
SCIL_Image 1.4 – Reference Manual

University of Amsterdam TNO Institute of
Faculty of Mathematics, Applied Physics
Computer Science, Physics
and Astronomy

Kruislaan 403 P.O. Box 155

1098 SJ Amsterdam, 2600 AD Delft, The Netherlands

The Netherlands Stieltjesweg 1

2628 CK Delft, The Netherlands

SCIL_Image

version 1.4

Reference Manual

May, 1998

SCIL_Image 1.4 – Reference Manual

SCIL_Image 1.4 – Reference Manual

Copyrigtht notice

Copyright © 1992-1998 by University of Amsterdam, Faculty of Mathematics and Computer
Science, Amsterdam, The Netherlands and TNO Institute of Applied Physics, Delft, The
Netherlands. All rights reserved. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or computer language,
in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written permission of TNO Institute of Applied Physics, Delft,
The Netherlands.

Disclaimer

It is believed that the information in this publication is accurate as to the date of publication;
this information and the software package, which is described, are subject to change without
notice. Furthermore, University of Amsterdam, Faculty of Mathematics and Computer
Science and TNO Institute of Applied Physics make no representations or warranties as to the
accuracy or completeness of this publication, nor as to the accuracy or completeness of the
software-package it describes. All other warranties, express or implied, are hereby
disclaimed, specifically including, but not limited to, express or implied warranties of
merchantability or fitness for a particular purpose.

SCIL_Image 1.4 – Reference Manual

5

Reference Manual Pages

abort
NAME

abort - abort program abnormally

SYNOPSIS
void abort(void)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

abort() causes the program to terminate abnormally, as if by raise(SIGABRT).

RETURN VALUES
The function does not return;

SEE ALSO
exit _exit

SCIL_Image 1.4 – Reference Manual

6

abs

labs
NAME

abs, labs - integer absolute value

SYNOPSIS
int abs(int i)

long labs(long n)

DESCRIPTION
These functions are interfaces to the standard C functions as implemented on the
current system. The functionality of these function are:

abs() returns the absolute value of its integer operand.

labs() returns the absolute value of its long operand

BUGS
You get what the hardware gives on the smallest integer.

SEE ALSO
floor fabs

SCIL_Image 1.4 – Reference Manual

7

abs_im
NAME

abs_im - absolute value or modulus of an image

SYNOPSIS
#include "im_proto.h"

int abs_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Calculate the absolute value of each element of image "in" and store the result in the
corresponding element of image "out". If the image "in" is a complex image the
modulus will be calculated. In this case if image "out" is also an complex image then
the result will be stored in the real part of each element of "out" and the imaginary part
will be cleared. If "out" is not a complex image then the result will be a float image.

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
absd_im eval

SCIL_Image 1.4 – Reference Manual

8

absd_im
NAME

absd_im - absolute difference of images

SYNOPSIS
#include "im_proto.h"

int absd_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Calculate the absolute value of the difference between each element of image "in1"
and the corresponding element of image "in2" and store the result in the
corresponding element of image "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
abs_im eval

SCIL_Image 1.4 – Reference Manual

9

add_applic_exposure_func
NAME

add_applic_exposure_func - add function to exposure list

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int add_applic_exposure_func(void (*func)(IMAGE *ip))

DESCRIPTION
This function adds the specified function "func" to the list of COMPILED functions
that are to be called when an exposure event occurs. The function that will be called
must have one parameter only, an IMAGE pointer:

void user_exposure(IMAGE *image)

The name "user_exposure" is an example only, any name may be used for such a
function.

NOTE
A new and better interface for application programs to show their interest in events
has become available by means of the functions im_exposure_func() and
im_input_func(). The support of the functions applic_exposure(),
add_applic_exposure_func(), applic_win_input() and add_applic_win_input_func() is
no longer guaranteed in future versions of SCIL_Image.

RETURN VALUES
None

SEE ALSO
applic_exposure applic_win_input add_applic_win_input_func im_exposure_func
im_input_func

SCIL_Image 1.4 – Reference Manual

10

add_applic_win_input_func
NAME

add_applic_win_input_func - add function to window input list

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int add_applic_win_input_func(void (*func)(IMAGE *, int, int, char,
int))

DESCRIPTION
This function adds the specified function "func" to the list of COMPILED functions
that are to be called when a window input event occurs. The function that will be
called must have the following parameters:

void user_win_input(IMAGE *image, int xpos, int ypos, char ch,
int but)

"image" is the pointer to the image in which the event occurred. "xpos" and "ypos" are
the position of the pointer in the image (not in the window). "ch" is the character of
the key that is pressed. "but" is the button that of the mouse that is pressed or released

The name "user_win_input" is an example only, any name may be used for such a
function.

NOTE
A new and better interface for application programs to show their interest in events
has become available by means of the functions im_exposure_func() and
im_input_func(). The support of the functions applic_exposure(),
add_applic_exposure_func(), applic_win_input() and add_applic_win_input_func() is
no longer guaranteed in future versions of SCIL_Image.

RETURN VALUES
None

SEE ALSO
applic_win_input applic_exposure add_applic_exposure_func point_im EventType
IsMouseDown KeyPressed MouseMove MousePress MouseRelease

SCIL_Image 1.4 – Reference Manual

11

add_complex

sub_complex

mul_complex

div_complex
NAME

add_complex, sub_complex, mul_complex, div_complex - complex arithmetic

SYNOPSIS
#include "im_proto.h"

int add_complex(IMAGE *in, double real_part, double imaginary_part,
IMAGE *out)

int sub_complex(IMAGE *in, double real_part, double imaginary_part,
IMAGE *out)

int mul_complex(IMAGE *in, double real_part, double imaginary_part,
IMAGE *out)

int div_complex(IMAGE *in, double real_part, double imaginary_part,
IMAGE *out)

DESCRIPTION
Complex arithmetic. The operation is performed on image "in" and the result is stored
in image "out". The complex value is specified by "real_part" and "imaginary_part".

add_complex() adds the complex value to each element of "in".

sub_complex() subtracts the complex value from each element of "in".

mul_complex() multiplies each element of "in" with the complex value.

div_complex() divides each element of "in" by the complex value. If divisions by zero
occur, an error will be generated.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
add_int sub_int mul_int div_int add_float mul_float sub_float div_float

SCIL_Image 1.4 – Reference Manual

12

add_float

sub_float

mul_float

div_float
NAME

add_float, sub_float, mul_float, div_float - floating point arithmetic

SYNOPSIS
#include "im_proto.h"

int add_float(IMAGE *in, double constant, IMAGE *out)

int sub_float(IMAGE *in, double constant, IMAGE *out)

int mul_float(IMAGE *in, double constant, IMAGE *out)

int div_float(IMAGE *in, double constant, IMAGE *out)

DESCRIPTION
Floating point arithmetic. The operation is performed on image "in" and the result is
stored in image "out".

add_float() adds "constant" to each element of "in".

sub_float() subtracts "constant" from each element of "in".

mul_float() multiplies each element of "in" with "constant".

div_float() divides each element of "in" by "constant". If divisions by zero occur, an
error will be generated.

These functions have the extension "_float" because C does not allow different types
to be passed through the same parameter. The name "_float" has been used to indicate
a floating point value.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
add_int sub_int mul_int div_int add_complex sub_complex mul_complex
div_complex

SCIL_Image 1.4 – Reference Manual

13

add_im

sub_im

mul_im

div_im
NAME

add_im, sub_im, mul_im, div_im - image arithmetic

SYNOPSIS
#include "im_proto.h"

int add_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

int sub_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

int mul_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

int div_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
add_im() adds each element of image "in1" to the corresponding element of image
"in2" and stores the result in image "out"

sub_im() subtracts each element of "in2" from the corresponding element of "in1" and
stores the result in "out"

mul_im() multiplies each element of "in1" with the corresponding element of "in2"
and stores the result in "out"

div_im() divides each element of image "in1" by the corresponding element of image
"in2" and stores the result in image "out". In the event that a pixel of "in2" is equal to
zero, the corresponding pixel in "out" will be set to the value of the corresponding
pixel of "in1".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)
When division by zero occur, div_im() returns an error-count (number of divisions by
zero)

SEE ALSO
eval

SCIL_Image 1.4 – Reference Manual

14

add_int

sub_int

mul_int

div_int
NAME

add_int, sub_int, mul_int, div_int - integer arithmetic

SYNOPSIS
#include "im_proto.h"

int add_int(IMAGE *in, int constant, IMAGE *out)

int sub_int(IMAGE *in, int constant, IMAGE *out)

int mul_int(IMAGE *in, int constant, IMAGE *out)

int div_int(IMAGE *in, int constant, IMAGE *out)

DESCRIPTION
Integer arithmetic. The operation is performed on image "in" and the result is stored in
image "out".

add_int() adds "constant" to each element of "in".

sub_int()subtracts "constant" from each element of "in".

mul_int()multiplies each element of "in" with "constant".

div_int divides each element of "in" by "constant". If divisions by zero occur, an error
will be generated.

These functions have the extension "_int" because C does not allow different types to
be passed through the same parameter. The name "_int" has been used to indicate an
integer value.

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
add_im sub_im mul_im div_im eval

SCIL_Image 1.4 – Reference Manual

15

AddImageInfo

GetImageInfo

RemoveImageInfo
NAME

AddImageInfo - add auxiliary information to an image

GetImageInfo - retrieve pointer to auxiliary information of an image

RemoveImageInfo - remove auxiliary information from an image

SYNOPSIS
#include "im_infra.h"

int AddImageInfo(IMAGE *im, char *name, void *info, void
(*dfunc)(void *))

void *GetImageInfo(IMAGE *im, char *name)

int RemoveImageInfo(IMAGE *im, char *name)

DESCRIPTION
The Image Info mechanism allows for storage of auxiliary information with images.
The information is stored using a user supplied name that is used as its identification
from that moment on. The pointer to the information in combination with the
identification string is stored in a list that is attached to the IMAGE structure. At any
given time this pointer can be retrieved and the data viewed or processed.

AddImageInfo() stores the pointer "info" with image "im" using the string "name" as
its identification. The function pointer "dfunc" can be used to automatically destroy
the information when the image is destroyed, NULL meaning no automatic
destruction. This function must have only one parameter, being a pointer to the
information.

Please note that only a pointer to the data is stored and NOT the data itself, so be sure
that the data remains accessible as long as the pointer is kept with the image. This
means that you can only use global data or dynamically allocated memory.

GetImageInfo() retrieves the pointer to the information "name" that is stored with
image "im".

RemoveImageInfo() removes the information "name" from image "im". If a
destruction function was specified for this information, it is called with the pointer to
the information as its argument.

The Image infrastructure has no knowledge of the contents of the information,
meaning that the application (programmer) remains responsible for its integrity. The
mechanism only provides the service of keeping a pointer to the information with the
image(s).

SCIL_Image 1.4 – Reference Manual

16

RETURN VALUES
AddImageInfo: IE_OK (1) on success or

IE_NOT_OK (0) when already present or no more memory
available.

GetImageInfo: a pointer to the information or NULL when not present

RemoveImageInfo: IE_OK (1) on success or
IE_NOT_OK (0) on failure to remove.

aim_readfile
NAME

aim_readfile - read an image from a file in AIM format

SYNOPSIS
#include "im_proto.h"

IMAGE *aim_readfile(char *filename, IMAGE *image, int xpos, int ypos)

DESCRIPTION
Read the image stored in the AIM format file "filename" and put it in image "image".
If "USE_NAME" (a NULL pointer) is specified as the image, a new image is created
at position "xpos", "ypos", with the same name as the file. If an image is already
present with that name, that image will be used.

The data-files of the AIM format must have the ".im" extension. Data-files for which
no header file with the extension ".hd" is present, are assumed to contain a 256 * 256
grey value image.

"filename" may be specified with or without the mandatory extension ".im", it is
appended when necessary.

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL on failure

SEE ALSO
readfile ics_readfile tiff_readfile tcl_readfile writefile

SCIL_Image 1.4 – Reference Manual

17

aio_label
NAME

aio_label - image labeling without building an object list

SYNOPSIS
#include "im_aio.h"

int aio_label(IMAGE *in, IMAGE *out, int connect)

DESCRIPTION
aio_label() labels the binary objects in the binary image "in" and puts the result in the
labeled image "out". The connectivity "con" can either be 4 or 8.

The recursive labeling algorithm tries not to use the same label twice on a horizontal
scanline.

RETURN VALUES
The number of objects labeled on success.
Negative error status on failure (see im_error.h).

SEE ALSO
list_label

SCIL_Image 1.4 – Reference Manual

18

all_im
NAME

all_im - perform an operation on all or a selection of images

SYNOPSIS
#include "im2scil.h"

void all_im(char *command, int type)

DESCRIPTION
The operation specified by "command" is performed on all existing images that are of
type "type". If the type of the image is not relevant, "ALL" (=0) can be specified to
perform the operation on all images. In the parameter list of the operation the image
name must be replaced by the character "$" (see below). All occurrences of the "$"
character in the argument list of an operation will be replaced by the same image
name. This means that operations will be performed in place when specifying both
input and output image with the "$".

