Neural Networks - April 18, 2024

We want to use a Neural Network (NN) to learn, e.g., the Xor function. Apparently, in this case we have two input nodes (inputs $=2$) and one output node.

Formulas

First we define the sigmoid function g and compute its derivative g^{\prime} :

$$
g: x \mapsto 1 /\left(1+e^{-\beta x}\right) \quad g^{\prime}: x \mapsto \beta g(x)(1-g(x))
$$

Usually we take $\beta=1$. We can also use other activation functions, like ReLU.
For weights $W_{j}(j=0,1,2, \ldots$, hiddens $)$ on the edges from hidden layer to output layer (with one output node) the update rule is:

$$
W_{j} \longleftarrow W_{j}+\alpha \cdot a_{j} \cdot \Delta \quad \text { with } \quad \Delta=\text { error } \cdot g^{\prime}(\underline{\text { in }})
$$

Here α is the learning rate, a_{j} is the activation of the j th hidden node, and $\underline{i n}=\sum_{\ell=0}^{\text {hiddens }} W_{\ell} a_{\ell}$ is the input for the single output node (in general there can be more than one); error is defined as the target value t minus the net output $g(\underline{\text { in }})$. Always keep the hidden bias node 0 at $a_{0}=-1$.
And for weights $W_{k, j}(k=0,1, \ldots$, inputs; $j=1,2, \ldots$, hiddens $)$ on the edges from input layer to hidden layer the update rule is:

$$
W_{k, j} \longleftarrow W_{k, j}+\alpha \cdot x_{k} \cdot \Delta_{j} \quad \text { with } \quad \Delta_{j}=g^{\prime}\left(\underline{\mathrm{in}}_{j}\right) \cdot W_{j} \cdot \Delta
$$

Here x_{k} is the k th input, and $\underline{\mathrm{in}}_{j}=\sum_{\ell=0}^{\mathrm{inputs}} W_{\ell, j} x_{\ell}$ is the input for the j th hidden node, and $a_{j}=g\left(\underline{\mathrm{in}}_{j}\right)$. Always keep the input bias node 0 at $x_{0}=-1$.
Finally, the Backpropagation algorithm reads like this:

repeat

for each $(*) e=\left(x_{1}, x_{2}, \ldots, x_{\text {inputs }}, t\right)$ in training set do compute $\underline{\mathrm{in}}_{j}$'s, a_{j} 's, in and $g(\underline{\text { in }})$
compute error, Δ and Δ_{j} 's
update W_{j} 's and $W_{k, j}$'s
until network "converged"
$(*)$ in random order
In the figure we have: inputs $=3$ en hiddens $=2$.

Implementation

On the website www.liacs.leidenuniv.nl/~kosterswa/AI/ a simple skeleton program called nnskelet.cc is available. The variables are: input $[\mathrm{k}] \leftrightarrow x_{k}$, inhidden $[\mathrm{j}] \leftrightarrow \underline{\mathrm{in}}_{j}$,
 deltahidden $[\mathrm{j}] \leftrightarrow \Delta_{j}$, inputtohidden $[\mathrm{k}][\mathrm{j}] \leftrightarrow W_{k, j}$, hiddentooutput[j] $\leftrightarrow W_{j}$ and finally ALPHA $\leftrightarrow \alpha$. Note that inputs $<$ MAX and hiddens $<$ MAX.
We use ./nn <inputs> <hiddens> <epochs> <type> <seed>, where we try to learn from <epochs> examples, and <type> determines the activation function.

