Try the following exercises from pages 139-140 of the Setubal-Meidanis book:

$$
3,6,7,12,13,18,1
$$

Answers: http://www.liacs.nl/home/kosters/bio/

Exercise 3 from Setubal-Meidanis, p. 139:

What is the smallest value of ϵ such that the layout below is valid under the Reconstruction model?

ACCGT	-- ACCGT--
CGTGC	$----C G T G C$
TTAC	TTAC-----
TGCCGT	$-T G C C G T--$
	TTACCGTGC

Exercise 6 from Setubal-Meidanis, p. 140:

Construct the overlap graph for $\mathcal{F}=\{$ AAA, TTA, ATA $\}$. Find a shortest common superstring for this collection.

Exercise 7 from Setubal-Meidanis, p. 140:

Find sequences that give rise to the following overlap graph, where only edges with positive weight are shown. The weights are yours to find/choose.

Exercise 12 from Setubal-Meidanis, p. 140:

Let $\mathcal{F}=\{$ ATC, TCG, AACG $\}$. Find the best layout for this collection according to the Reconstruction model with $\epsilon=0.1$ and $\epsilon=0.25$. Be sure to consider reverse complements.

Exercise 13 from Setubal-Meidanis, p. 140:

Let $\mathcal{F}=\{$ TCCCTACTT, AATCCGGTT, GACATCGGT $\}$. Find the best set of contigs for this collection according to the Multicontig model with $\epsilon=0.3$ and $t=5$. (No reverse complements.)

Exercise 18 from Setubal-Meidanis, p. 140:

Find a polynomial time reduction of SCS to Reconstruction.

Or: transform a problem instance for the Shortest Common Superstring problem into a problem for the Reconstruction problem, in such a way that solutions "correspond" with each other.

Exercise 1 from Setubal-Meidanis, p. 139:

Suppose we have the following fragments:
$f_{1}=$ ATCCGTTGAAGCCGCGGGC
$f_{2}=$ TTAACTCGAGG
$f_{3}=$ TTAAGTACTGCCCG
$f_{4}=$ ATCTGTGTCGGG
$f_{5}=$ CGACTCCCGACACA
$f_{6}=$ CACAGATCCGTTGAAGCCGCGGG
$f_{7}=$ CTCGAGTTAAGTA
$f_{8}=$ CGCGGGCAGTACTT
And we know that the length of the target molecule is about 55. Assemble these fragments and obtain a consensus sequence. Think of reverse complements.

