
A Reasoning Framework

for Solving Nonograms

K. Joost Batenburg1 and Walter A. Kosters2

1 Vision Lab, Department of Physics
University of Antwerp, Belgium joost.batenburg@ua.ac.be

2 Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands kosters@liacs.nl

Abstract. Nonograms, also known as Japanese puzzles, are logic puz-
zles that are sold by many news paper vendors. The challenge is to fill a
grid with black and white pixels in such a way that a given description
for each row and column, indicating the lengths of consecutive segments
of black pixels, is adhered to. Although the Nonograms in puzzle books
can usually be solved by hand, the general problem of solving Nonograms
is NP-hard. In this paper, we propose a local reasoning framework that
can be used to deduce the value of certain pixels in the puzzle, given a
partial filling. By iterating this procedure, starting from an empty grid, it
is often possible to solve the puzzle completely. Our approach is based on
ideas from dynamic programming, 2-satisfiability problems, and network
flows. Our experimental results demonstrate that the approach is capa-
ble of solving a variety of Nonograms that cannot be solved by simple
logic reasoning within individual rows and columns, without resorting
to branching operations. Moreover, all the computations involved in the
solution process can be performed in polynomial time.

1 Introduction

A Nonogram, also known as a Japanese puzzle in some countries, is a kind of logic
puzzle, where the goal is to draw a rectangular image that adheres to certain row
and column constraints. Usually, the image is black-and-white, although Nono-
grams with more than two grey values exist as well. Fig. 1 shows an example of
a Nonogram. The puzzle has a rectangular shape, which is subdivided in unit
cells. We will also refer to these cells as pixels. For each row and each column,
a description is given. The description indicates the length of the consecutive
segments of black pixels along the corresponding line. For example, the descrip-
tion “1, 1” in the first row indicates that when traversing the pixels in that row
from left to right, there should first be zero or more white pixels, followed by
one black pixel. Then, at least one white pixel must occur, followed by exactly
one black pixel. There may be additional white pixels at the end of the line. The
symbol ǫ denotes the empty description, leading to an all white line. The goal
of the puzzle is to colour all pixels with either black or white, in such a way
that each horizontal and vertical line is consistent with the given description.

2 K. J. Batenburg and W. A. Kosters

As we shall see later, when using only information concerning single rows and
columns, puzzles can often be solved partially (see the picture in the middle).
For instance, one can infer that the middle pixel in the bottom row must be
black. Using 2-satisfiability (2-SAT) rules we can completely solve this simple
puzzle. More complicated puzzles require more sophisticated techniques, as we
will also demonstrate.

1, 1

ǫ

1, 1

3

1 1, 1 1 1, 1 1

0 1 0 1 0

0 0 0 0 0

x x 0 x x

x x 1 x x

t t

t t
t t t

Fig. 1. A simple 4×5 Nonogram: a) original puzzle; b) partial solution (1 = black, 0
= white, x = yet unknown); c) final solution (dots denote black pixels)

Nonograms can be considered as a generalization of a well-known problem
in Discrete Tomography: reconstructing hv-convex sets (where the black pixels
in each row and column must be consecutive). For this Discrete Tomography
problem, the description for each line consists of a single number, indicating
the length of the segment of black pixels along that line. The problem of recon-
structing hv-convex polyominoes can be solved in polynomial time [6, 2], whereas
the reconstruction problem for general hv-convex sets is NP-hard [9]. Therefore,
the reconstruction problem for Nonograms is also NP-hard (and, clearly, NP-
complete). In [8] this is shown through the more general concept of parsimonious
reductions.

The Nonogram problem can also be related to several job scheduling problems,
where each row corresponds to a single processor and the jobs for the processors
are indicated by the row descriptions. In such scheduling problems, the type of
constraints that occur in Nonograms only apply to the rows, or the columns, but
not both.

