

Life’s code script

Turing machines and cells have much in common, argues Sydney Brenner

natural computation

dna sorting \& networks
understanding nature as a computational process
neural netw \& genetic alg
bio inspired computing

bio hardware
this talk
bio-informatics

many facets of

COMMUNICATIONS

Lila Kari, Grzegorz Rozenberg: The many facets of natural computing. CACM 51 (8) 72-83, okt 2008

Turing's Legacy

 sNic - Utrecht7 maart 2012

Computer in a Testrube molecular computing

Hendrik Jan Hoogeboom Computer Science Leiden

Len Adleman

Molecular Computation of Solutions to Combinatorial Problem, Science, 266: 1021-1024, (Nov. 11) 1994.

Computing with DNA

Scientific American

The manipulation of DNA to solve
mathematical problems is redefining what is meant by "computation"
"DNA polymerase is an amazing little nanomachine, a single molecule that "hops" onto a strand of DNA and slides along it, "reading" each base it passes and "writing" its complement onto a new, growing DNA strand
... I was struck by its similarity to something described in 1936 by Alan M. Turing, the famous British mathematician ...

This realization caused me to sit up in bed and remark to my wife, Lori, 'Jeez, these things could compute.' I did not sleep the rest of the night, trying to figure out a way to get DNA to solve problems."
Leonard M. Adleman - Computing with DNA Scientific American August 1998

If we look inside the cell, we see extraordinary machines that we couldn't make ourselves, says Len Adleman. "It's a great tool chest - and we want to see what can we build with it."

'trave11ing salesman' problem

DNA excels at getting an astronomical amount of data into a tiny space. "One gram of DNA can store as much information as a trillion compact discs," says Adleman. Myriad DNA molecules can examine every possible route at once, rather than one at a time, as in a conventional computer.
massive paralle7lism

contents

* DNA ... the tool chest * Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future
* self assemb7y

single - doub7e strand
 'complementarity’

double strand

single strands
high temp

restriction enzymes

BamHI

sticky ends

subsequence selection

magnetic beads

separation on 1ength

DNA ge7 electrophoresis

multiplication / amplification

PCR - polymerase chain reaction

contents

* DNA ... the tool chest
* Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future
* self assemb7y

custom made single strands of DNA (many copies)
is there a double strand with my desired properties?
properties:
- length,
- subsequence.
if we can do this, then we can solve certain problems (efficiently)!

HPP: Hamilton Path Prob7em

'trave7ling sa7esman'
given: directed graph (points \& connections) question: is there a path that visits each point exactly once ?

HPP: Hamilton Path Problem

given: directed graph (points \& connections) question: is there a path that visits each point exactly once ?

heuristics

building blocks

Ad1eman's algorithm

0. coding the graph 1. generate 'a17' paths
keep on7y paths
2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices
(0) (1)... that enter all vertices

ACGG GTGG ATCC TAGT ny path remains OK $\xrightarrow[(0)]{\text { CACC TAGG }}$

Ad7eman's algorithm

0. coding the graph 1. generate 'a11’ paths
keep on7y paths
2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices

Ad7eman's algorithm

0. coding the graph 1. generate 'a17’ paths

keep only paths

2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices
4. ... that enter all vertices
5. if any path remains $O K$
-PCR with $\mathrm{v}_{\text {in }}$ and $\mathrm{v}_{\text {out }}$ primers

- gel: separate on length, amplify \& purify
-magnetic beads: select strands
-PCR amplification \& gel

comments

- "clear that the methods could be scaled up to ... larger graphs"
+ bath tub of DNA ?
+ suitable algorithms
- approximately 7 days of 1ab work
+ automation
+ alternative molecular algorithms
- possibility of errors
+ pseudopaths: accidental ligation
+ PCR, separation procedures
+ hairpin loops
+ stability when scaled

comments

" "power of this method of computation"

- 10^{14} operations 10^{20} plausab7e
- exceed supercomputers by thousandfold
:)
- "not clear whether ... used to solve real computational problems"
. multiplying 100 digit numbers
- potential: massive1y paralle1 searches

contents

* DNA ... the tool chest * Hamilton Path Prob7em
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future
* se7f assemb7y

Turing machine

PRODUCTS

CONTACT NEB ABOUT US
SITE MAP

$$
\begin{aligned}
& \text { TECHNICAL } \\
& \text { REFERENCE }
\end{aligned}
$$

CUSTOMER SERVICE

Home > Products > Restriction Endonucleases > Restriction Endonuclease

FokI

| Catalog \# | Size | Concentration | Price | Q1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| R0109L | 5,000 units | 4,000 units $/ \mathrm{ml}$ | $\$ 244.00$ | 1 |
| R0109S | 1,000 units | 4,000 units $/ \mathrm{ml}$ | $\$ 61.00$ | 1 |

Prices are in US dollars and valid only for US orders.

