A) is its

largest number.

The proof relies on the fact that in order for a bucket to

occur in the trie the path to it (except for the root) should

be frequent, and on the observation that this particular

bucket is “questioned” every time a transaction follows

this same path.



DF–6 experiments

0

200

400

600

800

1000

404550556065
0

1

2

3

4

5

ru
nt

im
e 

(s
ec

on
ds

)

nu
m

be
r 

of
 s

et
s 

in
 1

,0
00

,0
00

s

relative support (%)

Database chess

execution time DF
number of frequent sets (scale on right axis)

0

50

100

150

200

468101214
0

1

2

3

4

5

ru
nt

im
e 

(s
ec

on
ds

)

nu
m

be
r 

of
 s

et
s 

in
 1

,0
00

,0
00

s

relative support (%)

Database mushroom

execution time DF
number of frequent sets (scale on right axis)

0

20

40

60

80

100

00.0050.010.0150.020.0250.030.0350.040.045
0

1

2

3

4

5

6

7

8

ru
nt

im
e 

(s
ec

on
ds

)

nu
m

be
r 

of
 s

et
s 

in
 1

,0
00

,0
00

s

relative support (%)

Database T10I4D100K

execution time DF
number of frequent sets (scale on right axis)

0

50

100

150

200

250

300

350

400

450

500

00.511.52
0

1

2

3

4

5
ru

nt
im

e 
(s

ec
on

ds
)

nu
m

be
r 

of
 s

et
s 

in
 1

,0
00

,0
00

s

relative support (%)

Database T40I10D100K

execution time DF
number of frequent sets (scale on right axis)



DF–7 conclusions

• The DF algorithm is simple and transparent.

• The DF algorithm performs well on sparse datasets

(e.g., real transaction databases).

• Future research: reduce the number of database passes.

This may be achieved by adding two or three subtries

at a time in each iteration of the main loop.

Also, an own dedicated memory management system

might improve the runtime.