There can be considerable differences in the difficulty level of Nonograms. On
the one hand, the Nonograms that appear in newspapers can typically be solved
by applying a series of simple logical rules, each of which considers only a single
horizontal or vertical line. Later on we will refer to them as being simple. These
puzzles will always have a unique solution. On the other hand, large random
puzzles can be very difficult to solve, even using a computer, and may have
many different solutions. Clearly, the fact that solving Nonograms is NP-hard
indicates that not all puzzles can be solved using simple logic reasoning.

Although several implementations of Nonogram solvers can be found on the
Internet (see [7] for a list of solvers), we have not found studies of this problem in
the scientific literature. In [4], an evolutionary algorithm is described for solving
Nonograms. Although this algorithm is quite effective at solving Nonograms, it
cannot be used to find all solutions, if more than one solution exists.

A Reasoning Framework for Solving Nonograms 3

In this paper we propose a local reasoning framework for solving Nonograms.
By applying logical rules, which may involve information from several rows and
columns, the value of certain unknown pixels can be deduced. By iterating this
procedure, starting from an empty grid, it is often possible to either solve the
puzzle completely or to determine a substantial part of the pixels. In the latter
case one can distinguish between situations where there exist different solutions
(that can sometimes be enumerated), and situations where one cannot infer
anything anymore.

The paper is organized as follows: Section 2 introduces Nonograms in a for-
mal, somewhat more general context; in Section 3 we show solutions to some
relaxed versions (i.e., single lines, and the Discrete Tomography version); we
combine these techniques into a general framework in Section 4 and Section 5,
also incorporating 2-SAT rules; experiments are shown in Section 6; Section 7
concludes.

2 Notation and Concepts

We first define notation for a single line (i.e., row or column) of a Nonogram.
Put Σ = {0, 1}. The symbols “0” and “1” represent the white (0) and black (1)
pixels in the puzzle. In addition, we introduce a special symbol, “x”, indicating
that a pixel is not decided yet. Put Γ = {0, 1, x}. For ℓ ≥ 0, let Σℓ (resp. Γ ℓ)
denote the set of all strings over Σ (resp. Γ) of length ℓ.

For describing a Nonogram, we introduce more general concepts of row and
column descriptions, such that Nonograms are in fact a special case. Most of the
concepts in this paper can be applied to all logic problems that follow the more
general definitions.

A description d of length k > 0 is an ordered series (d1, d2, . . . , dk) with dj =
σj{aj , bj}, where σj ∈ Σ and aj , bj ∈ {0, 1, 2, . . .} with aj ≤ bj (j = 1, 2, . . . , k).
Let Dk denote the (infinite) set of all descriptions of length k, and put D =
∪∞k=0Dk, where D0 consists of the empty description ǫ. A single dj = σj{aj, bj}
is called a segment description. The perhaps somewhat confusing curly braces
are used here in order to stick to the conventions from regular expressions; so, in
σj{aj , bj} they do not refer to a set, but to an ordered pair. We will sometimes
write σ∗ as a shortcut for σ{0,∞} (for σ ∈ Σ) and σ+ as a shortcut for σ{1,∞},
where∞ is suitably large number. And finally, we put σa as a shortcut for σ{a, a}
(a ∈ {0, 1, 2, . . .}), and we sometimes omit parentheses and commas; also σ0 is
omitted.

A finite string s over Σ adheres to a description d (as defined above) if s first
has between a1 and b1 σ1s (boundaries included), then between a2 and b2 σ2s,
. . . , and ends with between ak and bk σks. Example: again take Σ = {0, 1}, and
assume that the description is

(0{0,∞}, 1{a1, a1}, 0{1,∞}, 1{a2, a2}, 0{1,∞}, . . . , 1{ar, ar}, 0{0,∞}).
This is precisely the Nonogram-type description a1, a2, . . . , ar for a line (row or
column). Note that it has length 2r + 1 and can also be written as

(0∗, 1a1 , 0+, 1a2 , 0+, . . . , 1ar , 0∗) = 0∗1a10+1a20+ . . . 1ar0∗.