EXAMPLE
clearing all images:

all_im("clear_im $",ALL);

in place thresholding of all grey 2d images with threshold value 100:

all_im("thresh $ $ 100",GREY_2D);

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

19

anchor_skelet
NAME

anchor_skelet - anchor skeleton

SYNOPSIS
#include "im_proto.h"

int anchor_skelet(IMAGE *in, IMAGE *mask, IMAGE *out, int iter, int
endp, int bound)

DESCRIPTION
Change the objects in the binary image "in" into anchor skeletons and store the result
into the binary image "out".

The anchor skeleton is a special variant of skeletonization (see also "hild_skelet" for
"normal" skeletonization). During each thinning cycle the so-called anchor points are
forced to be skeleton pixels, even if they do not meet the conditions. These anchor
points are the object pixels of the mask image "mask". The skeleton is "anchored"
through these points. If the anchor belongs to an object (or is connected with it) the
connectivity of the original skeleton points and the anchor points is maintained. In this
case the resulting skeleton will deviate from the medial axis of the object, in the
direction of the anchor points. The result of an anchor skeletonization is not readily
described. The command is recommended primarily for special applications, applied
by rather experienced users.

The thinning operation may be executed for only a limited number of cycles, as
specified by the parameter "iter". Full skeletonization results if the value 0 is specified
for this parameter. The operation then continues until no more pixels are deleted.

"endp" specifies that the endpixels of the skeleton must be preserved with each
thinning iteration (1 is preserve, 0 is do not preserve).

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
holt_skelet hild_skelet skelpoints

SCIL_Image 1.4 – Reference Manual

20

and_im
NAME

and_im - bitwise and of images

SYNOPSIS
#include "im_proto.h"

int and_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Perform a bitwise AND operation of each element of "in1" with the corresponding
element of "in2" and store the result in "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
or_im xor_im invert_im shift_im

angle
NAME

angle - obtain angle of object

SYNOPSIS
#include "im_aio.h"

double angle(LIST *link)

DESCRIPTION
AIO primitive to obtain value of an object feature

angle() returns the angle of the object pointed to by "link", if this feature has
previously been measured with either measure() or object_shape_meas(). The angle is
measured in radians relative to the X-axis

RETURN VALUES
angle of object in degrees on success.
0.0 if link is not an object or if angle has not been measured.

SEE ALSO
measure object_shape_meas object_dens_meas

SCIL_Image 1.4 – Reference Manual

21

angle_detection
NAME

angle_detection - line angle detector

SYNOPSIS
#include "im_proto.h"

int angle_detection(IMAGE *in, IMAGE *out, double thres)

DESCRIPTION
Detection of angles in skeleton segments. The binary image "in" is scanned for
individual skeleton segments. For each skeleton segment the end-points (say A and B)
are detected and a straight line AB is drawn. Then the point P on the skeleton segment
is detected with maximum distance to the line element AB and the angle between the
line elements AP and BP is calculated. If this angle exceeds a certain threshold value,
as specified by the parameter "thres" the point P is detected as an angle point and
becomes an object pixel in the binary image "out".

NOTE
This command is only meaningful if the image "in" is a skeleton image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

22

applic_exposure
NAME

applic_exposure - ask to be notified on an exposure event

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int applic_exposure(int send_events, int skip_when_busy)

DESCRIPTION
With this function an application can indicate that it is interested in exposure events of
image-windows. The user can specify a (list of) COMPILED function(s) that are to be
called whenever an exposure event comes along. A COMPILED function can be
added to the list with add_applic_exposure_func(). If there is no list of COMPILED
functions an INTERPRETED function "handle_exposure()" will be called.
"skip_when_busy" determines whether handle_exposure() can be called again when it
has not finished the previous event yet.

NOTE
A new and better interface for application programs to show their interest in events
has become available by means of the functions im_exposure_func() and
im_input_func(). The support of the functions applic_exposure(),
add_applic_exposure_func(), applic_win_input() and add_applic_win_input_func() is
no longer guaranteed in future versions of SCIL_Image.

RETURN VALUES
None

SEE ALSO
add_applic_exposure_func applic_win_input add_applic_win_input_func

SCIL_Image 1.4 – Reference Manual

23

applic_win_input
NAME

applic_win_input - ask to be notified on an window input event

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int applic_win_input(int send_events, int skip_when_busy)

DESCRIPTION
With this function an application can indicate that it is interested in input events in
windows. The user can specify a (list of) COMPILED function(s) that are to be called
whenever an input event comes along. A COMPILED function can be added to the list
with add_applic_win_input_func(). If there is no list of COMPILED functions an
INTERPRETED function "handle_win_input()" will be called. "skip_when_busy"
determines whether handle_win_input can be called again when it has not finished the
previous event yet.

NOTE
A new and better interface for application programs to show their interest in events
has become available by means of the functions im_exposure_func() and
im_input_func(). The support of the functions applic_exposure(),
add_applic_exposure_func(), applic_win_input() and add_applic_win_input_func() is
no longer guaranteed in future versions of SCIL_Image.

RETURN VALUES
None

SEE ALSO
add_applic_win_input_func add_applic_exposure_func applic_exposure

SCIL_Image 1.4 – Reference Manual

24

apply_spatial_bank

apply_frequency_bank

bank_frequency_response
NAME

apply_spatial_bank, apply_frequency_bank, bank_frequency_response - perform filter
banks

SYNOPSIS
#include "im_proto.h"

int apply_spatial_bank(IMAGE *in, IMAGE *bank, IMAGE *out, int begin,
int end)

int apply_frequency_bank(IMAGE *in, IMAGE *bank, IMAGE *out, int
begin, int end)

int bank_frequency_response(IMAGE *bank, IMAGE *out, int begin, int
end)

DESCRIPTION
These functions apply a number of filters stored in the slices of the 3D "bank" image
to the 2D input image "in". The result of each filter is put into the corresponding slice
of the 3D image "out".

apply_spatial_bank() performs the filtering by convolution().

apply_frequency_bank() performs the filtering by fast_hartley() or fast_fourier(),
dependent on the bank image type (FLOAT_3D/ COMPLEX_3D).

bank_frequency_response() converts each spatial filter of the input bank to the
frequency domain.

"begin" and "end" specify the filters (slices) that are to be applied. "end" is -1 specifies
the filter at the highest Z-position of "bank".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
convolution fast_hartley fast_fourier

SCIL_Image 1.4 – Reference Manual

25

arbit_dilation
NAME

arbit_dilation - dilation using an arbitrary shaped structuring element

SYNOPSIS
#include "im_proto.h"

int arbit_dilation(IMAGE *in, IMAGE *out, IMAGE *se, int bound)

DESCRIPTION
Performs a dilation on image "in" using structuring element "se" and stores the result
in image "out". The structuring element "se" is a grey value image, with odd sizes in
both directions, in which pixels encoded with a pixel value unequal to zero are part of
the structuring element. The origin of the structuring element is the central pixel of the
image. "bound" specifies if the pixels outside the image should be interpreted as
foreground pixels ("bound" = 1) or as background pixels ("bound" = 0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_erosion erosion3x3 dilation3x3

SCIL_Image 1.4 – Reference Manual

26

arbit_erosion
NAME

arbit_erosion - erosion using an arbitrary shaped structuring element

SYNOPSIS
#include "im_proto.h"

int arbit_erosion(IMAGE *in, IMAGE *out, IMAGE *se, int bound)

DESCRIPTION
Performs an erosion on image "in" using structuring element "se" and stores the result
in image "out". The structuring element "se" is a grey value image, with odd sizes in
both directions, in which pixels encoded with a pixel value unequal to zero are part of
the structuring element. The origin of the structuring element is the central pixel of the
image. "bound" specifies if the pixels outside the image should be interpreted as
foreground pixels ("bound" = 1) or as background pixels ("bound" = 0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_dilation erosion3x3

area
NAME

area - obtain area of object

SYNOPSIS
#include "im_aio.h"

long area(LIST *link)

DESCRIPTION
AIO primitive to obtain value of an object feature

area() returns the area of the object pointed to by "link". The area need not previously
be specified with the measuring routine since it is always available after labeling with
aio_label().

RETURN VALUES
area of the object in pixels on success
0 if link is not an object

SEE ALSO
measure object_shape_meas object_dens_meas

SCIL_Image 1.4 – Reference Manual

27

asctime

clock

ctime

difftime

gmtime

localtime

mktime

strftime

time
NAME

asctime, clock, ctime, difftime, gmtime, localtime, mktime, strftime, time - time
retrieval and conversion functions

SYNOPSIS
#include "time.h"

char *asctime(struct tm *tp)

long clock(void)

char *ctime(time_t *tp)

double difftime(time_t time2, time_t time1)

struct tm *gmtime(time_t *tp)

struct tm *localtime(time_t *tp)

time_t mktime(struct tm *tp)

size_t strftime(char *s, size_t smax, char *fmt, struct tm *tp)

time_t time(time_t *tp)

DESCRIPTION
These functions are interfaces to the standard C functions as implemented on the
current system. The functionality of these function are:

asctime() converts the time in the structure "tp" into a string of the form:
Thu Jul 24 12:08:09 1997

clock() returns the processor time used by the program since the beginning of
execution, or -1 if unavailable. clock()/CLOCK_PER_SEC is a time in seconds.

ctime() converts the calendar time "tp" to local time; it is equivalent to:
asctime(localtime(tp));

SCIL_Image 1.4 – Reference Manual

28

difftime() returns "time2" - "time1" expressed in seconds

gmtime() converts the calendar time "tp" into Coordinated Universal Time (UTC). It
returns NULL if UTC is not available.

localtime() convert the calendar time "tp" into local time.

mktime() converts the local time in the struct "tp" into calendar time in the same
representation used by time. The components will have values in the ranges shown.
mktime() returns the calendar time of -1 if it cannot be represented.

time() returns the current calendar time or -1 if the time is not available.

strftime() formats the date and time information from "tp" into the string "s" according
to the format string "fmt". The format string is analogous the printf() function.
Ordinary characters (including the ’\0’) are copied into "s". Each %<character> is
replaced as described below, using values appropriate for the local environment. No
more than "smax" characters are placed into "s". strftime() returns the number of
characters, excluding the ’\0’, or zero if more than "smax" characters were produced.

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c local date and time representation.
%d day of the month (01-31)
%H hour (24-hour clock) (00-23)
%I hour (12-hour clock) (01-12)
%j day of the year (001-366)
%m month (01-12)
%M minute (00-59)
%p local equivalent of AM or PM
%S second (00-61)
%U week number of the year (Sunday as 1st day of week) (00-53)
%w weekday (0-6, Sunday is 0)
%W week number of the year (Monday as 1st day of week) (00-53)
%x local date representation
%X local time representation
%y year without century
%Y year with century
%Z time zone name, if any
%% %

STRUCTURES
struct tm {
 int tm_sec; seconds after the minute (0,61)
 int tm_min; minutes after the hour (0,59)
 int tm_hour; hours since midnight (0,23)
 int tm_mday; day of the month (1,31)
 int tm_mon; months since January (0,11)
 int tm_year; years since 1900

SCIL_Image 1.4 – Reference Manual

29

 int tm_wday; days since Sunday (0,6)
 int tm_yday; days since January 1 (0,365)
 int tm_isdst; Daylight Saving Time flag
};

tm_isdst is positive if Daylight Saving Time is in effect, zero if not, and negative if
the information is not available.

RETURN VALUES
See the description of each of the functions above.

atexit
NAME

atexit - add program termination function

SYNOPSIS
#include <stdlib.h>

int atexit(void (*func)(void))

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

atexit() registers the function "func" to be called when the program terminates
normally; it returns non-zero if the registration cannot be made.

RETURN VALUES
0 if successful
non-zero if the registration cannot be made.

SEE ALSO
exit _exit

SCIL_Image 1.4 – Reference Manual

30

atof

atoi

atol

strtod

strtol

strtoul
NAME

atof, atoi, atol, strtod, strtol, strtoul - convert ASCII to numbers

SYNOPSIS
double atof(char *nptr)

int atoi(char *nptr)

long atol(char *nptr)

double strtod(char *s, char **endp)

long strtol(char *s, char **endp, int base)

unsigned long strtoul(char *s, char **endp, int base)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

These functions convert a string pointed to by "nptr" to floating point, integer, and
long integer representation respectively. The first unrecognized character ends the
string.

atof() recognizes an optional string of tabs and spaces, then an optional sign, then a
string of digits optionally containing a decimal point, then an optional "e" or "E"
followed by an optionally signed integer.

atoi() and atol() recognize an optional string of tabs and spaces, then an optional sign,
then a string of digits.

strtod() converts the prefix of "s" to a double, ignoring leading white spaces. It stores
a pointer to any unconverted suffix in "*endp" unless "endp" is NULL. If the answer
would overflow, HUGE_VAL is returned with the proper sign. If the answer would
underflow, zero is returned. In either case "errno" is set to ERANGE.

