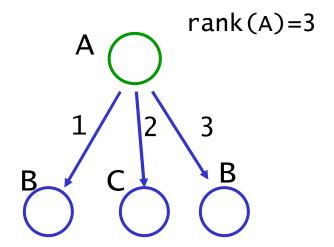


XML Transformation by Tree-Walking Transducers with Invisible Pebbles

Joost Engelfriet Hendrik Jan Hoogeboom Bart Samwel (Leiden University, NL)

tree model



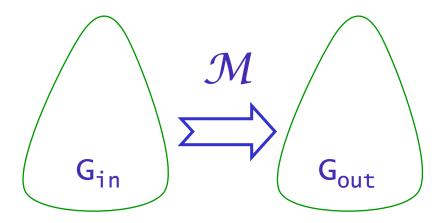
ranked trees
node labels with rank

unbounded number of children (forests) are to be coded

background

typechecking

decide whether tree (document) generated by transformation $\mathcal M$ satisfies description

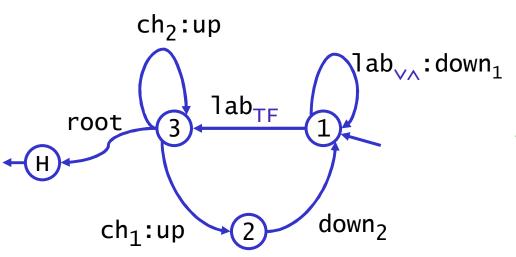


Milo Suciu Vianu PODS2000 type checking for XML transformers is decidable

transformers with 'visible' pebbles: finite number of coloured markers on tree

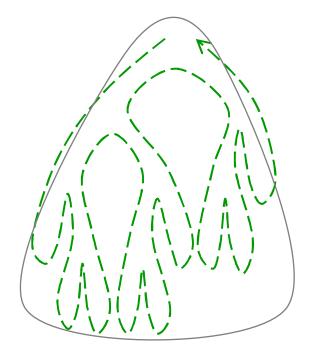
- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

example: preorder tree traversal



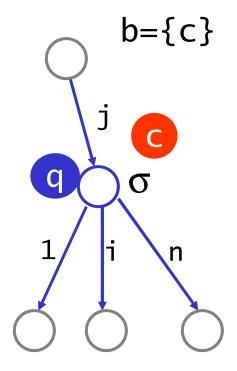
walk along edges, moves based on

- state
- node label
- child number(= incoming edge)



tree-walking automata

with pebbles



```
local configuration
```

```
q state
σ node label
j child number
    j=0 root
b pebble colours
b ⊆ C
```

(q',drop_)

(q', lift_)

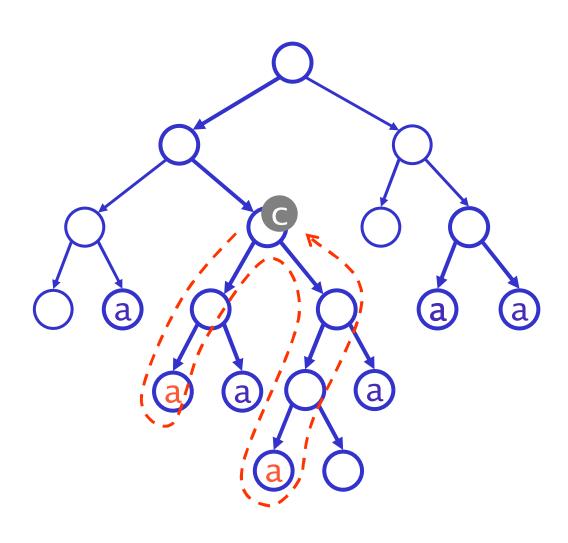
instructions

```
- finite set C of pebbles
```

- nested lifetimes
 stack behaviour
 only topmost can be lifted
- all observable

example: inspecting a subtree

using a pebble



tree-walking pebble automata

with visible pebbles 'colours' used once always observable

- we add invisible pebbles colours used many times only topmost is observable
- © recognize regular & decidable type checking & better complexity

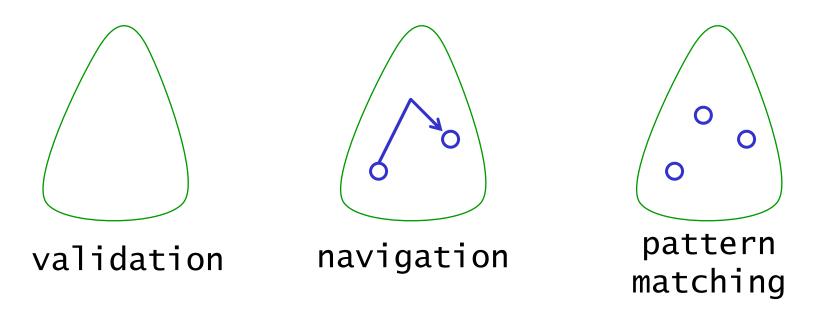
stack behaviour of pebbles!
 (avoid 'counting')