4 K. J. Batenburg and W. A. Kosters

We denote the set of all Nonogram-type descriptions by Dnonogram ⊆ D. In the
sequel we will concentrate on this type of description.

Suppose we have a string s over Γ . If zero or more xs are replaced with
elements from Σ, the resulting string is called a specification of s. A specification
to a string over Σ (i.e., no longer containing any “x” symbols) is called a complete

specification or fix. If a string s has a fix that adheres to a given description d, s

is called fixable with respect to d. The boolean function Fix (s, d) is true if and
only if s is fixable with respect to d.

A Nonogram description N consists of m > 0 row descriptions r1, r2, . . . , rm ∈
Dnonogram and n > 0 column descriptions c1, c2, . . . , cn ∈ Dnonogram. A partial fill-

ing is a m×n matrix over Γ . The set of all these partial fillings is denoted by
Γ m×n; its elements can also be considered as strings of length m×n. If such a
filling contains no xs, it is called a complete filling or full fix. A complete filling
F adheres to the Nonogram description N if the ith row of F adheres to ri (for
all i = 1, 2, . . . , m) and the jth column of F adheres to cj (for all j = 1, 2, . . . , n).
We generalize the concepts of specification, fix and fixable in the natural way.

3 Partial Solution Methods

In this section we study two relaxations of the original problem. In Section 3.1
we confine the puzzle to a single line. In Section 3.2 we only require that the
total number of black pixels in each line (i.e., row or column) adheres to its
description. Clearly, any pixel that can only have a single value in all solutions
of the relaxation, must also have this same value in any solution of the complete
Nonogram. For both relaxations we show that such pixels can be found efficiently.

3.1 Solving a Single Line

We will now describe a recursive algorithm to decide fixability for a single line.
This algorithm can be implemented by dynamic programming. First we intro-
duce some notations. For a string s = s1s2 . . . sℓ of length ℓ over Γ we de-
fine its prefix of length i by s(i) = s1s2 . . . si (1 ≤ i ≤ ℓ), so s = s(ℓ); s(0)

is the empty string. Similarly, for a description d = (d1, d2, . . . , dk), we put
d(j) = (d1, d2, . . . , dj) for 1 ≤ j ≤ k, so d = d(k); d(0) = ǫ is the empty descrip-

tion. Furthermore, let Aj =
∑j

p=1 ap and Bj =
∑j

p=1 bp; put A0 = B0 = 0. We
note that a string of length ℓ < Ak is certainly not fixable with respect to d,
simply because it has too few elements; similarly, a string of length ℓ > Bk is not
fixable with respect to d. Finally, for a given string s of length ℓ, let Lσ

i (s) denote
the largest index h ≤ i such that sh 6= σ and sh 6= x, if such an index exists,
and 0 otherwise (σ ∈ Σ, 1 ≤ i ≤ ℓ). We will put Fix (i, j) = Fix (s(i), d(j)), and
are interested in Fix (ℓ, k). As boundary values we note that Fix (0, j) = true if
and only if Aj = 0 (j = 0, 1, 2, . . . , k); and Fix (i, 0) = false for i = 1, 2, . . . , ℓ

(by the way, these last values are never used). We clearly have Fix (i, j) = false

if i < Aj or i > Bj (0 ≤ i ≤ ℓ, 0 ≤ j ≤ k), as indicated above.

A Reasoning Framework for Solving Nonograms 5

Our main recursion is:

Fix (i, j) =

min(i− aj , Bj−1)∨

p = max(i− bj, Aj−1, L
σj

i (s))

Fix (p, j − 1) (1)

This holds for i and j with 1 ≤ i ≤ ℓ, 1 ≤ j ≤ k and Aj ≤ i ≤ Bj . Note that an
empty disjunction is false; this happens for example if L