SCIL_Image 1.4 – Reference Manual

31

strtol() converts the prefix of "s" to long, ignoring any leading white spaces. It stores a
pointer to any unconverted suffix in "*endp" unless "endp" is NULL. If "base" is
between 2 and 36, conversion is done assuming that the input is written in that base. If
base is zero, the base is 8, 10, or 16; leading 0 implies octal and leading 0x or 0X
hexadecimal. Letters in either case represent digits from 10 to base-1; a leading 0x or
0X is permitted in base 16. If the answer would overflow, LONG_MAX or
LONG_MIN is returned, depending on the sign of the result, and errno is set to
ERANGE.

strtoul() behaves like strtol() except that the result is unsigned long and the return
value in case of overflow is ULONG_MAX.

SEE ALSO
scanf

SCIL_Image 1.4 – Reference Manual

32

auto_display

don

doff

get_disp_mode
NAME

auto_display, don, doff, get_disp_mode - enable/disable automatic display of images

SYNOPSIS
#include "im_infra.h"

int auto_display(int mode)

int don(void)

int doff(void)

int get_disp_mode(void)

DESCRIPTION
auto_display() turns on/off the automatic display of an image after each operation. If
"mode" is 1 the images are displayed immediately after an operation is performed.
"mode" is 0 disables displaying of images, even display_image() will not show the
image. Disabling the automatic display of images is most often used to hide
intermediate result of operations from the user’s view.

don() is equivalent to auto_display(1), doff() is equivalent to auto_display(0).

get_disp_mode() can be used to retrieve the current display mode.

NOTE
The display mode set by these functions is a directive. It is up to the user-interface to
decide if the mode is honored.

RETURN VALUES
auto_display(), don() and doff() return the previous display mode. So if automatic
display was on, auto_display(0) would return 1.

get_disp_mode returns the current display mode, either 0 or 1.

SCIL_Image 1.4 – Reference Manual

33

auto_plane
NAME

auto_plane - enable/disable automatic display of next plane

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int auto_plane(int flag)

DESCRIPTION
auto_plane() enables/disables the default behavior upon pressing the right mouse
button inside an image window

When enabled, clicking the right mouse button inside an image that supports the
next_plane() function results in a call to that function. If the pointer is pressed in the
top of the window, the variable "num" (see next_plane()) gets a value of "1", in the
middle a value of "0", and in the bottom "-1".

RETURN VALUES
None

SEE ALSO
auto_point next_plane

SCIL_Image 1.4 – Reference Manual

34

auto_point
NAME

auto_point - enable/disable automatic information on image pointing

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int auto_point(int flag)

DESCRIPTION
auto_point() enables/disables the default behavior upon pressing the left mouse button
inside an in image window.

When auto_point is enabled, pressing the left mouse button inside an image-window
results in showing the X and Y position and the value of the pixel at that position. The
information is either displayed in a small floating window just below the mouse
cursor, or in a small window just above the image.

The function call "point_im_display_buf("", 1)" can be used to let the information be
printed in a window just below the cursor. (Only practical with fast display systems).

The function call "point_im_display_buf("", 0)" can be used to let the information be
printed in a window just above the image (probably within the image title). (Practical
on slower display systems).

It is recommended to disable the default behavior if AIO interactive object pointing is
used. See point_im() and point_object().

RETURN VALUES
None

SEE ALSO
auto_plane point_im_display_buf handle_pim point_im point_object

SCIL_Image 1.4 – Reference Manual

35

average
NAME

average

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_average_val

b_to_comp
NAME

b_to_comp - add buffered image to composite photo

SYNOPSIS
#include "image.h"
#include "silo.h"

int b_to_comp(COMPTR comptr, int sizex, int sizey, PIXEL *buf)

DESCRIPTION
comptr - Pointer to composite photo.
sizex - Part-image width.
sizey - Part-image height.
buf - Buffer containing the part-image.

Function to append a part-image from a buffer to the composite photo.

RETURN VALUES
The position where the part-image went to:
x-start-coordinate - function value modulo 2048.
y-start-coordinate - function value div 2048.

SCIL_Image 1.4 – Reference Manual

36

back_project
NAME

back_project - Convert positions to original coordinates

SYNOPSIS
#include "grey_2dp.h"

int back_project(VAR_OBJECT *input, VAR_OBJECT *data, VAR_OBJECT
*output, int width)

DESCRIPTION
back_project() converts coordinates in the VAR_OBJECT "input" (1-dimensional),
which are results of maximum_cost_path(), into coordinates in the original image
(the image that was input to command resample_perp()). The VAR_OBJECT "data",
produced by resample_perp(), is used for the backprojection. This var_object contains
information about the way resample_perp() resampled the original image. The
resampled image is the input to maximum_cost_path(). Its size in the first dimension
is specified in "width". It is needed for the conversion, because the positions in
var_object "input" are relative to the left hand side of the resampled image.

The obtained original coordinates are stored in the 2-dimensional var_object
"output", in the row corresponding to the element of "input".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_cost_path maximum_trace resample_perp drawcurve

bangle
NAME

bangle

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See angle_detection

SCIL_Image 1.4 – Reference Manual

37

base_name

dir_name

abs_pathname
NAME

base_name, dir_name, abs_pathname - manipulate path-names

SYNOPSIS
#include "support.h"

void base_name(char *bname, const char *path)

void dir_name(char *dname, const char *path)

void abs_pathname(char *path)

DESCRIPTION
base_name() and dir_name() are used to isolate the file and directory part from a path-
name. base_name() searches the given path-name "path" from the end for any directory
or drive separator. When it finds one, all text following that separator is assumed to be a
filename and is copied to the supplied buffer "bname". dir_name() also searches from
the end of "path" for a directory or drive separator but on finding it, copies the part
before the separator to "dname". Both buffers "bname" and "dname" are assumed to be
of sufficient length to hold the returned name.

abs_pathname() takes a (possibly relative) path-name "path" of a file and translates that
name (in place) into a full path-name, starting from the root of the filing-system. The
length of the path-name (without the filename) should not exceed 256 bytes.

RETURN VALUES
None

baskel
NAME

baskel

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See anchor_skelet

SCIL_Image 1.4 – Reference Manual

38

bcdist
NAME

bcdist

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See constr_distance

bclose
NAME

bclose

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See closing3x3

bcont
NAME

bcont

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See contour

bcount
NAME

bcount

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_count

SCIL_Image 1.4 – Reference Manual

39

bdila
NAME

bdila

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See dilation3x3

bdist
NAME

bdist

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See distance

bdskel
NAME

bdskel

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See dist_skelet

bedge
NAME

bedge

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See set_border

SCIL_Image 1.4 – Reference Manual

40

bend
NAME

bend - obtain bending energy of object

SYNOPSIS
#include "im_aio.h"

double bend(LIST *link)

DESCRIPTION
link - Link pointing to object

AIO primitive to obtain value of an object feature

bend() returns the bending energy of the object pointed to by "link" if this has
previously been measured.

RETURN VALUES
bending energy of object on success
0.0 if link is not an object or if bending energy has not been measured

SEE ALSO
measure object_freeman_meas object_shape_meas object_dens_meas

SCIL_Image 1.4 – Reference Manual

41

benke
NAME

benke - texture segmentation filter search algorithm

SYNOPSIS
#include "im_proto.h"

int benke(IMAGE *pat1, IMAGE *pat2, IMAGE *out, int maxiter, double
gain, double convergence, int width, int height, int depth)

DESCRIPTION
Searches for a separation filter between the patterns "pat1" and "pat2". The search is
finished when the energy ratio between "pat1" and "pat2" for an iteration differs no
more than "convergence", or when "maxiter" iterations are performed. The
convergence speed can be optimized with the "gain" value. The dimensions of the
filter are given by "width", "height" and "depth". If one has trained the filter on "pat1"
and "pat2", segmentation on images consisting of background texture "pat1" and
object texture "pat2" can be obtained by applying convolution(), squaring the image
and applying a smoothing (e.g. gauss) to measure local energy.

LITERATURE
K.K. Benke and D.R. Skinner, A direct search algorithm for global optimisation of
multivariate functions, The Australian Computer Journal, vol. 23, no. 2, 1991, 73-85.

EXAMPLE
assumes two different texture in image A and B, and a composite image
in C:

int s;
benke A B D 25 1.6 0.0005 5 5 1
s = (int)pix_abs_sum D
convolution C D A 0 s
mul_im A A B
gauss B B 5.0 5.0

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
convolution pix_abs_sum filter_energy_ratio

SCIL_Image 1.4 – Reference Manual

42

beros
NAME

beros

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See erosion3x3

bin_disp_colors
NAME

bin_disp_colors - choose colors for binary images display

SYNOPSIS
#include "disp_p.h"

int bin_disp_colors(int fg, int bg)

DESCRIPTION
bin_disp_colors() sets the fore- and background color used for displaying all binary
images. By default the binary images are displayed using BLACK as the background
and RED as the foreground color.

Only the eight primary colors are allowed, they are:

BLACK (0)
RED (1)
GREEN (2)
YELLOW (3)
BLUE (4)
MAGENTA (5)
CYAN (6)
WHITE (7)

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

43

binary_to_grey
NAME

binary_to_grey - convert a binary image to a grey value image

SYNOPSIS
#include "bin_2dp.h"

int binary_to_grey(IMAGE *in, IMAGE *out, int val)

DESCRIPTION
The "in" image (a binary_2d image) is converted to the (grey_2d) "out" image. This
means that for each "1" pixel in the binary image the corresponding pixel in the grey
image is set to "val".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
binary_to_plane plane_to_binary set_im_type

binary_to_plane
NAME

binary_to_plane - put a binary image in a bitplane of a grey image

SYNOPSIS
#include "bin_ 2dp.h"

int binary_to_plane(IMAGE *in, IMAGE *out, int plane)

DESCRIPTION
The "in" image (a binary_2d image) is put in the specified bitplane of the (grey_2d)
"out" image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
binary_to_grey plane_to_binary set_im_type

SCIL_Image 1.4 – Reference Manual

44

bit_ok
NAME

bit_ok - check if a value is a binary value

SYNOPSIS
#include "im_infra.h"

int bit_ok(int value)

DESCRIPTION
"Value" must be either a "0" or a "1", if this is not the case, an error is generated and
the following message is added to the error-stack:

Bit value [<value>] can only be (0 or 1)

RETURN VALUES
IE_OK (1) if the value is 0 or 1,
IE_NOT_OK (0) otherwise

SEE ALSO
range_ok edge_ok

blabel
NAME

blabel

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See label

blife
NAME

blife

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See life

SCIL_Image 1.4 – Reference Manual

45

bline
NAME

bline

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL-image routines.

See draw_line

blow
NAME

blow - image blow-up

SYNOPSIS
#include "im_proto.h"

int blow(IMAGE *in, IMAGE *out, int hfact, int vfact, int dfact, int
adjust)

DESCRIPTION
Blow image "in" with a horizontal factor "hfact" a vertical factor "vfact" and a depth
factor "dfact" (3d only), by repeating pixels and store the result in "out". The sizes of
the output image "out" will be adjusted to fit the result only when the parameter
"adjust" is true (non-zero).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fblow reduce

bmaj
NAME

bmaj

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See majority

SCIL_Image 1.4 – Reference Manual

46

bopen
NAME

bopen

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See opening3x3

box_dimension
NAME

box_dimension - texture measure, "fractal" dimension

SYNOPSIS
#include "image.h"

double box_dimension(IMAGE *input, IMAGE *mask, int fsizemin, int
fsizestep, int fsizemax)

DESCRIPTION
Reduce the image "input" to smaller resolutions, the reduction factors "filtersize"
ranges from "fsizemin" to "fsizemax" in steps of "fsizestep". In each reduction step, a
block of "filtersize"*"filtersize" is reduced to one pixel in an intermediate image, this
pixel is given a value equal to the difference between the minimum and maximum in
the original block, divided by "filtersize".

For each resolution (step) the average of the intermediate image is calculated.

Finally, a Least Square Fit is done through the log(filtersize) log(average) plot. The
angle of the plot is the texture measure.

The calculation of the texture is only done in the areas where the bit-image "mask"
has value 1.

RETURN VALUES
The texture value is returned. In case of error, this is 0.

SEE ALSO
gld_mean gld_entropy gld_contrast gld_asymmetry
glc_entropy glc_contrast glc_asymmetry glr_nonuniformity
glr_shortrunemphasis glr_longrunemphasis glr_greynonuniformity
glr_percentage edge_average dist_average

SCIL_Image 1.4 – Reference Manual

47

bperc
NAME

bperc

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See percentile

bprop
NAME

bprop

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See propagation

bpsr
NAME

bpsr

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See psremoval

bremh
NAME

bremh

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See remove_holes

SCIL_Image 1.4 – Reference Manual

48

bril

stop_bril
NAME

bril, stop_bril - interactive part image processing

DESCRIPTION
This is an old function name, please use the function lens() and stop_lens()

See lens

bsearch

qsort
NAME

bsearch - binary search of a sorted table

qsort - quick sort

SYNOPSIS
void *bsearch(void *key, void *base, size_t n, size_t size, int
(*cmp)(void *key, void *datum))

void qsort(void *base, size_t n, size_t size, int (*cmp)(void *, void
*))

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

bsearch() searches "base[0]" … "base[n]" for an item that matches "*key". The
function "cmp" must return negative if its first argument (the search key) is less than
its second (a table entry), zero if equal, and positive if greater. Items in the array
"base" must be in ascending order. bsearch() returns a pointer to a matching item, or
NULL if none exists.

qsort() sorts in ascending order "n" elements of an array "base[0]" … "base[n]" of
objects of size "size". The comparison function cmp is as in bsearch().