Download: MSDS PDF

Recognition Site:

$5^{\circ} \ldots$ GGATG $(\mathrm{N})_{9}{ }^{7} \ldots 3^{\prime}$
$3^{\circ} \ldots$ C C TAC $(\mathrm{N})_{134} \ldots 5^{\prime}$
isoschizomers | compatible ends | single letter code

Source:

A E. coli strain that carries the FokI gene from Flavobacterium okeanokoites

Reagents Supplied:

NEBuffer 4

Turing Machine by Tom Dunne American Scientist, March-April 2002

Turing machine

tape

1. mark a
2. move to b's mark b
3. move to c's mark c
4. if another c
5. then back to a's goto 1.
else back to a's
6. check marks stop

universal' Turing machine

GGATGnnnnnnnnn CCTACnnnnnnnnnnnnnn

- cut states with restriction enzyme
- mix ‘instructions’ with 'tape’
- 'activate’ instructions (cut protected end)
- ligate to form circles
- cut old symbol
- recircularize

contents

* DNA ... the tool chest
* Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future
* se1f assembly

(b)

tic-tac-toe

logic gates fluorescence

Stojanovic \& Stefanovic, DeoxyribozymeBased Molecular Automaton. Nature Biotechn. 2003. Deoxyribozyme-Based Logic Gates J. Am. Chem. Soc. 2002. Medium Scale Integration of Molecular Logic Gates in an Automaton Nano Letters 2006.

A. MAYA-II gate distribution

B. Example game:

0. Automaton goes first - well 5

Well 5 displays Automaton move "red channep"

1. Human chooses well 9

- Adds input $\mathbf{i 9 1}$ to all wells

2. Human chooses well 8 - adds i82

3. Hum: first "medium-scale integrated molecular circuit", integrating 128 deoxyribozyme-based logic gates, 32 input DNA molecules, and 8 twochannel fluorescent outputs across 8 wells

Tom's links

Future directions in computing: DNA Computing, BBC News, 13 Nov 2007
http://news.bbc.co.uk/2/hi/technology/7085154.stm
"This soup of DNA and enzymes implements a well know mathematical model of computation known as finite automaton," he explained.
"This finite automaton knows how to do very simple computation such as recognising whether a list of zeros and ones has an even number of ones."

In the case of his 2004 computer this method of computation was used to analyze ratios of specific molecules related to prostate cancer and a specific type of lung cancer.

The "computer" consisted of a chain of three segments of DNA and an enzyme which could cut the strands.

Tom's links

DNA computer 'ansers questions', BBC News, 05-Aug-2009
... they tried the system with simple "if... then..." propositions. One of these went as follows: "All men are mortal. Socrates is a man. Therefore, Socrates is mortal.'

The answer was encoded in a flash of green light. Some of the DNA strands were equipped with a naturally glowing fluorescent molecule bound to a second molecule which keeps the light covered.

The system can take in facts and rules as a computer file of simple text. The robotic "compiler" can then turn those facts and rules into the DNA starting products of a logical query.

In other words, computers that go to work inside a cell.

Tom's links

DNA computer 'ansers questions', BBC News, 05-Aug-2009 http://news.bbc.co.uk/2/hi/technology/8184033.stm

Tom's links

DNA logic gates herald injectable computers, New Scientist, 02 June 2010
http://www.newscientist.com/article/dn18989-dna-1ogic-gates-herald-injectable-computers.htm1
"The biocomputer would sense biomarkers and immediately react by releasing counter-agents for the disease," says Itamar willner, who led the work.

The new logic gates are formed from short strands of DNA and their complementary strands, Two strands act as the input: each represents a 1 when present or a 0 when absent. ... Take the "exclusive OR" or XOR logic gate. It produces an output when either of the two inputs is present but not when both are present or both are absent.
willner and his team added molecules to both the complementary strands that caused them to fluoresce when each was present in isolation, representing a logical 1 as the output. But when both were present, the complementary strands combined and quenched the fluorescence, representing a 0 output.

contents

* DNA ... the tool chest
* Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future
* se1f assemb7y

self assembly

Sierpinski triangle

Sierpinski triangle
\oplus XOR
even / odd

self assembly: Sierpinski

Algorithmic Se7f-Assemb7y of DNA Sierpinski Triang7es, Rothemund, Papadakis, Winfree; PLoS Biology (2004)

self assembly

http://dx.doi.org/10.1371/journa1.pbio.0020424
Algorithmic Self-Assembly of DNA Sierpinski Triangles Rothemund, Papadakis, Winfree; PLoS Biology (2004)

self assembly

Sierpinski

self assembly: DNA origami

Folding DNA to create nanoscale shapes and patterns Paul W. K. Rothemund, Nature 440, 297-302 (16 March 2006)

Self Assembly: DNA origami

Paul W. K. Rothemund, http://www.dna.caltech.edu/~pwkr/

3D DNA origami

Self-assembly of DNA into nanoscale three-dimensional shapes S.M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, W.M. Shih, Nature 459, 414-418 (21 May 2009)

self assembly (theory)

Wang tiles

Sierpinsky

self assembly

Wang tiles

can we tile the pl ane?

can we tile
the plane? undecidable
rectangle
NP-complete
strip
PSPACE-comp1

conclusion

take home message
DNA can be used for applications it was not "intended" for
computing a very interesting proof of concept
find niche

