1) a. Choose $p \hat{=}$ 'shines today', and $q \hat{=}$ 'shines tomorrow'. We get $p \rightarrow(\neg q)$.
c. Choose $p \hat{=}$ 'shines today', and $r \hat{=}$ 'rains today'. We explicily have to express exclusive or, $(p \vee r) \wedge \neg(p \wedge r)$.
d. Both options, or only one of them?
2) 'In full' suggests to add also the outer parentheses we usually omit.
$((\neg p) \rightarrow(p \wedge r))$
$((p \rightarrow q) \rightarrow(r \rightarrow(s \vee t)))$
$((p \vee q) \rightarrow((\neg p) \vee r))$
$p \vee q \wedge r$ has no fixed meaning if we strictly follow the rules of the exercise. The binding order of \vee and \wedge is not specified, associativity seems to hold only for \rightarrow.
3) b. Sorry, I mean natural language 'and', to have two tables, to compare the two related formulas.
c. We see from the table that $(q \wedge(r \rightarrow q))$ is actually equivalent to q.

p	q	r	$p \vee(\neg(q \wedge(r \rightarrow q)))$		
T	T	T	T	F	T
T	T	F	T	F	T
T					
T	F	T	T	T	F
T	F	F	T	T	F
F	T	T	F	F	T
F	T	F	F	F	T
F	F	T	T	T	F
F	F				
F	F	F	T	T	F
			4	3	2

4) a. $(\forall x) A(m, P(x))$ is not correct as ' $P(x)$ ' means the logical statement ' x is a professor' (true or false) and can not be written in place of a person 'professor x '.
$(\forall x)(P(x) \rightarrow A(m, x)) \quad$ For every x, when professor, then Mary admires x
This is not the same as $(\forall x)(P(x) \rightarrow A(m, x))$ which also states that all x are professors. We assume there are also students.
b. $(\exists x)(P(x) \wedge A(x, m)) \quad$ There is a person who is professor and admires Mary.
c. No student attended every lecture. Tricky. There is no single student that attended all lectures. $\neg(\exists x)(\forall y)(S(x) \wedge L(y) \wedge B(x, y))$
Every student missed at least one lecture: $(\forall x)(S(x) \rightarrow(\exists y)(L(y) \wedge \neg B(x, y)))$
5) a. For every person there is a person that is the mother of the first. $(\forall x)(\exists y) M(y, x)$
b. $((\forall x)(\exists y) M(y, x)) \wedge((\forall x)(\exists y) F(y, x))$ or $(\forall x)(\exists y)(\exists z)(M(y, x) \wedge M(z, x))$
d. $(\exists x)(\exists y)(F(\mathrm{Ed}, x) \wedge F(x, y))$
e. Probably: $(\forall x)((\exists y) F(x, y) \rightarrow(\exists y)(F(x, y) \vee M(x, y)))$
j. $H(\mathrm{Ed}$, Patsy $)$
k. Brother of husband of Monique, or husband of sister of Monique, assuming old-fashioned marriages.
6) In the first case ϕ is not true. If we choose $x=b$ and $y=a$ then $R(x, y)$ is true, as (b, a) is in the relation given. However we can not find $z \in A$ that makes $R(y, z)$ true, as there is no pair (b, z) in the relation. This makes $R(x, y) \rightarrow R(y, z)$ false (for this x, this y and all z). Consequently ϕ is false.

Second case. Assume x and y are chosen that make $R(x, y)$ true. We consider cases to find z.
$x=b, y=c$ then we choose $z=b$,
$x=a, y=b$ then we choose $z=c$,
$x=c, y=b$ then we choose $z=c$.
Hence we can alwyas find z, which makes the statement true.