RETURN VALUES
bsearch returns a pointer to a matching item, or NULL if none exists
qsort returns nothing

SCIL_Image 1.4 – Reference Manual

49

bskbp
NAME

bskbp

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See skelpoints

bskel
NAME

bskel

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See hild_skelet

bskep
NAME

bskep

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See skelpoints

bsklp
NAME

bsklp

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See skelpoints

SCIL_Image 1.4 – Reference Manual

50

bsngl
NAME

bsngl

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See single_pixels

buf_from_silo
NAME

buf_from_silo - retrieve silo image into buffer

SYNOPSIS
#include "silo.h"

int buf_from_silo(SILOPTR siloptr, int silo_key, PIXEL *buf)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in the silo.
buf - Buffer for the data.

Copies the silo_key image from the image-silo to a buffer.

NOTE
This is the general silo output function. Other routines like part_from_silo and
im_from_silo are using this routine to access the silo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
part_from_silo im_from_silo

SCIL_Image 1.4 – Reference Manual

51

buf_to_silo
NAME

buf_to_silo - store buffered image in image-silo

SYNOPSIS
#include "image.h"
#include "silo.h"

int buf_to_silo(SILOPTR siloptr, int silo_key, PIXEL *buf, int sizex,
int sizey)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in the silo.
buf - Buffer from which the data is taken.
sizex - Virtual width of the image data.
sizey - Virtual height of the image data.

Transfers the image data from a buffer to an image-silo.

NOTE
This is the general silo input function. Other routines like part_to_silo and im_to_silo
are using this routine to access the silo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
part_to_silo im_to_silo

SCIL_Image 1.4 – Reference Manual

52

calc_greyvalue

RGB_clear_extra
NAME

calc_greyvalue - calculate the grey value in a RGB color image

RGB_clear_extra - clear the extra field in a RGB color image

SYNOPSIS
#include "color_2dp.h"

int calc_greyvalue(IMAGE *image)

int RGB_clear_extra(IMAGE *image)

DESCRIPTION
calc_greyvalue() takes the image "image" and when it is an RGB image the grey-value
of each pixel is stored in the 4th byte of the RBG structure (the "extra" field). The
RGB structure is defined in "image.h ".

The grey-value is calculated according to:

greyval = 0.587 * green + 0.114 * blue + 0.299 * red

RGB_clear_extra() clears the fourth channel in a RGB color image "image", the
"extra" field of
all pixels is set to 0.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
convert

SCIL_Image 1.4 – Reference Manual

53

calibrated_density
NAME

calibrated_density - object size and calibrated density measurement

SYNOPSIS
#include "im_proto.h"

int calibrated_density(IMAGE *label_im, IMAGE *grey_im, char *fname,
int append, VAR_OBJECT *table)

DESCRIPTION
Measure objects in the image "grey_im" using the labeled image "label_im" as an
object indicator and write these parameters in a table on the console or in a text file.

For each object present int the image "label_im", the corresponding object pixels in
the image "grey_im" are used for the measurement. The measured parameters are:

* the coordinates of the object’s center of gravity
* the total calibrated object density. This density measurement can be

influenced by the parameter "table":
- if "table" is specified, the original pixel values of "grey_im" are used
as an index in the FLOAT table "table". The value which is found at
the corresponding position is added to the total density for the
corresponding object.

- if "table" is not specified (NO_TABLE) the original pixel value is
added to the total density for the corresponding object.

* the object size in number of pixels
* the ratio of the object density and the object size (average pixel value within

the object).

The measured parameters are written to the text file "fname" if specified, or printed on
the controlling terminal ("fname" = NULL). If "append" is set (=1) then the generated
table will be appended to the text file "fname" (if specified and existing). If "fname"
already exists and "append" is not set (=0) then the file "fname" will be overwritten.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
density label shape

SCIL_Image 1.4 – Reference Manual

54

canny
NAME

canny - Canny edge detector

SYNOPSIS
#include "im_proto.h"

int canny(IMAGE *in, IMAGE *out, IMAGE *Lx, IMAGE *Ly, double sigma,
double acc, int fwidth, int nonmax)

DESCRIPTION
Performs edge detection based on the Canny algorithm.

The output image contains the magnitude of the gradient vector. In case "Lx" and "Ly"
are valid images, the magnitude of the gradient in the X- and Y-direction are stored
there. "Lx" is the gradient in the X-direction, obtained by calling:

fuzzy_derivative(in, Lx, sigma, sigma, 1, 0, acc, acc, fwidth,
fwidth)

"Ly" is the gradient in the Y-direction, obtained by calling:

fuzzy_derivative(in, Ly, sigma, sigma, 0, 1, acc, acc, fwidth,
fwidth)

Optionally the non-maximal values in the direction of the gradient in a 3x3
neighborhood are suppressed ("nonmax" is 1). When the suppression is on, the
corresponding pixels in the "Lx" and "Ly" image are cleared.

Since the magnitude of the gradient vector in the output image "out" is based on "Lx"
and "Ly" the true sigma of the Gaussian applied to the input image is equal to sqrt(2)
times the given "sigma".

LITERATURE
"A Computational Approach to Edge Detection", Canny, J., IEEE PAMI, vol.8, no.6,
pages 679-698, November 1986

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
gauss fuzzy_derivative prewitt_diff roberts_diff sobel_diff

SCIL_Image 1.4 – Reference Manual

55

cdens
NAME

cdens

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See calibrated_density

chain
NAME

chain - load a C source code file and execute

SYNOPSIS
chain <filename>

DESCRIPTION
The file "filename" is loaded in the interpreter of SCIL and the execution is started at
the main() function. If no main() function is found, an error message will be
generated.

EXAMPLE
[C1] chain demo.c

SEE ALSO
load run

SCIL_Image 1.4 – Reference Manual

56

chaincode_to_image
NAME

chaincode_to_image - convert chain-code list into labeled image

SYNOPSIS
#include "grey_2dp.h"

int chaincode_to_image(VAR_OBJECT *input, IMAGE *image)

DESCRIPTION
The list of chain-code object representations given in the VAR_OBJECT "input" is
converted into objects in a labeled image, "image". The list is assumed to be
structured like the output of image_to_chaincode(). As the original grey-values of the
objects are not in the list, the objects are given a grey-value equal to their sequence
number in the list, starting with 1.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
image_to_chaincode chaincode_to_xy put_xy_into_image

SCIL_Image 1.4 – Reference Manual

57

chaincode_to_xy
NAME

chaincode_to_xy - convert chain-codes into coordinates

SYNOPSIS
#include "grey_2dp.h"

int chaincode_to_xy(VAR_OBJECT *input, VAR_OBJECT *output, int
offset)

DESCRIPTION
The chain-code string in "input" is converted into a VAR_OBJECT "output" with
(x,y)-coordinate pairs. A chain-code string is a one dimensional VAR_OBJECT,
containing:

the x-coordinate of the first pixel, the y-coordinate of the first pixel, the
number of chain-codes used for description of the curve, the chain-codes (see
image_to_chaincode())

This is the representation of one curve as generated by image_to_chaincode(). The
list generated by image_to_chaincode() in its output variable "output" describes a set
of objects, each constituted of one or more curves. To convert a curve which is part of
an object, "offset" must be point to that curve. "offset" is a number-offset, NOT a
object-offset, NOR a curve-offset.

The offset to the first curve in "input" is 2:

the first number (offset 0) is the object count in "input" and the second
number (offset 1) is the curve count of the first object, so "offset = 2" points to
the start of the representation of the first curve of the first object.

The offset for other objects and curves depends upon the length of the preceding
curves (number of freeman codes), the number of curves in preceding objects and the
number of preceding objects.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
image_to_chaincode chaincode_to_image put_xy_into_image

SCIL_Image 1.4 – Reference Manual

58

change_image_size
NAME

change_image_size - change the dimensions of an image

SYNOPSIS
#include "im_proto.h"

int change_image_size(IMAGE *im, int width, int height, int depth)

DESCRIPTION
change_image_size() changes the dimensions of the image"im". The old image
content is lost by this operation except when the image already is of the given sizes.
The new image has dimensions "width"*"height"*"depth".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_im_type

SCIL_Image 1.4 – Reference Manual

59

channel_bi_threshold
NAME

channel_bi_threshold - multi-channel bi-level threshold operation

SYNOPSIS
#include "im_proto.h"

int channel_bi_threshold(IMAGE *in, IMAGE *out, double min1, double
max1, double min2, double max2, double min3, double max3, double
min4, double max4)

DESCRIPTION
channel_bi_threshold() performs a bi-level threshold operation on all channels of a
multi-channel image "in" and stores the result in the binary image "out". For each of
the channels (maximum of 4 channels), the pixels are compared with the range for
that channel ("min1" .. "max1" for the first channel etc.). Only if the values for each of
the channels of a pixel are inside the range (threshold values included) for that
channel, the corresponding pixel in the output image is set to "1" (foreground pixel).
Otherwise the pixel in the output image is set to "0" (background pixel).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
bi_threshold

SCIL_Image 1.4 – Reference Manual

60

chdir
NAME

chdir - change current working directory

PLATFORM
UNIX, MS-Windows.

SYNOPSIS
int chdir(char *dirname)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

dirname is the address of the pathname of a directory, terminated by a null byte. chdir
causes this directory to become the current working directory.

RETURN VALUES
Zero is returned if the directory is changed; -1 is returned if the given name is not that
of a directory or is not readable by the user.

SEE ALSO
cd

SCIL_Image 1.4 – Reference Manual

61

check_image_integrity
NAME

check_image_integrity - check images on their integrity

SYNOPSIS
#include "im_infra.h"

int check_image_integrity(int print)

DESCRIPTION
check_image_integrity() checks all images on the integrity and repairs them if
necessary. When "print" is set (=1), the function prints what it is doing and the
irregularitis it finds. If "print" is not set (=0), the function keeps silent abouts its
actions.

The function checks if the input and output field of the IMAGE structure point to the
same image type descriptor. If these are different, it will remove the output type
descriptor and throw away the image that was linked to the output. Next the output is
connected to the same descriptor as the input.

This is meant for situations where an operation is aborted after a call to pre_op(). In
such a situation the newly created output image became invalid because the operation
was aborted. The image is restored to the state it was in before the operation began.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
pre_op

SCIL_Image 1.4 – Reference Manual

62

check_status
NAME

check_status - produce an alert box with a warning

SYNOPSIS
#include "im2scil.h"

void check_status(int status, char *str)

DESCRIPTION

If "status" is unequal to zero, this routine produces an alert box in the middle of the
screen containing information about what error occurred. "Status" is an error code as
they are defined in the include file "im_error.h". For each of the defined values a
default message will be printed. Also the global string variable "ErName"will be
printed. "ErName" contains the name of the function, check_status() was called from
or is closely related to. If the string "str" is not empty it will also be printed in the alert
box.

This alert box can only be removed by pressing either of the two buttons in the bottom
of the box. The buttons have only a different result when an interpreted program or a
macro file is being executed.

 [Continue] allows the interpreter to carry on with the remainder of the interpeted
program or macro file.

 [Stop] tells the interpreter to stop executing the program or macro file.

After one of the two buttons has been pressed, a call to check_image_integrity() is
automatically done.

NOTE
This function is only present for compatibility with older version of SCIL_Image. As
of SCIL_Image 1.4 a more flexible error-handling mechanism has been implemented.
Please refer to the "User’s Manual" for more information. Further usage of
check_status() is strongly discouraged.

RETURN VALUES
None

SEE ALSO
check_image_integrity

SCIL_Image 1.4 – Reference Manual

63

clear_im

clear_part_image
NAME

clear_im, clear_part_image - clear image

SYNOPSIS
#include "im_proto.h"

int clear_im(IMAGE *out)

int clear_part_image(IMAGE *im, int sx, int sy, int sz, int width,
int height, int depth)

DESCRIPTION
clear_im() clears the image "out" (set all pixels to 0).

clear_part_image clears the part of the image "im" with dimensions "width" * "height"
* "depth" starting at the position ("sx", "sy", "sz").

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_int

SCIL_Image 1.4 – Reference Manual

64

clear_var_object
NAME

clear_var_object - clear the contents of a var_object

SYNOPSIS
#include "objectsp.h"

int clear_var_object(VAR_OBJECT *object)

DESCRIPTION
Clear the contents of a var_object "object" by setting its entire piece of memory to 0,
thus effectively setting all elements of the var_object to 0. The type and sizes of the
object are not altered.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object

SCIL_Image 1.4 – Reference Manual

65

clearerr

feof

ferror
NAME

clearerr, feof, ferror - error functions

SYNOPSIS
void clearerr(FILE *stream)

int feof(FILE *stream)

int ferror(FILE *stream)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

clearerr() clears the end-of-file and error indicators for "stream".

feof() returns non zero if the end-of-file indicator for "stream" is set.

ferror() returns non-zero if the error indicator for "stream" is set.

