
Neural Networks — April 18, 2024

We want to use a Neural Network (NN) to learn, e.g., the Xor function. Apparently, in this
case we have two input nodes (inputs = 2) and one output node.

Formulas

First we define the sigmoid function g and compute its derivative g′:

g:x 7→ 1/(1 + e−βx) g′:x 7→ β g(x)(1− g(x))

Usually we take β = 1. We can also use other activation functions, like ReLU.
For weights Wj (j = 0, 1, 2, . . . , hiddens) on the edges from hidden layer to output layer
(with one output node) the update rule is:

Wj ←− Wj + α · aj ·∆ with ∆ = error · g′(in)

Here α is the learning rate, aj is the activation of the jth hidden node, and in =
∑hiddens
`=0 W` a`

is the input for the single output node (in general there can be more than one); error is
defined as the target value t minus the net output g(in). Always keep the hidden bias node 0
at a0 = −1.
And for weights Wk,j (k = 0, 1, , . . . , inputs; j = 1, 2, . . . , hiddens) on the edges from input
layer to hidden layer the update rule is:

Wk,j ←− Wk,j + α · xk ·∆j with ∆j = g′(inj) ·Wj ·∆

Here xk is the kth input, and inj =
∑inputs
`=0 W`,j x` is the input for the jth hidden node, and

aj = g(inj). Always keep the input bias node 0 at x0 = −1.
Finally, the Backpropagation algorithm reads like this:

repeat
for each (∗) e = (x1, x2, . . . , xinputs, t) in training set do

compute inj’s, aj’s, in and g(in)
compute error, ∆ and ∆j’s
update Wj’s and Wk,j’s

until network “converged”

(∗) in random order
In the figure we have: inputs = 3 en hiddens = 2.

d
x0
−1

−1

d
x1

d
x2

d
x3

�
�
�
�
���

W0,1

6

W0,2

��
��

�
��

�
��
�*

W1,1 �
�
�
�
���

W1,2

6

W2,1

@
@

@
@

@@I

W2,2 @
@

@
@

@@I

W3,2

H
HH

H
HH

HH
HH

HY

W3,1

da0 da1 da2�
�
�
�
���

W0

6

W1

@
@

@
@

@@I

W2

dg(in)

Implementation

On the website www.liacs.leidenuniv.nl/~kosterswa/AI/ a simple skeleton program
called nnskelet.cc is available. The variables are: input[k] ↔ xk, inhidden[j] ↔ inj,
acthidden[j] ↔ aj, inoutput ↔ in, netoutput ↔ g(in), target ↔ t, delta ↔ ∆,
deltahidden[j] ↔ ∆j, inputtohidden[k][j] ↔ Wk,j, hiddentooutput[j] ↔ Wj and finally
ALPHA↔ α. Note that inputs < MAX and hiddens < MAX.
We use ./nn <inputs> <hiddens> <epochs> <type> <seed>, where we try to learn from
<epochs> examples, and <type> determines the activation function.

http://www.liacs.leidenuniv.nl/~kosterswa/AI/

