computer in a Testrubee

DNA computing

Hendrik Jan Hoogeboom
Computer Science Leiden
13 december 2010

natural computation

-genetic algoritms
-neural networks

DNA computing
bio-informatics

Len Adleman

Molecular Computation of Solutions to Combinatorial Problem, Science, 266: 1021-1024, (Nov. 11) 1994.

http://www.usc.edu/dept/molecular-science/fm-adleman.htm

Scientific American

Computing with DNA

The manipulation of DNA to solve mathematical problems is redefining what is meant by "computation"

"In other words, one could program a Turing machine to produce Watson-Crick complementary strings, factor numbers, play chess and so on.

This realization caused me to sit up in bed and remark to my wife, Lori, 'Jeez, these things could compute.' I did not sleep the rest of the night, trying to figure out a way to get DNA to solve problems."

Leonard M. Adleman - Computing with DNA Scientific American August 1998

If we look inside the cell, we see extraordinary machines that we couldn't make ourselves, says Len Adleman. "It's a great tool chest - and we want to see what can we build with it."

Adleman created the first computer to use DNA to solve a problem. He was struck by the parallels between DNA, with its long ribbon of information, and the theoretical computer known as the Turing Machine.

Nature News Service apri1 2003

Adleman tackled the famous 'travelling salesman' problem - finding the shortest route between cities. Such problems rapidly become mindboggling. The only way is to examine every possible option. With many cities, this number is astronomical.

DNA excels at getting an astronomical amount of data into a tiny space. "One gram of DNA can store as much information as a trillion compact discs," says Adleman. Myriad DNA molecules can examine every possible route at once, rather than one at a time, as in a conventional computer.

contents

DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem Adleman's algorithm

* comments theory ... Turing machine recent work + future

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future

single - double strand

 double strand

low temp denaturing

annealing

high temp
single strands

complementarity

restriction enzymes

BamHI

sticky ends

subsequence selection

magnetic beads

separation on 1ength

DNA ge7 electrophoresis

multiplication / amplification

PCR - polymerase chain reaction

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine * recent work + future

complexity

	$n=10$	30	50	60	second minute
n	$10^{-5} \mathrm{~s}$	$3 \times 10^{-5} \mathrm{~s}$	$5 \times 10^{-5} \mathrm{~s}$	$6 \times 10^{-5} \mathrm{~s}$	day n^{2}
$10^{-4} \mathrm{~s}$	$9 \times 10^{-4} \mathrm{~s}$	$2 \times 10^{-3} \mathrm{~s}$	$4 \times 10^{-3} \mathrm{~s}$	century	
n^{5}	$10^{-1} \mathrm{~s}$	24 s	1.7 m	13 m	
2^{n}	$10^{-3} \mathrm{~s}$	18 m	13 d	366 c	
3^{n}	$6 \times 10^{-2} \mathrm{~s}$	6.5 y	3855 c	$10^{13} \mathrm{c}$	

polynomial vs.

exponential

	now	$100 x$	$1000 x$
n	N	$100 N$	$1000 N$
n^{2}	N	$10 N$	$32 N$
n^{5}	N	$2.5 N$	$4 N$
2^{n}	N	$N+6.6$	$N+10$
3^{n}	N	$N+4.2$	$N+6.3$

custom made single strands of DNA (many copies)
is there a double strand with my desired properties?
properties:

- length,
- subsequence.
if we can do this, then we can solve certain problems (efficiently)!

HPP: Hamilton Path Problem

'trave7ling salesman'
given: directed graph (points \& connections) question: is there a path that visits each point exactly once ?

HPP: Hamilton Path Problem

given: directed graph (points \& connections) question: is there a path that visits each point exactly once ?

HPP: Hamilton Path Problem

no solution?
exponential time:
try all possibilities
representative class 'NP complete'
heuristics

complexity (theory) - P vs. NP

P
polynomial algorithm to find a solution

NP

polynomial algorithm to verify a solution

NP-complete millenium prize problem $P=N P$ www.claymath.org/Mi11ennium_Prize_Prob1ems/

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem Adleman's algorithm
* comments
* theory ... Turing machine * recent work + future

Adleman's algorithm

1. generate 'a11' paths
keep on7y paths
2. ... from $v_{i n}$ to $v_{\text {out }}$
3. ... that enter n vertices
4. ... that enter all vertices
5. if any path remains $O K$

building blocks

Adleman's algorithm

0. coding the graph

1. generate 'all' paths
keep only paths
2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices

0
ACGG GTGG ATCC TAGT any path remains OK $\underset{(0)}{\left[\begin{array}{l}\text { CBC TAG }\end{array}\right.}$

Adleman's algorithm

0. coding the graph

1. generate 'all’ paths
keep on7y paths
2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices

Adleman's algorithm

0. coding the graph 1. generate 'all' paths

keep only paths

2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices
4. ... that enter all vertices
5. if any path remains $O K$
-PCR with $\mathrm{v}_{\text {in }}$ and $\mathrm{v}_{\text {out }}$ primers

- gel: separate on length, amplify \& purify
-magnetic beads: select strands
-PCR amplification \& gel

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine * recent work + future

comments

- "clear that the methods could be scaled up to ... larger graphs"
+ bath tub of DNA ?
+ suitable algorithms
- approximately 7 days of 1ab work
+ automation
+ alternative molecular algorithms
- possibility of errors
+ pseudopaths: accidental ligation
+ PCR, separation procedures
+ hairpin loops
+ stability when scaled

comments

- "power of this method of computation"
- 10^{14} operations 10^{20} plausable
- exceed supercomputers by thousandfold
:)
- "not clear whether ... used to solve real computational problems"
. multiplying 100 digit numbers
- potential: massive1y paralle1 searches