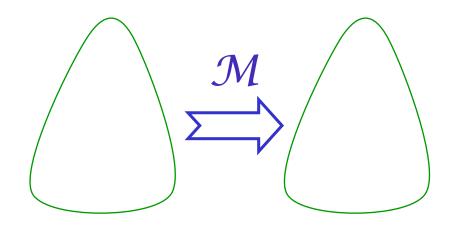
$$\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ \end{array} \begin{array}{c} \text{observable} \\ u_4 \\ u_5 \\ \end{array}$$

$$(q,\sigma,b,j) \rightarrow (q',stay)$$

- b contains-all visible pebbles
- -invisible when topmost

automaton defines ...

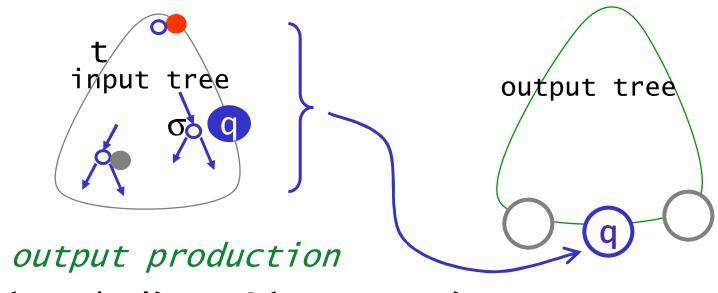




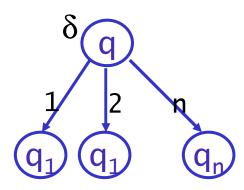
transformation

tree-walking pebble tree transducers

recursively generate output

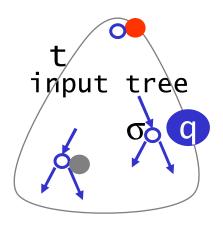


$$(q,\sigma,b,j) \rightarrow \delta(q_1,q_2 \dots q_n)$$



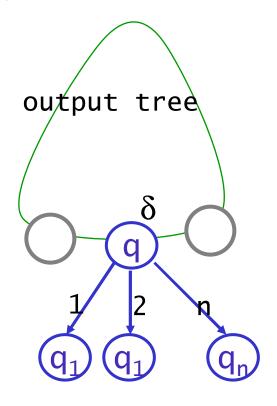
tree-walking pebble tree transducers

recursively generate output



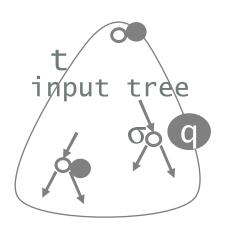
output production

$$(\textbf{q}, \sigma, \textbf{b}, \textbf{j}) \ \rightarrow \ \delta(\textbf{q}_1, \textbf{q}_2 \ \dots \ \textbf{q}_n)$$