σj

i (s) ≥ i− aj + 1. For
j = 1 we have Fix (i, 1) = true if and only if Lσ1

i (s) = 0.
The validity of the recursion can be shown as follows. The last part of

s(i) must consist of between aj and bj σjs, say we want σjs at positions p +
1, p + 2, . . . , i. We then must have aj ≤ i− p ≤ bj . Also note that all elements
sp+1, sp+2, . . . , si must be either x or σj ; this holds exactly if L

σj

i (s) ≤ p. Finally,
the first part of s(i), i.e., s(p), must adhere to d(j−1). Clearly, p must be between
Aj−1 and Bj−1, otherwise this would not be possible. Note that the Aj and Bj

represent general tomographic restrictions, in some sense.
It is natural to implement this recursive formula by means of dynamic pro-

gramming, using lazy evaluation: once a true Fix (p, j − 1) is found, the others
need not be computed.

Now given a string s over Γ that is fixable with respect to a description d, it
is easy to find those string elements x that have the same value from Σ in every
fix: these elements are then set at that value. Indeed, during the computation
of Fix (s, d) (which of course yields true), one can keep track of all possible
specifications that lead to a fix. In Equation (1) those Fix (p, j − 1) that are
true correspond with a fix, where the string elements sp+1, sp+2, . . . , si are all
equal to σj . Now one only has to verify, for each string element of s, whether
precisely one element from Σ is allowed. In practice this can be realized by using
a separate string, whose elements are filled when specifying s, and where those
elements that are filled only once are tagged. Note that for this purpose lazy
evaluation is not an option, since we need to examine all fixes. As an example, if
the description for a five character string s = s1s2s3s4s5 over {0, 1, x} is 0∗13

0
∗

(cf. the bottom row from the example in Section 1), one can derive that s3 must
be equal to 1. The algorithm that performs this operation is called Settle, and
the resulting string s′ is denoted by s′ = Settle(s, d).

The complexity of the computation of Fix (ℓ, k) is bounded by k · ℓ2, and is
in practice, especially when using lazy evaluation, much lower.

3.2 Discrete Tomography Problem

The Nonogram problem can be considered as a special case of a well-known
problem from Discrete Tomography (DT), which deals with the reconstruction
of a binary image from its horizontal and vertical linesums. These horizontal
and vertical linesums can be easily computed from the Nonogram descriptions,
by adding the segment descriptions for each line. (In the more general setting
from Section 2 we get lower and upper bounds for the linesums.) Suppose that
we have a partially filled Nonogram X ∈ Γ m×n, which we would like to extend

6 K. J. Batenburg and W. A. Kosters

further. Clearly, any solution of the Nonogram must also be a solution of the
corresponding DT problem. The DT problem can be solved in polynomial time,
even if an arbitrary subset of the image is kept fixed. It is also possible to
compute the set of all pixels that must have the same value in all solutions of
the DT problem in polynomial time. These pixels can be fixed immediately in
the partial Nonogram solution. The paper [1] gives a constructive procedure for
finding all such pixels.

Extendibility to a solution of the DT problem can easily be checked using
network flow methods. We refer to [3] for the details of this model. Fig. 2a
shows a simple 3×3 DT problem. We put linesums to the right of the rows
and below the columns, to distinguish them from our earlier descriptions. This
problem can be modelled as the transportation problem in Fig. 2b, which can
be solved efficiently by network flow methods; thick arcs denote the solution. If
none of the pixels are fixed, each pixel arc has a capacity of one. To fix a pixel
at value v ∈ {0, 1}, we simply set the capacity of the corresponding pixel arc to
0 and subtract/add v to the surplus/demand at the corresponding column and
row nodes. The resulting transportation problem has a solution if and only if the
partial filling can be extended to a complete filling satisfying the DT constraints.

2

1

2

2 2 1

1 1 0

0 1 0

1 0 1

�
��
r1

2

�
��
r2

1

�
��
r3

2

�
��
c1

2

�
��
c2

2

�
��
c3

1

����������

@
@

@
@R

@
@

@
@R

�
�

�
�	? ? ?