RETURN VALUES
See description of functions

SCIL_Image 1.4 – Reference Manual

66

clip
NAME

clip - image clipping

SYNOPSIS
#include "im_proto.h"

int clip(IMAGE *in, IMAGE *out, int lowest, int highest)

DESCRIPTION
Clip the pixel values from image "in" between the values "lowest" and "highest", i.e.
substitute pixel values less than "lowest" by value "lowest" and greater than "highest"
by value "highest", and store the result in image "out". All other pixel-values are
copied directly from "in" to "out"

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
threshold contrast_stretch equalize tri_state_threshold zlookup

close
NAME

close - close a file

SYNOPSIS
int close(int fildes)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

Given a file descriptor such as returned from an open() or creat() call, close() closes
the associated file. A close() of all files is automatic on exit, but since there is a limit
on the number of open files per process, close() is necessary for a program which
deals with many files.

RETURN VALUES
0 is returned if a file is closed;
-1 is returned for an unknown file descriptor.

SEE ALSO
creat open

SCIL_Image 1.4 – Reference Manual

67

close_comp
NAME

close_comp - close composite photo.

SYNOPSIS
#include "silo.h"

void close_comp(COMPTR comptr)

DESCRIPTION
comptr - Pointer to composite photo.

Function to close a composite photo and returns allocated space to the system.

RETURN VALUES
None

close_silo
NAME

close_silo - close a silo file

SYNOPSIS
#include "silo.h"

int close_silo(SILOPTR siloptr)

DESCRIPTION
siloptr - Pointer to an image-silo.

Closes an image-silo and returns allocated space to the system.

RETURN VALUES
Always IE_OK (1)

SCIL_Image 1.4 – Reference Manual

68

closing3x3
NAME

closing3x3 - close

SYNOPSIS
#include "im_proto.h"

int closing3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)

DESCRIPTION
Performs a closing from image "in" to image "out", which is performed by "iter"
dilations from "in" to "out" followed by "iter" erosions from "out" to "out". The
operation deletes holes and background parts having a width less than two times the
specified number of iterations "iter".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
opening3x3 erosion3x3 dilation3x3

clut_by_name
NAME

clut_by_name - get pointer of clut by its name

SYNOPSIS
#include "im_infra.h"

CLUT *clut_by_name(char *name, int case_sensitive)

DESCRIPTION
If the pointer to an clut is not at hand you obtain that pointer by use of this function.
"name" is the name of the clut, "case_sensitive" specifies whether a distinction
between lower case and upper case characters should to be made. If zero then no
distinction is made.

RETURN VALUES
Pointer the clut on success or
NULL if clut "name" does not exist

SEE ALSO
create_clut destroy_clut set_clut

SCIL_Image 1.4 – Reference Manual

69

clut_ok

is_clut
NAME

clut_ok - check if the supplied pointer is a valid clut pointer

is_clut - tell if the supplied pointer is a clut (no warning)

SYNOPSIS
#include "im_infra.h"

int clut_ok(CLUT *clut)

int is_clut(CLUT *clut)

DESCRIPTION
The pointer "clut" is checked if it points to a valid clut. The linked list in which all the
cluts are present is scanned for the occurrence of "clut". If no clut exist with this
pointer, an error is generated and the following message is added to the error-stack:

Non existing clut pointer.

The function is_clut() performs the same check and has the same return values but
does not generate an error. The function is meant for testing purposes.

RETURN VALUES
IE_OK (1) if the pointer is a valid clut.
IE_NOT_OK (0) if the pointer is not an clut.

SEE ALSO
create_clut destroy_clut set_clut

SCIL_Image 1.4 – Reference Manual

70

cmp_pixels
NAME

cmp_pixels - image comparison

SYNOPSIS
#include "im_proto.h"

int cmp_pixels(IMAGE *in1, IMAGE *in2, VAR_OBJECT *first)

DESCRIPTION
Compare image "in1" and "in2" pixel by pixel and record the number of different
pixels. The address of the first different pixel is stored in the object "first".

RETURN VALUES
the number of different pixels

cnvo
NAME

cnvo

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See convolution

SCIL_Image 1.4 – Reference Manual

71

color_get_model_size

color_set_color_model

prefered_color_model

set_color_model
NAME

color_get_model_size - get the size of one pixel of a color-model

color_set_color_model - set the color model of a color image

prefered_color_model - indicate the prefered color-model for an image

set_color_model - set the color model of a color image

SYNOPSIS
#include "color2dp.h"

int color_get_model_size(int model)

int color_set_color_model(IMAGE *im, int inout, int model)

int prefered_color_model(IMAGE *im, int inout, int model)

int set_color_model(IMAGE *im, int model)

DESCRIPTION
color_get_model_size() returns the size of one pixel of the color-model "model". The
size is returned in the number of bytes for one pixel. For a list of the currently support
color-models see convert_cmodel().

color_set_color_model() changes the color-model model of image "im" to "model",
the "inout" parameter specifies whether to change the in-descriptor image or the out-
descriptor image. The difference between the in and out-descriptor image is explained
int the "User’s manual" in the chapter "Programming with Image". "inout" = 0 means
the in-descriptor; "inout" = 1 means the out-descriptor.

prefered_color_model() is used to signal to the pre_op() function that the color-model
for the output (color)-image "im" in the following pre_op() call should be
(COMPARE mode) or should become (ADJUST mode) "model". The "inout"
parameter is equal to the "inout" parameter of color_set_color_model(). At the
moment however, changing the input-descriptor is not supported by pre_op(), so it
should always be set to "1".

set_color_model() also changes the color-model of image "in" to "model", but it
always changes the in-descriptor image. This function should therefore not be used on
a color-image after a call to pre_op().

NOTE

SCIL_Image 1.4 – Reference Manual

72

Both set_color_model() and color_set_color_model() only change the color-model of
the image, the data of the image is lost. Except when the image was already off the
correct model.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
convert_cmodel pre_op

com_dialog
NAME

com_dialog - activate dialog box from a command string

SYNOPSIS
#include "md_gen.h"

void com_dialog(char *string)

DESCRIPTION
char *string - complete or partial command string

com_dialog() can be used to activate a dialog box by giving a complete or partial
command through the parameter string. The command must be present in the
command description file of SCIL. It can be used to activate dialog boxes from within
compiled or interpreted functions and allows dialog boxes with default values other
than specified in the command description file.

NOTE
The dialog boxes of SCIL_Image are "modeless", this means that the com_dialog()
function returns almost immediately and the program continues to run. The dialog box
itself stays on screen until it is removed by means of user-interaction.

EXAMPLE
com_dialog("readf cermet");

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

73

compact_silo
NAME

compact_silo - removes gaps from an image-silo

SYNOPSIS
#include "silo.h"

void compact_silo(SILOPTR siloptr)

DESCRIPTION
siloptr - Pointer to an image-silo.

Removes gaps from an image-silo. Gaps can occur when images are deleted from the
silo. Images in the sile are shifted towards the beginning of the silo to close all existing
gaps.

RETURN VALUES
None

complex_im

make_complex_im
NAME

complex_im, make_complex_im - convert two floating images into a complex image

SYNOPSIS
#include "im_proto.h"

int complex_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

int make_complex_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Store the elements of image "in1" in the real part of the complex image "out", and the
elements of image "in2" in the imaginary parts of the image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
real_im imaginary_im

SCIL_Image 1.4 – Reference Manual

74

complx
NAME

complx

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See complex_im

compute_clut
NAME

compute_clut - map the colors of a new lookup table to the system’s

SYNOPSIS
#include "disp_p.h"

int compute_clut(CLUT *clut)

DESCRIPTION
When rgb triplets are supplied in a clut by the user, this routine will calculate which
entry in the system’s table is the best fit for each triplet. The entry will be stored in the
array "table" of the CLUT structure "clut". These values then will be directly send to
the display of the image when the clut is attached to a display window of an image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create_clut set_clut

SCIL_Image 1.4 – Reference Manual

75

con_ok
NAME

con_ok - check if the connectivity parameter is correct.

SYNOPSIS
#include "im_infra.h"

int con_ok(int con)

DESCRIPTION
Various operations have a connectivity parameter that must have either of the values 4
or 8. This functions checks if "con" is indeed one of the two. In case "con" is not the
correct value an error is generated and the following message is added to the error-
stack:

Connectivity [<con>] can only take values 4 or 8

The special connectivity of first 8 connected and then 4 connected or vice versa,
which is also used in image processing is checked with the function "con6_ok".

RETURN VALUES
IE_OK (1) if "con" is 4 or 8
IE_NOT_OK (0) if "con" has any other value

SEE ALSO
con6_ok

SCIL_Image 1.4 – Reference Manual

76

con6_ok
NAME

con6_ok - check connectivity parameter on 4, 8, 48 or 84

SYNOPSIS
#include "im_infra.h"

int con6_ok(int con)

DESCRIPTION
Various operations have a connectivity parameter that must have one of the values 4,
8, 48 or 84. This function checks if "con" is indeed one of these. In case "con" is not
one of the valid values, an error is generated and the following message is added to
the error-stack:

Connectivity [<con>] can only take values 4,8,48,84

The connectivity of just 4 or 8 is checked with the function "con_ok".

RETURN VALUES
IE_OK (1) if "con" is 4, 8, 48 or 84
IE_NOT_OK (0) if "con" is any other value

SEE ALSO
con_ok

conjugate_im
NAME

conjugate_im - the conjugate value of each image element

SYNOPSIS
#include "im_proto.h"

int conjugate_im(IMAGE *in, IMAGE *out)

DESCRIPTION
For each complex element a+bi of "in" compute the conjugate a-bi and store the result
in "out"

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

77

conjugate_mul_im
NAME

conjugate_mul_im - complex conjugate multiplication

SYNOPSIS
#include "im_proto.h"

int conjugate_mul_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
For each complex element a+bi of "in1" and c+di of "in2", calculate the conjugate
multiplication (a-bi) * (c+di) and store the result in "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
conjugate_im mul_im

SCIL_Image 1.4 – Reference Manual

78

constr_distance
NAME

constr_distance - constrained distance transformation

SYNOPSIS
#include "im_proto.h"

int constr_distance(IMAGE *in, IMAGE *constraint, IMAGE *out, int
hstep, int dstep int kstep, int b)

DESCRIPTION
Apply a constrained distance transformation to the binary image "in" and store the
resulting distance values into the corresponding pixels of the grey valued image "out".
The constrained distance transform is a special variant of distance transformation (see
"distance"). To the transformation, conditions are added, as specified by means of the
grey values image "constraint". Non-zero points within the image "constrained" are
interpreted as preset values for the distance transform values of the corresponding
pixels, regardless of the result of the distance transform itself.
Distances between two points are locally increased by the preset pixels, if the preset
pixels are on the shortest path between the two points.
This is a way of introducing obstacles: an infinite preset value (in practice a large
integer, say 32000) acts as an absolute obstacle, and the nearest shortest path will be
searched.

The way the distances between the pixels are defined is specified by the parameters
"hstep", "dstep" and "kstep".For the description of these parameters and the "b"
parameter, see distance()

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
distance

SCIL_Image 1.4 – Reference Manual

79

contour
NAME

contour - contour detection

SYNOPSIS
#include "im_proto.h"

int contour(IMAGE *in, IMAGE *out, int edge, int conn, int obj_bkg)

DESCRIPTION
Detects the object contours in image "in" and stores the result in image "out". The
operation is executed by removing all the object pixels that do not belong to the outer
contour of the objects, while preserving the connectivity "con" between all the
resulting contour pixels of one object. "obj_bkg" specifies whether the contour of the
object is determined on or the contour of the background. When "edge" is set (=1), the
border around the images is set before the operation.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

contrast_stretch
NAME

contrast_stretch - contrast stretch

SYNOPSIS
#include "im_proto.h"

int contrast_stretch(IMAGE *in, IMAGE *out, double lperc, double
hperc)

DESCRIPTION
Linear contrast stretching based upon the histogram of the pixel values in the image
"in". The histogram of pixel values in image "in" is calculated. Then two pixel values
(lowval and highval) are assigned to the cumulative histogram percentiles "lperc" and
"hperc". Now the pixels in "in" are linearly rescaled is such a way that lowval
corresponds with the smallest (0) and highval with the largest possible value (255).
The result is stored in "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip threshold equalize tri_state_threshold lookup

SCIL_Image 1.4 – Reference Manual

80

convert
NAME

convert - convert an image into another image type

SYNOPSIS
#include "im_infra.h"

int convert(IMAGE *in, IMAGE *out, int out_type)

DESCRIPTION
Convert an image into another type. If "out_type" is not specified then the type of the
image "out" is the type the data of image "in" is converted into. If "out_type" is
specified, image "out" will become of type "out_type" and again the data is converted
into that type. The available types (see image.h) are:

GREY_2D
BINARY_2D
FLOAT_2D
COMPLEX_2D
GREY_3D
BINARY_3D
FLOAT_3D
COMPLEX_3D
COLOR_2D
COLOR_3D
LABEL_2D
LABEL_3D

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

81

convert_cmodel
NAME

convert_cmodel - convert a color-image into another color-model

SYNOPSIS
#include "color2dp.h"

int convert_cmodel(IMAGE *in, IMAGE *out, cmodel)

DESCRIPTION
convert_cmodel() converts the data of a color-image "im" into another color-model
"cmodel" in image "out". The currently implemented color-models are (see also
image.h):

model model name in Image value
RGB RGB_T 1
CIE XYZ XYZ_T 2
CIE L*a*b* CIELAB_T 3
HSI HSI_T 4
CMYK CMYK_T 5

Specifying 0 for the color-model, means taking the color-model of the output image
(if it is already a color-image otherwise RGB_T is taken).

