Media Technology Artificial Intelligence for Cocktail Parties

Computer in a TestTube

DNA computing

Hendrik Jan Hoogeboom Computer Science (LIACS) 14 April 2008

natural computation

Len Adleman

Molecular Computation of Solutions to Combinatorial Problem, Science, 266: 1021-1024, (Nov. 11) 1994.

http://www.usc.edu/dept/molecular-science/fm-adleman.htm

Physicists plunder life's tool chest

If we look inside the cell, we see extraordinary machines that we couldn't make ourselves, says Len Adleman. "It's a great tool chest - and we want to see what can we build with it."

Adleman created the first computer to use DNA to solve a problem. He was struck by the parallels between DNA, with its long ribbon of information, and the theoretical computer known as the Turing Machine.

Physicists plunder life's tool chest

Adleman tackled the famous 'travelling salesman' problem - finding the shortest route between cities. Such problems rapidly become mindboggling. The only way is to examine every possible option. With many cities, this number is astronomical.

DNA excels at getting an astronomical amount of data into a tiny space. "One gram of DNA can store as much information as a trillion compact discs," says Adleman. Myriad DNA molecules can examine every possible route at once, rather than one at a time, as in a conventional computer.

contents

- DNA ... the tool chest
- problem complexity ... P & NP
 Hamilton Path Problem
- Adleman's algorithm
- comments
- theory ... Turing machine
- * recent work + future

contents

- DNA ... the tool chest
- problem complexity ... P & NP
 Hamilton Path Problem
- Adleman's algorithm
- comments
- theory ... Turing machine
- recent work + future

DNA

basepairs
Watson & Crick
[& Rosalind Franklin]

A=T adenine - thymine C≡G guanine - cytosine

annealing & denaturing

complementary

restriction enzymes

BamHI

sticky ends

selection

magnetic beads

separation on length

multiplication / amplification

contents

- DNA ... the tool chest
- problem complexity ... P & NP
 Hamilton Path Problem
- Adleman's algorithm
- comments
- theory ... Turing machine
- recent work + future

complexity

	n=10	30	50	60	second minute
n n ² n ⁵ 2 ⁿ 3 ⁿ	$ \begin{array}{r} 10^{-5} s \\ 10^{-4} s \\ 10^{-1} s \\ 10^{-3} s \\ 6 \times 10^{-2} s \end{array} $	3×10 ⁻⁵ s 9×10 ⁻⁴ s 24 s 18 m 6.5 y	5×10 ⁻⁵ s 2×10 ⁻³ s 1.7 m 13 d 3855 c	6×10 ⁻⁵ s 4×10 ⁻³ s 13 m 366 c 10 ¹³ c	day year century

polynomial vs. exponential

	now	100x	1000x
n	N	100N	1000N
n ²	Ν	10N	32N
n n ² n ⁵ 2 ⁿ 3 ⁿ	Ν	2.5N	4N
2 ⁿ	Ν	N+6.6	N+10
3 ⁿ	Ν	N+4.2	N+6.3

HPP: Hamilton Path Problem

'travelling salesman'

given: points and connections
question: is there a path that visits
each point exactly once ?

HPP: Hamilton Path Problem

'travelling salesman'

given: points and connections
question: is there a path that visits
each point exactly once ?

HPP: Hamilton Path Problem

no solution?

exponential time: try all possibilities

heuristics

complexity (theory) - P vs. NP

P polynomial algorithm to find a solution

NP

polynomial algorithm to verify a solution

NP-complete ?
millenium prize problem P=NP
www.claymath.org/Millennium_Prize_Problems/

contents

- DNA ... the tool chest
- problem complexity ... P & NP
 Hamilton Path Problem
- Adleman's algorithm
- comments
- theory ... Turing machine
- recent work + future

1. generate 'all' paths

keep only paths

- 2. ... from v_{in} to v_{out}
- 3. ... that enter n vertices
- 4. ... that enter all vertices

5. if any path remains OK

'massive parallellism'

coding the graph
 generate 'all' paths

keep only paths 2. ... from v_{in} to v_{out} 3. ... that enter n vertices 4. ... that enter all vertices

5. if any path remains OK

PCR with v_{in} and v_{out} primers
gel: separate on length, amplify & purify
magnetic beads: select strands
PCR amplification & gel

contents

- DNA ... the tool chest
- problem complexity ... P & NP
 Hamilton Path Problem
- Adleman's algorithm
- comments
- theory ... Turing machine
- recent work + future

comments ...

"clear that the methods could be scaled up to ... larger graphs"

+ bath tub of DNA ?
+ suitable algorithms

approximately 7 days of lab work

+ automation

- + alternative molecular algorithms
- possibility of errors
 - + pseudopaths: accidental ligation
 - + PCR, separation procedures
 - + hairpin loops
 - + stability when scaled

comments ...

- "power of this method of computation"
 10¹⁴ operations 10²⁰ plausable
 - exceed supercomputers by thousandfold
 - :)
- "not clear whether ... used to solve real computational problems"
 - . multiplying 100 digit numbers
- potential: massively parallel searches

contents

- DNA ... the tool chest
- problem complexity ... P & NP
 Hamilton Path Problem
- Adleman's algorithm
- comments
- theory ... Turing machine
- * recent work + future

0.000

500

520

540

560

in Nature

Stojanovic & Stefanovic, Deoxyribozyme-Based Molecular Automaton. Nature Biotechn. 2003. Deoxyribozyme-Based Logic Gates J. Am. Chem. Soc. 2002 580 600m

DNA computing today

"There are many practical hurdles. Even with the best techniques of today, DNA still lags behind silicon computers," says Ehud Shapiro. Instead, he advocates creating DNA devices that can do things, and go to places, that silicon can't - such as inside our cells, to make and control drugs.

Ultimately, Seeman hopes to build DNA scaffolding for electrical circuits, or for other molecular machines.

Yurke is focusing on DNA machines with moving parts. In 2000, he and his colleagues devised a set of DNA tweezers

Cross-fertilization between evolutionary computation and DNA-based computing T.Back; J.N. Kok; G. Rozenberg Proceedings 1999 Evolutionary Computation.

self assembly

self assembly

http://dx.doi.org/10.1371/journal.pbio.0020424

Algorithmic Self-Assembly of DNA Sierpinski Triangles Rothemund, Papadakis, Winfree; PLoS Biology (2004)

self assembly

Folding DNA to create nanoscale shapes and patterns Paul W. K. Rothemund, Nature 440, 297-302 (16 March 2006)

the end ...

perhaps not a computer ... but still some cool science!

DNA for cocktail parties

National Centre for Biotechnology Education http://www.ncbe.reading.ac.uk/DNA50/cocktail.html

DNA for cocktail parties

Moisten the rim of a large test tube with lime juice then dip the rim into icing sugar.

Add about 10ml of blue curaçao to the tube.

Tilt the tube then with great care, pour about 20ml of ice-cold gin down the side of the tube to form a layer above the blue curaçao.

Blend the strawberries and pineapple juice for 10 seconds, then drop the purée on top of the gin. Wisps of strawberry D.N.A. will precipitate into the gin (see figure).

> National Centre for Biotechnology Education http://www.ncbe.reading.ac.uk/DNA50/cocktail.html

contents

- DNA ... the tool chest
- problem complexity ... P & NP
 Hamilton Path Problem
- Adleman's algorithm
- comments
- theory ... Turing machine
- recent work + future

'universal' Turing machine

- cut states with restriction enzyme
- mix 'instructions' with 'tape'
- 'activate' instructions (cut protected end)
- ligate to form circles
- cut old symbol
- recircularize