HHHHHHHHHj

�
�

�
�	

column nodes

pixel arcs

row nodes

Fig. 2. a) DT problem and one of its solutions, where bold figures denote the linesums;
b) associated network of the DT problem

4 Combining the Partial Methods Using 2-SAT

The method from Section 3.1 can only take into account the description of a sin-
gle line. On the other hand, the discrete tomography approach from Section 3.2
can deal with all lines simultaneously, but only incorporates partial knowledge
from the descriptions. We will now describe how the information from different
lines, and from different relaxations of the Nonogram problem, can be combined.

Consider the example in Fig. 3a (which is the same as that from Fig. 1).
Using only the information from single lines, or from the discrete tomography
problem, the values of the remaining undecided pixels cannot be derived. Four
of the undecided pixels are denoted by the variables a, b, c and d respectively,
which can take the values 0 (false) or 1 (true).

Using the partial solution methods, dependencies can be derived between
pairs of undecided pixels. For example, on the bottom row, the description dic-
tates that c⇒ d (or, equivalently, ¬c∨d). Similarly, one can deduce that c⇒ ¬a

A Reasoning Framework for Solving Nonograms 7

(first column), ¬a⇒ b (third row) and b⇒ ¬d. This provides us with both im-
plications c⇒ d and c⇒ ¬d, resulting in the conclusion that c must be 0.

Note that any such implication relation between two variables can be written
in one of the forms x∨y, x∨¬y, ¬x∨y or ¬x∨¬y. This is the standard form of a
2-SAT clause, see [5]. The 2-SAT problem is to decide whether or not there exists
an assignment of truth values to all the variables, such that a given conjunction
of such clauses is simultaneously satisfied. It can be solved in polynomial time,
using the concept of a dependency graph, as shown in Fig. 3 for our simple
example.

1, 1

ǫ

1, 1

3

1 1, 1 1 1, 1 1

0 1 0 1 0

0 0 0 0 0

a b 0 x x

c d 1 x x �
��
a �

��
b �

��
c �

��
d

�
��
¬a �

��
¬b �

��
¬c �

��
¬d

���������*

HHHHHHHHHY

-

�

�
�

�
�	

@
@

@
@R ���������*

HHHHHHHHHY

Fig. 3. a) Partially solved Nonogram; b) (part of) its corresponding dependency graph

However, when solving a Nonogram, the goal is not to find an assignment of
all variables that satisfies the 2-SAT constraints. Rather, we search for variables
that must have the same truth value in all satisfying assignments. Assume that
at least one such assignment exists. Then a variable x is false in all satisfying
assignments if and only if there is a path from x to ¬x in the dependency graph.
Alternatively, x must be true in all satisfying assignments if and only if there
is such a path from ¬x to x.

This provides a polynomial-time algorithm for finding all variables that must
have the same value in all satisfying assignments of the 2-SAT problem. In the
example from Fig. 3a, many more 2-SAT clauses can be found from the single
rows and columns, or from the discrete tomography problem.

Our procedure for combining the information from the subproblems (one for
each line, and a complete DT problem) is as follows: for each pair of undecided
pixels (x, y) involved in the subproblem, all four assignments are tested. For each
assignment, a fixability test is performed. Each such test that returns false

provides an additional 2-SAT clause (e.g., x ∨ ¬y). The resulting dependency
graph captures information from all subproblems simultaneously. If one considers
this process as “guessing”, it can also be performed in a way similar to the Settle

operation. Indeed, when computing the Fix value for a line, one can keep track
of all pairs of pixels, and determine those values of pairs that cannot occur.

Although the 2-SAT approach is a powerful way to combine the knowledge
from different partial problems, it generally does not capture all information
that is present. For example, the three character string s over {0, 1, x} with
description d = 0∗110∗ yields rules that do not forbid the fix 000, which is not
a good fix. If one introduces clauses that can involve three variables, this leads

8 K. J. Batenburg and W. A. Kosters

to a clause s1 6= 0 ∨ s2 6= 0 ∨ s3 6= 0, which is in 3-SAT format. The general
3-SAT problem is NP-hard. Therefore, we chose the 2-SAT model, for which
polynomial-time algorithms can be used.