Currently the conversion of the color-models are implemented as:

RGB to XYZ:
X		m11 m12 m13		R
Y	=	m21 m22 m23		G
Z		m31 m32 m33		B

for m11 .. m33 see set_matrix_type()

RGB to CMYK
C = 1.0 - R
M = 1.0 - G
Y = 1.0 - B
K = minimum(C, Y, K)
C = C - K
M = M - K
Y = Y - K

RGB to HSI:
I = (R + G + B)/3.0
S = 1.0 - 3.0 * minimum(R, G, B)/(R + G + B)
if G > B:
 H = acos((0.5*(R-G+R-B))/sqrt((R-G)*(R-G)+(R-B)*(G-B)))
else
 H = 2*PI- acos((0.5*(R-G+R-B))/sqrt((R-G)*(R-G)+(R-B)*(G-B)))

XYZ to L*a*b*:
L* = cbrt(116 * (Y/Yn))-16 for Y/Yn > 0.008856
L* = 903.3 * (Y/Yn) for Y/Yn <= 0.008856

SCIL_Image 1.4 – Reference Manual

82

a* = 500 * [F(X/Xn)-F(Y/Yn)]
b* = 200 * [F(Y/Yn)-F(Z/Zn)]

for any the ratios of X/Xn, Y/Yn, Z/Zn in a* and b* :
F(X/Xn) = cbrt(X/Xn) for X/Xn > 0.008856
F(X/Xn) = 7.787 * (X/Xn) + 16/116 for X/Xn <= 0.008856

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
color_set_color_model set_color_model

convolution
NAME

convolution - convolution

SYNOPSIS
#include "im_proto.h"

int convolution(IMAGE *in, IMAGE *conv, IMAGE *out, int addval, int
divval)

DESCRIPTION
Apply a one- or two-dimensional convolution filtering to image "in" and store the
result in image "out". The coefficients for the convolution should be specified by
image "conv". The dimensions of the convolution mask are given by the dimensions
of image "conv". This mask is not necessarily square. Optionally the result may be
rescaled: the constant "addval" is added to the convolution result, after which it is
divided by "divval".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

83

cooccur
NAME

cooccur - calculate co-occurrence matrix

SYNOPSIS
#include "im_proto.h"

int cooccur(IMAGE *in, IMAGE *out, int xdist, int ydist)

DESCRIPTION
Calculates the co-occurrence matrix (second order statistics) of the input image on
distance "xdist" and "ydist", and stores the result in "out". The input image greylevel
range must be between 0 and 255.

LITERATURE
R.M. Haralick, K. Shanmugan and I. Dinstein, Textural features for image
classification, IEEE trans. SMC, vol. 3, 1973, 610-621.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

copy_channel
NAME

copy_channel - copy a channel from one image to another

SYNOPSIS
#include "im_infra.h"

int copy_channel(IMAGE *in, IMAGE *out, int inchan, int outchan)

DESCRIPTION
copy_channel() copies the image data from a channel from image "in" to a channel in
image "out". The numbers of the channels are specified by "inchan" for the input
image and "outchan" for the output image. Channels are numbered from 0 and all
image types have at least one channel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
split_channels join_channels

SCIL_Image 1.4 – Reference Manual

84

copy_clut
NAME

copy_clut - copy the contest of a CLUT to another CLUT

SYNOPSIS
#include "im_infra.h"

CLUT *copy_clut(CLUT *source, CLUT *dest, char *name)

DESCRIPTION
Copies the contents of the CLUT "source" to the CLUT "dest". If "dest" is a NULL
pointer, a new CLUT is created with the name "name".

RETURN VALUES
Pointer to the destination CLUT or
NULL if: -"source" is not a CLUT

-"dest" is not NULL and not a clut
-No memory available to create a new clut or invalid name given.

SEE ALSO
create_clut

copy_im
NAME

copy_im - copy image

SYNOPSIS
#include "im_proto.h"

int copy_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Copy image "in" to image "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_part_image

SCIL_Image 1.4 – Reference Manual

85

copy_object
NAME

copy_object - copy object from source to destination image

SYNOPSIS
#include "im_aio.h"

int copy_object(IMAGE *src_im, IMAGE *dst_im, LIST *link)

DESCRIPTION
src_im - Source image with labeled objects
dst_im - Destination image
link - Link pointing to object

copy_object() copies the labeled object from the source image to the same coordinate
in the destination image.

EXAMPLE
To copy objects pointed at with the mouse to another image:

#include "image.h "
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b,c,8,0);
set_im_type(d, LABEL_2D);
while (o = point_object(c,l))

{ copy_object(c,d,o); display_image(d); }
l = rm_list(l);

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
g_copy_object g_copy_object_to

SCIL_Image 1.4 – Reference Manual

86

copy_part_image

copy_masked_part
NAME

copy_part_image - copy a rectangular part of an image to another image

copy_masked_part - copy an arbitrary shaped part of an image to another image

SYNOPSIS
#include "im_proto.h"

int copy_part_image(IMAGE *in, IMAGE *out, int sx, int sy, int sz,
int width, int height, int depth, int dx, int dy, int dz)

int copy_masked_part(IMAGE *in, BOOL_MASK *mask, IMAGE *out, int sx,
int sy, int sz, int width, int height, int depth, int dx, int dy, int
dz, int clear)

DESCRIPTION
copy_part_image copies a part with dimensions "width" * "height" * "depth" from
source position ("sx","sy","sz") in image "in" to the destination position
("dx","dy","dz") in image "out"

copy_masked_part uses a Boolean mask "mask" to copy a part with dimensions
"width"*"height"*"depth" from source position ("sx","sy","sz") in image "in" to the
destination position ("dx","dy","dz") in image "out". The bits which are set in the
mask indicate which pixels from the rectangle of the source image must be copied to
the destination image. The flag "clear" is added to indicate what to do with the pixels
in the rectangle of the destination that are not in the Boolean mask. If "clear" is set to
0, the pixels are left untouched, otherwise they are cleared.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_im warp_image

SCIL_Image 1.4 – Reference Manual

87

covariance
NAME

covariance - calculate the covariance between two images

SYNOPSIS
#include "im_proto.h"

double covariance(IMAGE *in1, IMAGE *in2)

DESCRIPTION
Calculate the covariance between the two images "in1" and "in2" and returns the
result. The covariance is defined as:

covar(a,b) = MEAN(in1*in2) - MEAN(in1)*MEAN(in2)

RETURN VALUES
The covariance.

covmatrix
NAME

covmatrix - calculate covariance matrix of an image

SYNOPSIS
#include "im_proto.h"

int covmatrix(IMAGE *in, VAR_OBJECT *out, int width, int height)

DESCRIPTION
Calculate the covariance matrix of image "in" for window size "width" by
"height" and stores the result in var_object "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
eigenvectors eigenfilters

SCIL_Image 1.4 – Reference Manual

88

covplanematrix
NAME

covplanematrix - calculate covariance matrix of an image

SYNOPSIS
#include "im_proto.h"

int covplanematrix(IMAGE *in, VAR_OBJECT *out)

DESCRIPTION
Calculate the covariance matrix between the planes of 3D image "in" and stores the
result in var_object "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
im_eigenvectors im_principle_component covariance

cr
NAME

cr - obtain contour ratio of object

SYNOPSIS
#include "im_aio.h"

double cr(LIST *link)

DESCRIPTION
link - Link pointing to object

AIO primitive to obtain value of an object feature

cr() returns the contour ratio of the object pointed to by "link" if this has previously
been measured.

RETURN VALUES
contour ratio of object on succes
0.0 if link is not an object or if contour ratio has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas

SCIL_Image 1.4 – Reference Manual

89

creat
NAME

creat - create a new file

SYNOPSIS
int creat(char *name, int mode)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

creat() creates a new file or prepares to rewrite an existing file called "name", given as
the address of a null-terminated string. If the file did not exist, it is given mode
"mode", as modified by the process’s mode mask (see umask(2)). Also see chmod(2)
for the construction of the mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0
length.

The file is opened for writing only (not reading), and its file descriptor is returned.

The mode given is arbitrary; it needs not allow writing. This feature is used by
programs which deal with temporary files of fixed names. The creation is done with a
mode that forbids writing. Then if a second instance of the program attempts a creat,
an error is returned and the program knows that the name is unusable for the moment.

The system scheduling algorithm does not make this a true uninterruptible operation,
and a race condition may develop if creat is done at precisely the same time by two
different processes.

RETURN VALUES
-1 is returned if:

a needed directory is not searchable;
the file does not exist and the directory in which it is to be created is not
writable;
the file does exist and is unwritable;
the file is a directory;
there are already too many files open.

SEE ALSO
write close open

SCIL_Image 1.4 – Reference Manual

90

create_clut
NAME

create_clut - create a color lookup table

SYNOPSIS
#include "im_infra.h"

CLUT *create_clut(int type, char *name)

DESCRIPTION
Creates a color lookup table (clut) that can be attached to an image. "name" is the
name that can be assigned to the table.

In the arrays "r", "g" and "b" of a CLUT (see below), RGB triplets for 256 colors can
be specified. The "table" array is intended to be used by the user-interface to store the
colormap entry that best represents the RGB triplet. Image does not fill or interpret
these "table" values in any way.

The newly created table can be "prefilled" with values of often used lookup tables.
The "type" parameter specifies filling method, possible values are:

EMPTY_LUT_T r, g and b filled with nulls
BLUE_LUT_T b filled linear from 0 to 255
GREEN_LUT_T g filled linear from 0 to 255
CYAN_LUT_T b and g filled linear from 0 to 255
RED_LUT_T r filled linear from 0 to 255
MAGENTA_LUT_T r and b filled linear from 0 to 255
YELLOW_LUT_T r and g filled linear from 0 to 255
GREY_LUT_T r, g and b filled linear from 0 to 255
LABEL_LUT_T simulates the label display
MULTI_LUT_T the three primary colors are turned on for each entry

number that has a specified bit set (see set_rgb_bits())
OVERLAY_LUT_1_T entries that have bit 1 set are displayed in red
OVERLAY_LUT_2_T like previous but now bit 2
.. ..
OVERLAY_LUT_8_T like previous but now bit 8

When a clut is created, it will be entered in a list for accounting. So always create a
clut using this routine.

STRUCTURES
A clut is defined by the following structure:

typedef struct clut_t {
char clut_name[IM_NAMELEN];
unsigned char r[256];
unsigned char g[256];
unsigned char b[256];
unsigned long table[256];

} CLUT;

SCIL_Image 1.4 – Reference Manual

91

RETURN VALUES
The pointer to the newly allocated clut structure on success.
NULL on failure.

SEE ALSO
set_clut set_rgb_bits destroy_clut

create_display
NAME

create_display - create a display window for an image without one

SYNOPSIS
#include "disp_p.h"

int create_display(IMAGE *im, int xp, int yp, int xs, int ys)

DESCRIPTION
This functions creates a display window for image "im" at position "xp", "yp" with
sizes "xs", "ys". Only if the image did not have a display window attached, a new
window will be made. Image that are created using create_image() do not have a
display attached and can be given one by this function.

Images created with the function make_image() already have a display window. The
result of create_image() followed by create_display() is identical to the result of
make_image().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create_image make_image

SCIL_Image 1.4 – Reference Manual

92

create_histogram

destroy_histogram

histo_data

copy_histogram
NAME

create_histogram - create a histogram object

destroy_histogram - destroy a histogram object

histo_data - get the histogram data from an image

copy_histogram - copy the data of one histogram to another

SYNOPSIS
#include "im_infra.h"
#include "im_proto.h"

HISTOGRAM *create_histogram(char *name, int chans, int dims, int
dim1, int dim2, int dim3, int dim4, int dim5)

int destroy_histogram(HISTOGRAM *histo)

HISTOGRAM *histo_data(IMAGE *image, HISTOGRAM *histo, int bins,
double minrange, double maxrange)

HISTOGRAM *copy_histogram(HISTOGRAM *srchisto, HISTOGRAM *desthisto)

DESCRIPTION
The histogram objects are capable of describing and containing multidimensional
histograms. Along with the actual histogram data, the median value of the lowest and
highest bin as well as the width of the bins can be stored. Thus fully describing the
histogram data.

create_histogram() creates an empty histogram object. The string "name" is the name
of the histogram by which it is listed in the dialog boxes. "chans", "dims" and "dim1"
to "dim5" determine the sizes of the histogram. "chans" being the number of channels,
"dims" the number of dimensions of the histogram and "dim1" to "dim5" the sizes of
each dimension.

destroy_histogram() destroys the histogram object pointed to by the pointer "histo".