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine * recent work + future

Turing machine

\section*{\# a | a | a | a | a | b | b | b | b | b | c | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| c | c | c | \# | | | | | | | |}

tape

1. mark a
2. move to b's mark b
3. move to c's mark c
4. if another c
5. then back to a's goto 1.
else back to a's
6. check marks stop

'universal' Turing machine

GGATGnnnnnnnnnn CCTACnnnnnnnnnnnnnn

Rothemund

FokI
circular DNA

- cut states with restriction enzyme
- mix ‘instructions’ with 'tape’
- 'activate’ instructions (cut protected end)
- ligate to form circles
- cut old symbol
- recircularize

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine * recent work + future

tic-tac-toe

(b)

Stojanovic \& Stefanovic, DeoxyribozymeBased Molecular Automaton. Nature Biotechn. 2003. Deoxyribozyme-Based Logic Gates J. Am. Chem. Soc. 2002. Medium Scale Integration of Molecular Logic Gates in an Automaton Nano Letters 2006.

logic gates fluorescence

A. MAYA-II gate distribution

B. Example game:

0. Automaton goes first - well 5

Well 5 displays Automaton move "red channep"

1. Human chooses well 9

- Adds input $\mathbf{i 9 1}$ to all wells

2. Human chooses well 8 - adds i82

3. Huma first "medium-scale integrated molecular circuit", integrating

128 deoxyribozyme-based logic gates, 32 input DNA molecules, and 8 twochannel fluorescent outputs across 8 wells

DNA computing after 10 years

"There are many practical hurdles. Even with the best techniques of today, DNA still lags behind silicon computers," says Ehud Shapiro. Instead, he advocates creating DNA devices that can do things, and go to places, that silicon can't - such as inside our cells, to make and control drugs.

Ultimately, Seeman hopes to build DNA scaffolding for electrical circuits, or for other molecular machines.

Yurke is focusing on DNA machines with moving parts. In 2000, he and his colleagues devised a set of DNA tweezers

Nature News Service apri 12003

Cross-fertilization between evolutionary computation and DNA-based computing T.Back; J.N. Kok; G. Rozenberg Proceedings 1999 Evolutionary Computation.

links van Tom

Researchers make significant advances in molecular computing, University of Kent, 10-Dec-2009
http://www.kent.ac.uk/news/stories/dchu/2009

Dr Chu explained: 'Our research demonstrates that the speed of bio-molecular computers is fundamentally limited by their metabolic rate or their ability to process energy. One of our main findings is that a molecular computer has to balance a trade-off between the speed with which a computation is performed and the accuracy of the result. However, a molecular computer can increase both the speed and reliability of a computation by increasing the energy it invests in the computation. With molecular computers this energy may be derived from food sources.'

1 inks van Tom

DNA computer 'ansers questions', BBC News, 05-Aug-2009
... they tried the system with simple "if... then..." propositions. One of these went as follows: "All men are mortal. Socrates is a man. Therefore, Socrates is mortal."

The answer was encoded in a flash of green light. Some of the DNA strands were equipped with a naturally glowing fluorescent molecule bound to a second molecule which keeps the light covered.

The system can take in facts and rules as a computer file of simple text. The robotic "compiler" can then turn those facts and rules into the DNA starting products of a logical query.

In other words, computers that go to work inside a cell.

1inks van Tom

Future directions in computing: DNA Computing, BBC News, 13 Nov 2007
http://news.bbc.co.uk/2/hi/technology/7085154.stm
"This soup of DNA and enzymes implements a we11 know mathematical mode1 of computation known as finite automaton," he explained.
"This finite automaton knows how to do very simple computation such as recognising whether a list of zeros and ones has an even number of ones."

In the case of his 2004 computer this method of computation was used to analyze ratios of specific molecules related to prostate cancer and a specific type of lung cancer.

The "computer" consisted of a chain of three segments of DNA and an enzyme which could cut the strands.

links van Tom

DNA logic gates herald injectable computers, New Scientist, 02 June 2010
http://www.newscientist.com/article/dn18989-dna-logic-gates-herald-injectable-computers.htm1
"The biocomputer would sense biomarkers and immediately react by releasing counter-agents for the disease," says Itamar willner, who led the work.

The new logic gates are formed from short strands of DNA and their complementary strands, Two strands act as the input: each represents a 1 when present or a 0 when absent. ... Take the "exclusive OR" or XOR logic gate. It produces an output when either of the two inputs is present but not when both are present or both are absent.

Willner and his team added molecules to both the complementary strands that caused them to fluoresce when each was present in isolation, representing a logical 1 as the output. But when both were present, the complementary strands combined and quenched the fluorescence, representing a 0 output.

self assembly

Sierpinski triangle

addition

Sierpinski triangle
\oplus XOR
even / odd

Sierpinski triangle

Sierpinski triangle
\oplus XOR
even / odd

self assemb7y: Sierpinski

Algorithmic Se7f-Assemb7y of DNA Sierpinski Triang7es, Rothemund, Papadakis, Winfree; PLoS Biology (2004)

self assembly

 DAO-E

Nogona

Algorithmic Self-Assembly of DNA Sierpinski Triangles Rothemund, Papadakis, Winfree; PLoS Biology (2004)

self assembly

Sierpinski

self assembly: DNA origami

Folding DNA to create nanoscale shapes and patterns Paul W. K. Rothemund, Nature 440, 297-302 (16 March 2006)

Self Assembly: DNA origami

Paul W. K. Rothemund, http://www.dna.caltech.edu/~pwkr/

3D DNA origami

Self-assembly of DNA into nanoscale three-dimensional shapes S.M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, W.M. Shih, Nature 459, 414-418 (21 May 2009)

conclusion

take home message

DNA can be used for applications it was not "intended" for
computing a very interesting proof of concept
find niche