5 Iterative Solving of Nonograms

Each relaxation of the Nonogram problem, such as the single line and discrete to-
mography relaxations from Section 3, can be used to deduce the value of certain
pixels. By using such methods iteratively, filling in the new known pixels in each
iteration, it is often possible to deduce even more pixel values. For clearness’ sake,
we now focus on the iterative application of the Settle operation from Section 3.1.
It can be combined with alternative relaxations to form a more complete iterative
algorithm. The Settle operation produces, given a string s over Γ and a descrip-
tion d, the string where all string elements that have the same value in every
fix are set: s ← Settle(s, d). Given X ∈ Γ m×n and a Nonogram description N ,
we can repeat the Settle operation for all rows and columns of X (using the ap-
propriate descriptions from N) until no new, previously unknown pixels are set.
Note that we can use several heuristics to determine the order in which lines are
examined. This operation is called FullSettle: X ← FullSettle(X, N) ∈ Γ m×n.
If X now happens to be in Σm×n, the puzzle is solved. Such a puzzle is called
simple.

Note that the Settle operation, or rather the induced Fix operations, can also
be used to detect certain contradictions, i.e., unsolvable puzzles. Indeed, if some
line s of a proposed solution satisfies Fix (s, d) = false, this solution cannot be
completed.

Now, given X ∈ Γ m×n and a Nonogram description N such that X =
FullSettle(X, N), we can harvest 2-SAT expressions, leading to a 2-SAT prob-
lem Π , and set all elements from X that have the same value in all solutions to
Π as in Section 4. This operation is called 2SATSolve: X ← 2SATSolve(X, N).
The operations FullSettle and 2SATSolve can be intertwined, until no further
progress is made; this combination is called Solver0 : X ← Solver0 (X, N). Again,
if the resulting X happens to be in Σm×n, the puzzle is solved. Such a puzzle is
called 0−Solvable . Note that this whole process takes polynomial time (expressed
in height and width of the puzzle).

Now suppose that X = Solver0 (X, N), but the puzzle is not solved yet. We
now consider one unknown element Xij from X . In a copy Y of X we try both
Yij = 0 and Yij = 1. If for one of these Solver0 (Y, N) gives a contradiction, we
know that Xij must have the other value. We can, again in some heuristic order,
examine all unknown pixels. Note that only those pixels that occur in a 2-SAT
clause need to be examined. This procedure can be repeated, until no further
progress is made, again intertwined with the use of Solver0 . This procedure is
called Solver1 . If a Nonogram can be solved in this way, it is called 1−Solvable.

This process can be repeated with respect to the depth of the “tries”, and it
can then solve any Nonogram. In this way, we could define k−Solvable. Indeed, we
then basically implement full backtracking. However, for our current purposes we

A Reasoning Framework for Solving Nonograms 9

only allow for (in depth!) one try, thereby inferring polynomial time complexity.
So several tries are possible, but at each moment at most one pixel is currently
“tried”.

To summarize these efforts, Nonograms can be simple (if FullSettle solves
them), 0−Solvable (if Solver0 solves them), 1−Solvable (if Solver1 solves them),
or more complicated. Many puzzles from newspapers are simple; the example
from Fig. 1 is 0−Solvable . Also note that FullSettle, Solver0 and Solver1 are
capable of providing partial solutions. It is possible to define the difficulty level
of a Nonogram as the minimum number of tries necessary to solve it. The puzzle
from Fig. 1 has level 1.

There are relatively small Nonograms for which Solver1 cannot make any
progress, even though it is still possible to infer the value of certain pixels. In
Fig. 4 we show an example of such a Nonogram, where one can prove that the
rightmost pixel in the third row must be white, yet Solver1 fails to infer the
value of any more pixels.