SCIL_Image 1.4 – Reference Manual

93

histo_data() calculates the histogram of image "image" and stores it in the histogram
object "histo". If "histo" is NULL, a new histogram object is created with the name
"Histogram_of_..." (... being the name of the image). The number of bins used for the
histogram is determined by "bins". "bins" is 0 means that the routine will choose a
value for the number of bins. For the integer based image types grey, binary and color,
this value will be equal to the range of the image data. For the floating point image
type float, it is set at 256. "minrange" and "maxrange" determine the range of the
image data to be put in the histogram. If "minrange" is equal to "maxrange", the actual
range of the image data will be taken.

copy_histogram() copies the data of histogram "srchisto" to the histogram "desthisto"
thereby adjusting the sizes of "desthisto" to match those of "srchisto".

EXAMPLE
histo_data A New 0 128.0 254.0

will calculate the histogram for the data in image "A" that lies between 128 and 254,
the histogram will be 127 bins (254-128 + 1) in the case of image "A" being an integer
typed image.

histo_data A "histo1" 256 0.0 0.0

will calculate the histogram of all pixels in image "A" using 256 bins, the resulting
histogram is named "histo1".

STRUCTURES
A histogram is defined by the following structure:

typedef struct histogram_t {
void *publish;
unsigned long *hdata;
unsigned int nr_chans;
unsigned int nr_dims;
unsigned int dims[V_O_MAX_DIM];
char name[IM_NAMELEN];
char *comment;
double lbin_median[V_O_MAX_DIM];
double hbin_median[V_O_MAX_DIM];
double bin_width[V_O_MAX_DIM];
void *fut1;
void *fut2;
void *fut3;
void *fut4;

} HISTOGRAM;

V_O_MAXDIM is defined in image.h (currently set at 5)

RETURN VALUES
create_histogram: pointer to the histogram or

NULL if creation failed.

destroy_histogram: IE_OK (1) on destruction or
IE_NOT_OK (0) if the pointer was not a histogram.

SCIL_Image 1.4 – Reference Manual

94

SEE ALSO
histogram_to_image histogram_to_var_object image_to_histogram
histogram_by_name histogram_ok is_histogram
histogram_comment dump_histogram list_histograms show_histogram_info

create_image
NAME

create_image - create an image without a display window

SYNOPSIS
#include "im_proto.h"

IMAGE *create_image(char *name, int type, int lenx, int leny, int
lenz)

DESCRIPTION
create_image() creates an image of the specified type, with the specified name and of
the specified dimensions. If "name" is equal to the name of an already existing image,
that existing image is first destroyed.

RETURN VALUES
A pointer to the new image or
NULL on failure

SEE ALSO
destroy_image

SCIL_Image 1.4 – Reference Manual

95

create_live_window

create_diff_window
NAME

create_live_window - view/grab images from a framegrabber

create_diff_window - view/grab images from a framegrabber using a reference image

PLATFORM
MS-Windows.

SYNOPSIS
#include "image.h"

void create_live_window(IMAGE *image)

void create_diff_window(IMAGE *image)

DESCRIPTION
create_live_window() (=LiveGrabber in the menu) is an interactive tools that allows
to view "live-video" from the framegrabber and grab images. If an image is grabbed, it
is stored in the image "image". The tool offers several buttons and slider to control
zooming and panning and some grabber settings.

The create_diff_window() is almost identical to the create_live_window() tool. It
additionally offers the possibility to first grab a reference image and then view the
video from the grabber as the difference between the actual image and that reference
image.

RETURN VALUES
None

SEE ALSO
fg_grab_image

create_silo
NAME

create_silo - create an image-silo

SYNOPSIS
#include "silo.h"

SILOPTR create_silo(char *siloname)

DESCRIPTION
siloname - filename for the image-silo.

Creates a file to hold an image-silo. Its return value is a handle that must be passed to all
silo-I/O routines.

SCIL_Image 1.4 – Reference Manual

96

Atfer creating the silo, it writes "MAXRECORD" (see silo.h) empty entries to this file
to initialize the silo. Finally it calls open_silo() to open this file.

RETURN VALUES
Pointer to the newly created silo.
NULL if an error has occurred.

cst
NAME

cst

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See contrast_stretch

SCIL_Image 1.4 – Reference Manual

97

cube_view
NAME

cube_view - interactive viewer on binary 3d images

SYNOPSIS
#include "im2scil.h"

int cube_view(IMAGE *in, IMAGE *out, int plane, int view, int
interaction)

DESCRIPTION
Displays a binary 3D image in a pseudo-three-dimensional view on a bitplane using a
simple back-to-front algorithm using a 2D grey value image to approximate a voxel.

The image is filled with 15 pixels to approximate 1 voxel in this form:
 ___ ___ ___
 | u | u | u |
 ___|___|___|___|
f	f	f	s
___	___	___	___
f	f	f	s
___	___	___	___
f	f	f	s
___	___	___	___

Where u is the upper side, f is the front and s is the right side of the voxel. parameters:

*in - binary 3D image
*out - output image
plane - plane number to view
view - viewing direction having value (1,2 or 3).

1 is front view looking in z direction at xy planes
2 is view on the right side of the image in x direction at zy planes.
3 is view to the top side of the image in y direction at xz planes.

interaction - 1 is yes, 0 is no

if interaction is yes, one may step through the back-to-front display of the planes by
means of pointing in the upper/lower part of the image and pushing the right button,
or using the keyboard pressing "f" for forward of "b" for backward. Pressing return
ends the interaction mode.

The display rendering starts at the highest "plane" value and builds up with
back-to-front displaying of planes until the entered plane number to view.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

98

decrement_im
NAME

decrement_im - decrement image pixels

SYNOPSIS
#include "im_proto.h"

int decrement_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Decrement each element of image "in" and store the result in the corresponding
element of image "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
increment_im eval

SCIL_Image 1.4 – Reference Manual

99

default_images
NAME

default_images - make the four images A, B, C and D

SYNOPSIS
#include "im2scil.h"

void default_images(int number)

DESCRIPTION
The images A, B, C and D, are created by this function at start-up. Also the two
default var_objects "obj1" and "obj2" are created by this function. The function is
called from the initialization file "scilinit". The position of the four images can be
influenced by the set_start_pos() (also in the scilinit file). set_start_pos() must be
called before the function "default_images".

The parameter "number" (max. value is 4), specifies the number of images to create.

When the call to default_images() is removed from the "scilinit" file no images and
var_objects will be created at start-up.

This function must be called after "initimage"

RETURN VALUES
None

SEE ALSO
set_start_pos

SCIL_Image 1.4 – Reference Manual

100

defuz

bernsen_threshold
NAME

defuz - sharpening filter for grey value images using grey value morphology

bernsen_threshold - thresholding using grey value morphology

SYNOPSIS
#include "im_proto.h"

int defuz(IMAGE *in, IMAGE *out, int filt_x, int filt_y, double thr)

int bernsen_threshold(IMAGE *in, IMAGE *out, int filt_x, int filt_y,
int max_diff)

DESCRIPTION
defuz() performs a sharpening operation on the grey value image "in" and stores the
result in the grey value image "out". The image is scanned with a moving window
with sizes "filt_x" and "filt_y". For each position, both minimum and maximum value
are determined. The values of the minimum, maximum and center pixel value are
denoted by MIN, MAX and C resp. The value of the last parameter "thr" is denoted by
THR. The new value of the center pixel is calculated as follows:

 if(C < MIN + THR * (MAX - MIN))
 C = MIN;
 else
 C = MAX;

The last parameter THR indicates a bias towards either the local minimum or the local
maximum value. In case THR == 0.5 there is no bias towards a direction. This means
that if THR == 0.5 the center value is substituted by either min or max depending on
whichever of the two is closest in value. If THR has value 0 the result is identical to a
local maximum operation and if THR has value 1 the result is that of a local minimum
filter. For non-linear sharpening the value of 0.5 is recommended for THR.

The bernsen_threshold() operation is comparable to defuz() without bias. However,
instead of replacing the value of the center pixel by the local minimum or maximum,
this pixel is assigned 0 or 1. The result of this operation will become very noisy in
areas where there is no distinct difference between minimum and maximum.
Therefore, with the last parameter "max_diff" the user can indicate the minimum
required difference between the local minimum and maximum. If the difference is
less, the center pixel is assigned 1 by default.

LITERATURE
H.P. Kramer and J.B. Bruckner, Iterations of a non-linear transformation for
enhancement of digital images, Pattern Recognition, vol.7, 1975, 53-58

J. Bernsen, Dynamic thresholding of grey-level images, 8th IAPR International
Conference on Pattern Recognition (Paris), 1986, 1251-1255

SCIL_Image 1.4 – Reference Manual

101

RETURN VALUES
OK (1) on success
NOT_OK (0) on failure (see im_error.h)

dens
NAME

dens

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See density

SCIL_Image 1.4 – Reference Manual

102

dens_limits
NAME

dens_limits - set the limits for optical densitometric measurement of AIO

SYNOPSIS
int dens_limits(int minimum, int maximum, double max_opt_dens)

DESCRIPTION
dens_limits() can be used to set three global definition used in object densitometric
measurement (object_dens_meas()) of the AIO package. "minimum", "maximum" and
"max_opt_dens" are the variables that can be set. The relation between those variables
and densitometric measurement is explained below. Legal values for "minimum" and
"maximum" range from 0 to 32767, also "maximum" must be greater than
"minimum". "max_opt_dens" can range from 0.0 to 4.5.

Transmission

Transmission (T) is defined as the proportion of incident light which passes through
absorbent material, usually expressed as a percentage.

 I
T = ---- * 100%
 Io

where T is the transmission, "Io" is the incident light and "I" is the transmitted light,
see also figure. Sometimes it is used as transmittance in which case it is represented as
a fraction.

 /^\ I
 | (transmitted light)
 |
 +================+
-----------| specimen |----------
 +================+
 /^\
 | Io
 | (incident light)

Light is absorbed progressively as it passes through a partly absorbent substance, if a
single thickness reduces light intensity to half its original value, a double thickness
will not absorb all light, but will reduce it to 25 percent.

Optical Density

Optical density (O.D.) is defined as the common base logarithm of the ratio of
incident to transmitted light:

O.D. = - log10(Transmittance)

SCIL_Image 1.4 – Reference Manual

103

In theory the optical density ranges from 0 (at 100% transmission) until infinity (for
zero transmittance or completely opaque objects). In a practical setup infinity will not
be reached. The densitometric measurements require calibration that means two
intensity values (minimum, maximum) are mapped on the lower and upper limit of
the optical density according to a table. As the intensity ranges from "min_intensity"
to "max_intensity" the optical density is calculated according:

 -MAXOD
 (I - min_intensity) * (1.0 - 10.0) -MAXOD
-log10(-- + 10)
 (max_intensity - min_intensity)

This formula reaches MAXOD at I = min_intensity and equals to zero if I =
max_intensity, it has a perfect logarithmic behavior. The default for MAXOD is 2.55,
which is a sensible value for camera systems where a dynamic range from 0 to 255 is
expected limiting the optical density in ideal circumstances to 2.40. In the case of
having 16 useful bits the upperlimit of optical density is 4.5.

The minimum intensity value and the maximum intensity values may be used to
calibrate the measurements. For instance this is useful to correct for glare or straylight
originating from the optical system.

LITERATURE
TV Microscopical Image Analysis for Accurate DNA Quantification in Pathology.
Ph.D. Thesis T.K. ten Kate

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) when values are out of range

SEE ALSO
object_dens_meas measure

SCIL_Image 1.4 – Reference Manual

104

density
NAME

density - object size and density measurement

SYNOPSIS
#include "im_proto.h"

int density(IMAGE *label_im, IMAGE *grey_im, char *fname, int append)

DESCRIPTION
Measure objects in the image "grey_im" using the labeled image "label_im" as an
object indicator and write these parameters in a table on the console or in a text file.
For each object present int the image "label_im", the corresponding object pixels in
the image "grey_im" are used for the measurement. The measured parameters are:
- the coordinates of the object’s center of gravity
- the total object density (the sum of the pixel values within the object)
- the object size in number of pixels
- ratio of the object density and the object size (average pixel value within the

object).

The measured parameters are written to the text file "fname" if specified, or printed on
the controlling terminal ("fname" = NULL). If "append" is set (=1) then the generated
table will be appended to the text file "fname" (if specified and existing). If "fname"
already exists and "append" is not set (=0) then the file "fname" will be overwritten.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
calibrated_density label shape measure list_label aio_label

SCIL_Image 1.4 – Reference Manual

105

destroy_clut
NAME

destroy_clut - destroy a color lookup table

SYNOPSIS
#include "im_infra.h"

int destroy_clut(CLUT *clut)

DESCRIPTION
The specified clut is thrown away after checking that it is not one of the standard cluts
that were defined at start up. These can not be thrown away by this function.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create_clut

destroy_image
NAME

destroy_image - destroy an image

SYNOPSIS
#include "im_proto.h"

int destroy_image(IMAGE *im)

DESCRIPTION
Destroy_image destroys the specified image. Also the possibly connected display
window is destroyed

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create_image

SCIL_Image 1.4 – Reference Manual

106

destroy_var_object
NAME

destroy_var_object - destroy a var_object

SYNOPSIS
#include "objectsp.h"

int destroy_var_object(VAR_OBJECT *obj)

DESCRIPTION
"destroy_var_object" destroys the var_object specified by the pointer "obj".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object var_object_by_name show_var_object_info

SCIL_Image 1.4 – Reference Manual

107

dialog_options
NAME

dialog_options - change behaviour of the dialog generator.

