Media Technology
Artificial Intel1igence for Cocktail Parties

DNA computing

Hendrik Jan Hoogeboom
Computer Science (LIACS)
14 April 2008

natural computation

-genetic algoritms
-neura1 networks

bio-informatics

Len Ad7eman

Molecular Computation of Solutions to Combinatorial Problem, Science, 266: 1021-1024, (Nov. 11) 1994.

http://www.usc.edu/dept/molecular-science/fm-adleman.htm

If we look inside the cell, we see extraordinary machines that we couldn't make ourselves, says Len Adleman. "It's a great tool chest - and we want to see what can we build with it."

Adleman created the first computer to use DNA to solve a problem. He was struck by the parallels between DNA, with its long ribbon of information, and the theoretical computer known as the Turing Machine.
Nature News Service april 2003

Adleman tackled the famous 'travelling salesman' problem - finding the shortest route between cities. Such problems rapidly become mindboggling. The only way is to examine every possible option. With many cities, this number is astronomical.

DNA excels at getting an astronomical amount of data into a tiny space. "One gram of DNA can store as much information as a trillion compact discs," says Adleman. Myriad DNA molecules can examine every possible route at once, rather than one at a time, as in a conventional computer.

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
comments
* theory ... Turing machine
* recent work + future

contents

* DNA ... the tool chest
* problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
comments
* theory ... Turing machine
* recent work + future

annealing \& denaturing

complementary

restriction enzymes

BamHI

sticky ends

magnetic beads

separation on length

multiplication / amplification

contents

* DNA ... the tool chest
* problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
comments
* theory ... Turing machine
* recent work + future

	comp 7 exity				
	$\mathrm{n}=10$	30	50	60	second minute
n	$10^{-5} \mathrm{~s}$	$3 \times 10^{-5} \mathrm{~s}$	$5 \times 10^{-5} \mathrm{~s}$	$6 \times 10^{-5} \mathrm{~s}$	year
n^{2}	$10^{-4} \mathrm{~s}$	$9 \times 10^{-4} \mathrm{~s}$	$2 \times 10^{-3} \mathrm{~s}$	$4 \times 10^{-3} \mathrm{~s}$	century
n^{5}	$10^{-1} \mathrm{~s}$	24 s	1.7 m	13 m	
2^{n}	$10^{-3} \mathrm{~s}$	18 m	13 d	366 c	
$3{ }^{n}$	$6 \times 10^{-2} \mathrm{~s}$	6.5 y	3855 c	$10^{13} \mathrm{c}$	
				polynomial vs. exponential	
	now	100x	1000x		
n	N	100N	1000N		
n^{2}	N	10N	32 N		
n^{5}	N	$2.5 N$	4 N		Nov
2^{n}	N	N+6.6	$\mathrm{N}+10$		
3 n	N	$\mathrm{N}+4.2$	N+6.3		

HPP: Hamilton Path Problem

$$
\begin{aligned}
& \text { 'trave } 77 \text { ing } \\
& \text { salesman' }
\end{aligned}
$$

given: points and connections question: is there a path that visits each point exactly once ?

HPP: Hamilton Path Problem

'trave7ling salesman'

given: points and connections question: is there a path that visits each point exactly once ?

no solution?

exponential time: try all
possibilities
representative 'NP complete'
heuristics

complexity (theory) - P vs. NP

P
polynomial algorithm
to find a solution

NP

polynomial algorithm to verify a solution

NP-complete
millenium prize problem $\mathrm{P}=\mathrm{NP}$
www.claymath.org/mi11ennium_Prize_Problems/

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future

Ad7eman's algorithm

1. generate 'a11' paths
keep only paths
2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices
4. ... that enter all vertices
5. if any path remains OK

'massive para77e77ism'

Adleman's algorithm

0. coding the graph

1. generate "al1’ paths
keep on7y paths
2. ... from $\mathrm{v}_{\text {in }}$ to $\mathrm{v}_{\text {out }}$
3. ... that enter n vertices

Ad7eman's algorithm

0. coding the graph

1. generate 'all' paths
keep only paths
2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices

Ad1eman's algorithm

0. coding the graph

1. generate "a17’ paths
keep only paths
2. ... from $v_{\text {in }}$ to $v_{\text {out }}$
3. ... that enter n vertices
4. ... that enter all vertices
5. if any path remains OK
-PCR with $\mathrm{v}_{\text {in }}$ and $\mathrm{v}_{\text {out }}$ primers
-ge1: separate on 1ength, amplify \& purifynin, -magnetic beads: select strands
-PCR amplification \& ge1

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future

comments

- "clear that the methods could be scaled up to ... larger graphs"
+ bath tub of DNA ?
+ suitable algorithms
- approximately 7 days of 7 ab work
+ automation
+ alternative molecular algorithms
- possibility of errors
+ pseudopaths: accidental 1igation
+ PCR, separation procedures
+ hairpin loops
+ stability when scaled

comments

- "power of this method of computation"
- 10^{14} operations 10^{20} plausable
- exceed supercomputers by thousandfold
:)
- "not clear whether ... used to solve real computational problems"
. multiplying 100 digit numbers
- potential: massively paralle1 searches

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
* comments
* theory ... Turing machine
* recent work + future

(a)

(b)

DNA computing today

"There are many practical hurdles. Even with the best techniques of today, DNA still lags behind silicon computers," says Ehud Shapiro. Instead, he advocates creating DNA devices that can do things, and go to places, that silicon can't - such as inside our cells, to make and control drugs.
...
Ultimately, Seeman hopes to build DNA scaffolding for electrical circuits, or for other molecular machines.

Yurke is focusing on DNA machines with moving parts. In 2000, he and his colleagues devised a set of DNA tweezers
....

self assembly

self assembly

self assembly

Folding DNA to create nanoscale shapes and patterns Paul W. K. Rothemund, Nature 440, 297-302 (16 March 2006)

the end

perhaps not a computer ... but still some cool science!

DNA for cocktail parties

National Centre for Biotechnology Education http://www.ncbe.reading.ac.uk/DNA50/cocktai1.htm1

DNA for cocktai 1 parties

Moisten the rim of a large test tube with lime juice then dip the rim into icing sugar.

Add about 10 m 7 of blue curaçao to the tube.
Tilt the tube then with great care, pour about 20 m 1 of ice-cold gin down the side of the tube to form a layer above the blue curaçao.

Blend the strawberries and pineapple juice for 10 seconds, then drop the purée on top of the gin. Wisps of strawberry D.N.A. will precipitate into the gin (see figure).

National Centre for Biotechnology Education http://www.ncbe.reading.ac.uk/DNA50/cocktail.htm1

contents

* DNA ... the tool chest problem complexity ... P \& NP Hamilton Path Problem
* Adleman's algorithm
comments
* theory ... Turing machine
* recent work + future

Turing machine

GGATGnnnnnnnnn CCTACnnnnnnnnnnnnn

Rothemund
FokI
circular DNA

- cut states with restriction enzyme
- mix 'instructions’ with 'tape’
- 'activate’ instructions (cut protected end)
- ligate to form circles
- cut old symbol
- recircularize