1

2

1

2

1

2 1 1, 1 1 1

0

0

0

0

0

0

x

Fig. 4. Partially solved 5×5 Nonogram, where the fact that pixel x must be white (0)
is hard to infer

6 Experimental Results

We will describe several experiments with the techniques from the previous sec-
tions. All considered puzzles will have at least one solution: the image that was
used to construct the puzzle. We mention the observation that in our experience
most puzzles from newspapers are of simple type. Although one could attribute
this to the relatively small size of these puzzles, this is contradicted by the exam-
ple from Fig. 1, which shows that small puzzles do not have to be of simple type.
Nevertheless, the larger the puzzle, the more complicated it can be. All puzzles
of simple type can be solved very fast using our proposed framework, as the
operation described in Section 3.1 effectively captures all information contained
in the description of each single horizontal or vertical line.

As an illustrative example for a more difficult puzzle, we mention the 30×30
Nonogram from Fig. 5. It was randomly generated with 50 % black pixels. Using
only FullSettle just 11 pixels are found. Using Solver0 (which only takes ap-
proximately one second on a modern PC), the puzzle is solved but for 15 pixels.
One can verify that there are 6 different solutions, where it turns out that for

10 K. J. Batenburg and W. A. Kosters

all 15 unknown pixels both black and white can occur. This Nonogram was also
included in [4], where an evolutionary algorithm was used to find one of the
six solutions. A clear advantage of our reasoning framework over the algorithm
presented in the former paper is that our approach finds the set of all solutions,
along with a proof that there are no others. In addition, our method is much
faster: seconds versus hours. On the other hand, both approaches can be con-
sidered as complementary, as the evolutionary algorithm can sometimes find a
solution that cannot be deduced using our reasoning approach.

t t t t t t t t t t t t t t t q q q q qt t t t t t t t t t t t t t t q q q q q qt t t t t t t tt t t t t t t t t t t t t t q q tt t t t t t t t t t t t t t t tt t t t t t t tt t t t t t t t t t t t t t t t tt t t t t t t t t t t t t tt t t t t t t t t t t t t t q qt t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t t tt t t t t t t t t t t t tt t t t t t t t t t t t t tt t t t t t t t t t t t tt t t t t t t t t t t t t tt t t t t t t t t t t t tt t t t t t t t t t t t t t tt t t t t t t t t t t t t t t tt t t t t t t t t t t tt t t t t t t t t t t t t tt t t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t tt t t t t t t t t t t t t tt t t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t t

Fig. 5. Randomly generated partially solved 30×30 Nonogram, with 50 % black pixels;
the 15 small dots denote the unknown pixels; 6 solutions

Most descriptions can be deduced from the figure. The description of row 1
is: 1, 8, 2, 1, 3, 2, of row 2: 7, 2, 2, 1, 1, 2, 2, of row 4: 2, 1, 4, 1, 2, 3, 1, 1, 1 and of row
9: 3, 1, 4, 1, 1, 4, 1; the descriptions of the last 6 columns are: 2, 4, 1, 1, 3, 1, 1, 1;
1, 3, 1, 2, 2, 1, 1, 2, 3; 1, 1, 1, 2, 2, 1, 1, 1, 1, 1; 1, 1, 1, 3, 2, 1, 1, 3, 3; 1, 1, 2, 1, 1, 4, 3, 1,

2; and 1, 1, 1, 1, 1, 3, 5, respectively.
In Fig. 6 we see a randomly generated 40×40 Nonogram, with 881, i.e., 55 %,

black pixels. In this case the puzzle has a nearly unique solution: there is only
one pure 2×2 switching component (cf. Fig. 7), so there are 2 different solutions.
The descriptions can be deduced from the figure. Again, Solver0 is necessary:
FullSettle finds 101 pixels.