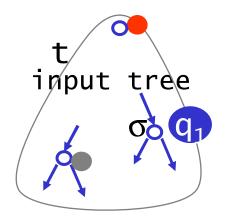
tree-walking pebble tree transducers

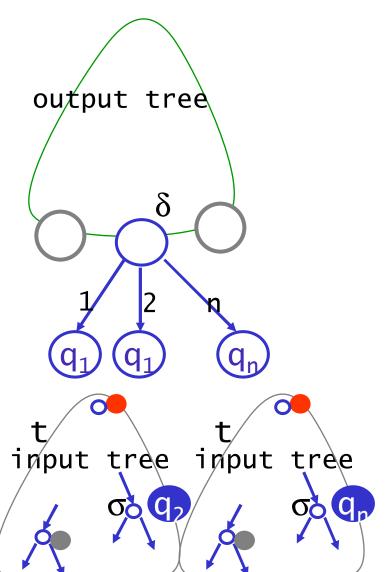
recursively generate output



output production

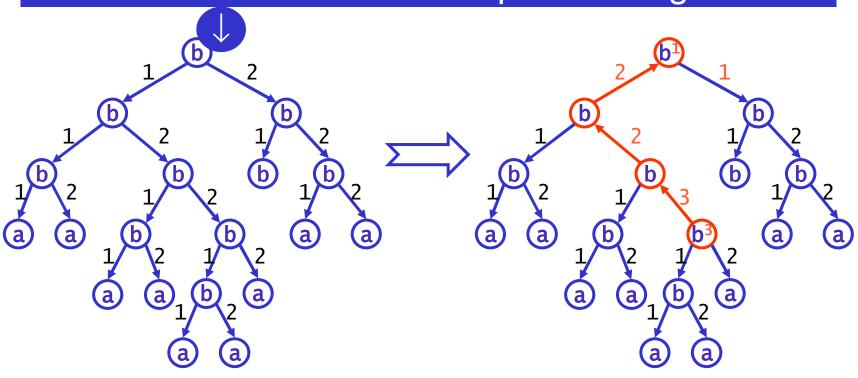
$$(q,\sigma,b,j) \rightarrow \delta(q_1,q_2 \dots q_n)$$





without pebbles

example: moving the root



wa1k down

$$(\downarrow,b,-,j) \rightarrow (\downarrow,down_1)$$
$$(\downarrow,b,-,j) \rightarrow (\downarrow,down_2)$$

copy up

$$\begin{array}{c} (\uparrow,b,-,1) \rightarrow b(\uparrow_1,c_2) \\ (\uparrow,b,-,2) \rightarrow b(c_1,\uparrow_2) \\ (\uparrow_i,b,-,i) \rightarrow (\uparrow,up) \end{array}$$

copy down

$$(copy,a,-,j) \rightarrow a()$$

 $(copy,b,-,j) \rightarrow b(c_1,c_2)$
 $(c_i,b,-,j) \rightarrow (copy,down_i)$

$$j=0,1,2$$
 $i=1,2$

notation

Pebble Tree Transducers

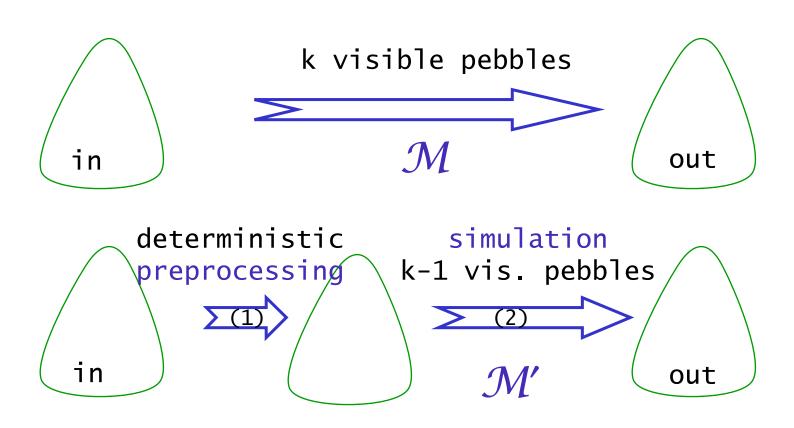
```
V_kI-PTT visible + invisible V_k-PTT k visible pebbles Milo etal. I-PTT invisible only TT tree-walking (no pebbles)
```