In Fig. 8a we see the results of 7,000 runs. For each p in {1, 2, 3, . . . , 70} the
algorithm has been run 100 times on a randomly generated 30×30 puzzle, with
p % black pixels. The piecewise linear curve connects the averages of the number
of unsolved pixels (at most 900); also plotted is the standard deviation per per-
centage, truncated at 0 and 900. For small and large percentages the puzzles are
solvable, in some cases leaving small switching components (cf. Fig. 5). Finally

A Reasoning Framework for Solving Nonograms 11

in Fig. 8b we plot, for each size s in {1, 2, 3, . . . , 50} these same quantities for
randomly generated square s×s puzzles, all with 50 % black pixels. The smooth
curve depicts the total number of pixels, i.e., s2.

t tt tt tt t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t t t t tt tt tt tq t q tq t q t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t t t t tt tt tt tt tt tt tt tt tt t t t t t t t t t t t t t t tt tt tt t t t t t t t t t t t t t t t tt tt t t t t t t t t t t t t t t t t tt tt tt t t t t t t t t t t t t t t t tt tt tt t t t t t t t t t t t t t t t t tt tt tt t t t t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t tt t t t t t t t t t t t t t t t t t t tt tt tt t t t t t t t t t t t t t t t t t t tt t
Fig. 6. Randomly generated partially solved 40×40 Nonogram, with 881 black pixels;
the 4 small dots denote a pure switching component, leading to 2 solutions

1

1

1 1

s
s s

s
Fig. 7. Pure 2×2 switching component, with its 2 solutions

7 Conclusions

The general Nonogram problem is known to be NP-hard. However, it appears
that in practice many instances can be solved quickly. In this paper we presented
a general framework for solving Nonograms. By combining several relaxations,
that can each be solved in polynomial time, a solution of the Nonogram is com-
puted iteratively. The different solution methods are combined using a 2-SAT
formulation. We demonstrated that this approach can solve a variety of interest-
ing Nonograms. More importantly, the algorithm generates a logical proof for all

12 K. J. Batenburg and W. A. Kosters

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

un
so

lv
ed

 p
ix

el
s

percentage black

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

un
so

lv
ed

 p
ix

el
s

height = width

Fig. 8. a) Average number of unsolved pixels with standard deviation, for randomly
generated 30×30 puzzles, with different percentages of black pixels; b) idem, for differ-
ent sizes, with a fixed percentage of 50 %

pixels that are decided. Even if the puzzle cannot be solved completely, it may
still be still be possible to decide the value of a substantial part of the pixels. The
class of Nonograms that can be solved effectively using our approach includes
the simple puzzles that can be found in puzzle books, but also includes random
puzzles, which can often not be solved by simple logic reasoning, considering one
line at a time.

Our framework is quite general. For example, as indicated in Section 2, the
concept of a description can be generalized in a straightforward manner. In
future work, we intend to study several such generalizations.

References

1. Aharoni, R., Herman, G., Kuba, A.: Binary vectors partially determined by linear
equation systems. Discrete Math. 171 (1997) 1–16

2. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from horizontal and vertical projections. Theoret. Comp. Sci. 155 (1996)
321–347

3. Batenburg, K.J.: A network flow algorithm for reconstructing binary images from
discrete X-rays. J. Math. Imaging Vision 27(2) (2007) 175–191

4. Batenburg, K.J., Kosters, W.A.: A discrete tomography approach to Japanese puz-
zles. In: Proceedings of the 16th Belgium-Netherlands Conference on Artificial
Intelligence, BNAIC (2004) 243–250

5. Garey, M., Johnson, D.: Computers and Intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman (1979)

6. Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial time.
Theoret. Comp. Sci. 283(1) (2002) 223–242

7. Simpson, S.: Nonogram solver, websites. URL: www.comp.lancs.ac.uk/~ss/

nonogram/links.html (2007)
8. Ueda, N., Nagao, T.: NP-completeness results for nonogram via parsimonious reduc-

tions, preprint. URL: citeseer.ist.psu.edu/ueda96npcompleteness.html (1996)
9. Woeginger, G.: The reconstruction of polyominoes from their orthogonal projec-

tions. Inform. Process. Lett. 77 (2001) 225–229