Pebble Tree Automata

- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

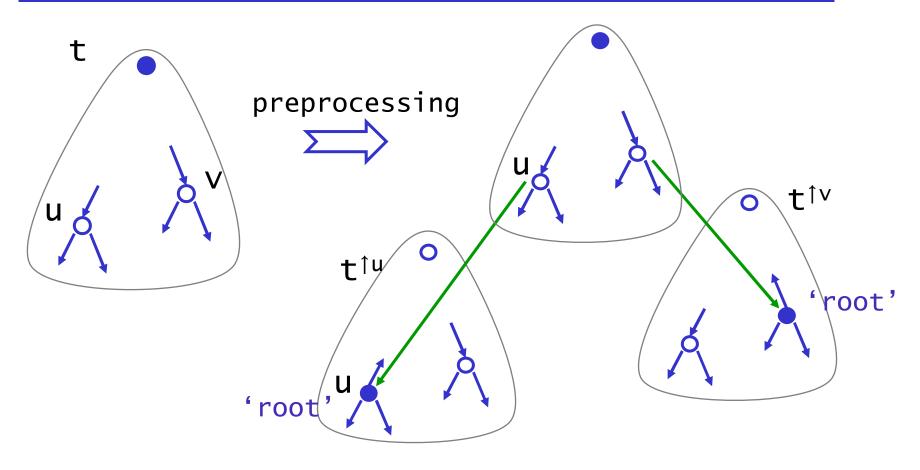
decomposition visible pebbles

$$V_kI-dPTT \subseteq dTT \circ V_{k-1}I-dPTT$$



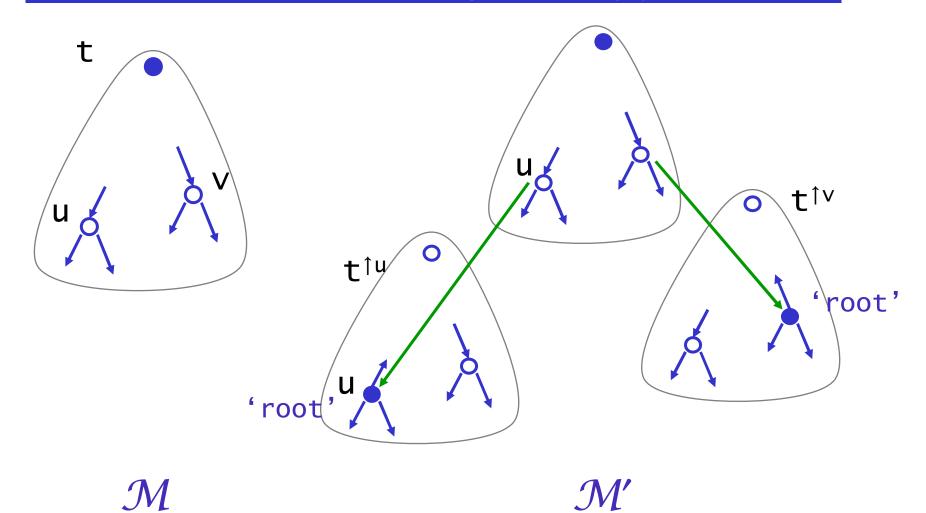
iterate
$$V_kI-dPTT \subseteq dTT^k \circ I-dPTT$$

decomposition (1) preprocessing



copying can be done without pebbles

decomposition (2) simulation



drop / lift
first visible pebble

move up /down
into subtree

decomposition

$$V_kI-dPTT \subseteq dTT \circ V_{k-1}I-dPTT$$

$$I-dPTT \subseteq TT \circ dTT$$
(deterministic)

THEOREM
$$V_k$$
-PTT \subseteq TT^{k+1} V_k I-PTT \subseteq TT^{k+2}

- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

type inference

inverse type inference

given transducer \mathcal{M} and regular G_{out} ,

construct regular G_{in} such that

 $L(G_{in}) = \mathcal{M}^{-1} L(G_{out})$

Bartha 1982

regular tree grammar G for the domain of tree transducer \mathcal{M} can be constructed in *exponential* time

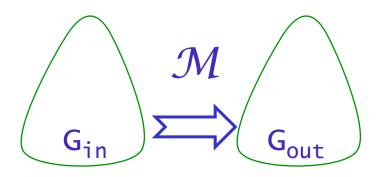
inverse type inference is solvable

- \Rightarrow for TT in exponential time
- \Rightarrow for TT^k in k-fold exponential time

type checking complexity

type checking

```
given transducer \mathcal{M} and regular G_{in}, G_{out}, decide whether \mathcal{M}(L(G_{in})) \subseteq L(G_{out})
```



```
M(A)⊆B iff A \cap M^{-1}(B^{\mathbb{C}}) = \emptyset
'typechecking' 'inverse type inference'
```

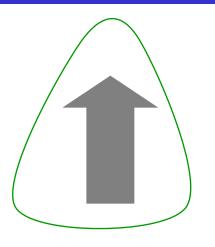
```
V_k-PTT \subseteq TT<sup>k+1</sup>
V_kI-PTT \subseteq TT<sup>k+2</sup>
```

```
we can typecheck \Rightarrow TT<sup>k</sup> in (k+1)-fold exponential time \Rightarrow V<sub>k</sub>-PTT in (k+2)-fold exponential time \Rightarrow V<sub>k</sub>I-PTT in (k+3)-fold exponential time
```

invisible pebbles are almost for free!

- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

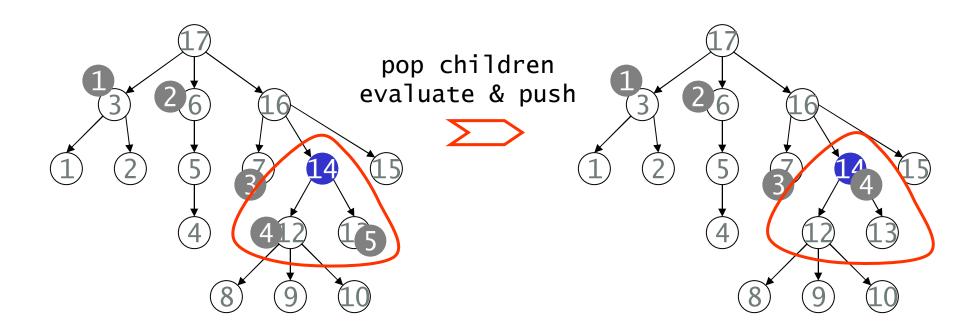
regular trees



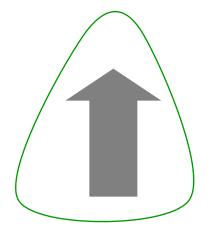
regular tree language

- = bottom-up tree evaluation
- = post-order evalation with stack

$REGT \subseteq I-PTA$



regular trees



 $REGT \subseteq I-PTA$

regular tree language

= bottom-up tree evaluation

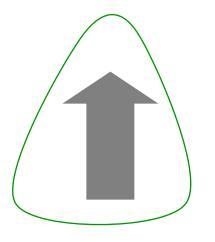
= post-order evalation with stack

REGT $\not\subseteq V_k$ -PTA Bojańczyk etal.

$$V_kI-PTT \subseteq TT^{k+2}$$

$$V_kI-PTA \subseteq REGT$$

regular trees



regular tree language

- = bottom-up tree evaluation
- post-order evalation with stack

$$REGT \subseteq I-PTA$$

REGT
$$\not\subseteq V_k$$
-PTA

$$V_kI-PTT \subseteq TT^{k+2}$$



I-PTA can

- evaluate *marked* trees
- test their visible configuration

- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
 - 6. pattern matching
 - 7. conclusion

document navigation

• Pebble Cat

caterpillar expressions + pebbles ←→ I-PTA programs

semantics

$$[?\phi]_f = \{ ((u,\pi),(u,\pi)) \mid (u,\pi) \in [\phi]_f \}$$
head pebble stack

document navigation

• Pebble Cat

caterpillar expressions + pebbles
$$\leftrightarrow$$
 I-PTA programs MSO complete \odot

PCat

Goris, Marx LICS'05

• Pebble XPath

extends Regular XPath with invisible pebbles

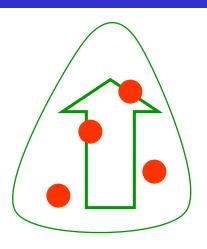
$$\varphi : := \varphi_0 \mid \langle \alpha \rangle \mid \neg \varphi \mid \varphi \land \varphi$$

$$[\langle \alpha \rangle]_f = \{ (u,\pi) \mid \exists (v,\pi'): ((u,\pi),(v,\pi')) \in [\alpha]_f \}$$

⇒ 1ook-ahead tests

- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

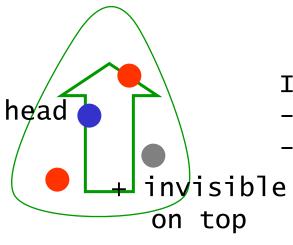
pattern matching



I-PTA can

- evaluate *marked* trees
- test their visible configuration

pattern matching



I-PTA can

- evaluate *marked* trees
- test their <u>visible</u> configuration observable

VI-PTA can test $\phi(x_1,...,x_n)$ with n-2 visible pebbles (using head)

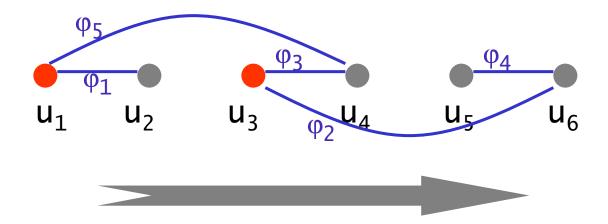
pattern matching

general test $\varphi(x_1,...,x_n)$

XQuery for
$$x_1,...,x_n$$
 with $\phi_1 \wedge ... \wedge \phi_n$ return t ϕ_i binary

example

$$\varphi_1(x_1,x_2) \wedge \varphi_2(x_3,x_6) \wedge \varphi_3(x_4,x_3) \wedge \varphi_4(x_5,x_6) \wedge \varphi_5(x_1,x_4)$$



only 2 visible pebbles!

- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. document navigation
- 5. pattern matching
- 6. conclusion

conclusion

• extends known models

• MSO complete

• invisible pebbles are cheap