SYNOPSIS
#include "md_gen.h"

int dialog_options(int nfew, int nsome, int nmany, int nhuge, int
f_feedb, int s_feedb, int m_feedb, int h_feedb, int g_feedb, int
with_arrows, int with_range)

DESCRIPTION
dialog_options() can be used to change the form of the dialog box generated by the
dialog generator. "nfew", "nsome", "nmany" and "nhuge" define the limits of the
ranges for the representation of numbers and choices. The representation can be
modified by the other arguments. "f_feedb" specifies the representation of choices
when the number of choices is less than or equal to "nfew", "s_feedb" the range from
"nfew" up to "nsome", "m_feedb", the range from "nsome" up to "nmany", "h_feedb"
the range from "nmany" up to "nhuge" and "g_feedb" the range from "nhuge"
upwards.

"f_feedb" and "s_feedb" can be one of MARKED (1), INVERTED (2) or CYCLE (3)
"m_feedb" can be either INVERTED (2) or CYCLE (3)
"h_feedb" can be one of SLIDER (4), NUMBER (5) or TEXT (6)
"g_feedb" can be either NUMBER (5) or TEXT (6)

- MARKED is represented by buttons with the value (numeric or symbolic) next to
the button.

- INVERTED is represented by buttons with the value on the button and all buttons
are shown at the same time.

- CYCLE is represented by buttons with the value on the button, but the buttons are
shown one at the time.

- SLIDER is represented by a slider bar.
- NUMBER is represented by a number.
- TEXT is represented by text.

The method for presenting and changing values in each of the ranges may differ
slighty per windowing system. Some windowing systems offer other (more convenient
ways to represent a (range of) numbers/choices.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

108

dialog_stay_up
NAME

dialog_stay_up - remove the dialog box automatically

PLATFORM
Unix.

SYNOPSIS
#include "md_gen.h"

int dialog_stay_up(int flag)

DESCRIPTION
The dialog box that is popped up if a menu item is selected, remains on screen until it
is explicitly removed using the CANCEL button. This function is a switch to set this
behaviour. If the dialog box is to be removed automatically, then "flag" must be "0"
(zero). "flag" set to "1" will result in the dialog box stay on the screen

RETURN VALUES
None

dialog_wm
NAME

dialog_wm - prevent dialog box movement in X-windows

SYNOPSIS
#include "md_gen.h"

int dialog_wm(int number)

DESCRIPTION
Since some X window managers decorate windows with stuff like titlebars, thereby
displacing the dialog box each time it is mapped to the screen, the dialog_wm
function can be used to correct for this behaviour. "number" is the number of pixels
used for the correction of the vertical displacement

EXAMPLE
An example with the TWM window manager. To correct for the 20 pixel
displacement place the following in the scilinit file:

dialog_wm(20);

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

109

different_ok
NAME

different_ok - check if two values differ from each other

SYNOPSIS
#include "im_infra.h"

int different_ok(int val1, int val2, char *text)

DESCRIPTION
The values "val1" and "val2" are matched and if they are equal an error is generated
and the following message is added to the error-stack:

<text> [<val2>,<val2>] must be different

RETURN VALUES
IE_OK (1) if the values differ
IE_NOT_OK (0) if the values are equal

SCIL_Image 1.4 – Reference Manual

110

dilation3x3
NAME

dilation3x3 - dilation

SYNOPSIS
#include "im_proto.h"

int dilation3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)

DESCRIPTION
Performs a dilation ("expansion") on image "in" and stores the result in image "out".
For each pixel in "in" a 3*3 neighborhood is scanned for non-object pixels (pixels
with value 0). If the central pixel is a non-object pixel and at least one of the pixels in
the neighborhood is an object pixel, the central pixel becomes an object pixel (value
1).
The exact definition of the neighborhood depends upon the connectivity argument
"con". Connectivity can be 4 or 8 connected, but also 48 or 84 can be specified,
allowing for alternating connectivity on each iteration to approach a 6 connected
neighborhood. With the "bound" argument the pixels around the edge of the image are
either taken as 1 or 0.

The effect of this operation is expansion of the objects with (an) extra contour(s). The
number of contours added depends upon "iter".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
erosion3x3 arbit_dilation arbit_erosion

SCIL_Image 1.4 – Reference Manual

111

dir_maximum
NAME

dir_maximum - view maximum pixel value along an axis

SYNOPSIS
#include "im_proto.h"

int dir_maximum(IMAGE *in, IMAGE *out, int dir)

DESCRIPTION
dir_maximum() calculates the maximum pixel value on each scanline along an axis of
the 3D image "in" and stores these in the 2D image "out". The axis on which the
function operates is determined by "dir" (X = 1, Y = 2, Z = 3).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
sfp z_planes pix_maxval

SCIL_Image 1.4 – Reference Manual

112

disp_circle

disp_draw_mode

disp_draw_value

disp_oval

disp_rect

disp_srect

disp_text

disp_text_font

disp_vector
NAME

disp_circle - draw a circle

disp_draw_mode - set the drawing mode

disp_draw_value - set the drawing value

disp_oval - draw an oval

disp_rect - draw a rectangle

disp_srect - draw a filled rectangle

disp_text - draw some text

disp_text_font - set text font

disp_vector - draw a line

SYNOPSIS
#include "disp_p.h"

int disp_circle(IMAGE *im, int x, int y, int r)

int disp_draw_mode(int mode)

int disp_draw_value(int value)

int disp_oval(IMAGE *im, int x, int y, int xr, int yr)

int disp_rect(IMAGE *im, int x, int y, int xsize, int ysize)

int disp_srect(IMAGE *im, int x, int y, int xsize, int ysize)

int disp_text(IMAGE *im, int x, int y, char *str)

SCIL_Image 1.4 – Reference Manual

113

int disp_text_font(char *font)

int disp_vector(IMAGE *im, int x1, int y1, int x2, int y2)

DESCRIPTION
Graphical routines which effect the display of images only.

These routines can be used to draw graphical primitives in the display window of an
image. The image itself is not altered by the drawing operation. The origin (0,0) of the
specified coordinate system is the upper left corner of the image. The positive x-axis
is going to the right and the positive y-axis is going down.

disp_circle draws a circle of radius "r" at coordinates ("x","y") in the specified image.

disp_draw_mode sets the drawing mode:
1 is the copy-mode
2 is the or-mode
3 is the xor-mode.

disp_draw_value sets the color to be used when drawing.

disp_oval draws an oval with the specified radius in X-direction "rx" and radius in Y-
direction "ry" at ("x","y") in the specified image.

disp_rect draws a rectangle of "xsize"*"ysize" at ("x","y") in the specified image.

disp_srect draws a filled rectangle of "xsize"*"ysize" at ("x","y") in the specified
image.

disp_text draws string "str" at ("x","y") in the specified image.

disp_text_font determines which font is to be used when writing to the display of an
image with disp_text

disp_vector draws a straight line from ("x1","y1") to ("x2","y2") in the specified
image.

RETURN VALUES
IE_OK (1)

SCIL_Image 1.4 – Reference Manual

114

display_image
NAME

display_image - display an image

SYNOPSIS
#include "im2scil.h"

int display_image(IMAGE *im)

DESCRIPTION
display_image() displays the specified image "im", provided the image has a display
window attached, and the display mode is on. The display mode can be
enabled/disabled with auto_display().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
part_image_display make_image destroy_image auto_display set_display_mode
set_display_slice next_plane auto_plane

SCIL_Image 1.4 – Reference Manual

115

dist_average
NAME

dist_average - texture measure, average of distance transform

SYNOPSIS
#include "im_proto.h"

double dist_average(IMAGE *input, IMAGE *mask, double threshold, int
background)

DESCRIPTION
Threshold the image, do distance transform and average the image.

If "background" is nonzero, the thresholded image is inverted before doing the
distance transform.

The averaging of the image is only done in the areas where the bit-image "mask" has
value 1.

RETURN VALUES
The texture value is returned. In case of error, this is 0.

SEE ALSO
box_dimension gld_mean gld_entropy gld_contrast gld_asymmetry
glc_entropy glc_contrast glc_asymmetry glr_nonuniformity
glr_shortrunemphasis glr_longrunemphasis glr_greynonuniformity
glr_percentage edge_average dist_average

SCIL_Image 1.4 – Reference Manual

116

dist_skelet
NAME

dist_skelet - skeleton based on distance transform

SYNOPSIS
#include "im_proto.h"

int dist_skelet(IMAGE *in, IMAGE *out, int angle, int hstep, int
dstep, int action)

DESCRIPTION
Calculate a skeleton from the distance transformed image "in" and store the resulting
skeleton in the binary image "out". The skeleton is defined as a set of connected, one
pixel thick arcs, lying midway between the object boundaries and being a topological
retraction with the same connectivity as the original object. The skeleton represents
the morphologic ("shape") features of the original object.

"angle" defines the sensitivity of the skeleton for small bulges in the object contour
causing the algorithm to create branches. It specifies the maximum angle for
circumscribing arcs of a bulge which will generate a branch in the skeleton. A small
value allows only sharp corners in the object’s contour to generate branches. A large
value specifies that even smooth corners may generate branches. "angle" is specified
in units of 45 degrees. "hstep" and "dstep" are the step-sizes that were used to generate
the distance transformation image.

The parameter "action" defines how far the skeleton is processed. The value
"interact_points" (0) specifies that only the medial axis is to be calculated, this
skeleton may not be connected. The value "thick" (1) specifies that a connected
skeleton is to be generated from the medial axis, this skeleton can be more than one
pixel thick at places. The value "thinned" (2) also performs thinning of the completely
connected skeleton to a one pixel thick skeleton.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
distance holt_skelet hild_skelet

SCIL_Image 1.4 – Reference Manual

117

distance
NAME

distance - distance transformation

SYNOPSIS
#include "im_proto.h"

int distance(IMAGE *in, IMAGE *out, int hstep, int dstep, int kstep,
int edge)

DESCRIPTION
Applies a distance transformation to the binary image "in" and stores the resulting
distance values in the corresponding pixels of the grey valued image "out". A distance
transformation replaces each pixel of an object with an estimate of its shortest
distance to the background (the distance to the nearest background pixel). The way the
distance between pixels is defined is specified by "hstep", "dstep" and "kstep". "hstep"
defines the distance between two pixels that are horizontally or vertically connected.
"dstep" defines the distance between pixels that are diagonally connected. "kstep" is
the distance between two pixels that are a "knight’s move" apart. "edge" specifies if
the objects extends beyond the border of the image (On=1) or not (Off=0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
dist_skelet

SCIL_Image 1.4 – Reference Manual

118

dither
NAME

dither - graphic dotting of a grey valued image

SYNOPSIS
#include "im_proto.h"

int dither(IMAGE *in, IMAGE *out)

DESCRIPTION
Replace the pixels in a grey_2d image "in" by a black (0) and white (255) dot pattern,
with a density equivalent to the original grey value and store the result in image "out".
The effect of this operation is a pseudo-grey value image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
pseudo greduce

SCIL_Image 1.4 – Reference Manual

119

do_alert
NAME

do_alert - system independent alert routine

SYNOPSIS
#include "md_gen.h"

int do_alert(char *str1, ...)

DESCRIPTION
do_alert is the system independent alert routine of scil.

do_alert generates an alert box with messages and buttons. It forces the user to
respond by selecting one of the buttons, since all other program activity is stopped.

do_alert can be called with up to 15 strings of messages, each of which are printed on
a separate line. Any message line may also contain newline ’\n’ characters.

The last string argument to do_alert must be a button specification string of the form
"[BUT1]...[BUTn]". The maximum number of buttons is 8.

do_alert returns with the selected button number. Buttons are numbered 1 .. 8.

NOTE
In the MS-Windows version a more versatile alert mechanism is provided through the
function typed_alert().

EXAMPLE
int choice;
choice = do_alert("This is an alert\n\n WOW\n\n",

"Nice isn’t it", "[Yes it is][No it is not]");
if(choice == 1)

printf("I agree\n");
else

printf("I don’t think I like you very much\n");

RETURN VALUES
The number of the selected button. Buttons are numbered 1 .. 8.

SCIL_Image 1.4 – Reference Manual

120

dots
NAME

dots

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See dither

draw_line
NAME

draw_line - draw a line in a image

SYNOPSIS
#include "im_proto.h"

int draw_line(IMAGE *image, int x1, int y1, int x2, int y2, int
value)

DESCRIPTION
Draw a straight line segment of value "value" into the image "image" from the pixel
with coordinates "x1","y1" to the pixel with coordinates "x2","y2".

When drawing more than one line, it is recommended to turn of the automatic display
of the images (see auto_display()), draw the lines and turn on the display of the
images again and display the image to view the result.

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) on failure

SCIL_Image 1.4 – Reference Manual

121

drawcurve
NAME

drawcurve - draw a piece-wise linear curve

SYNOPSIS
#include "grey_2dp.h"

int drawcurve(VAR_OBJECT *input, IMAGE *output, int value, int
smooth, int circ)

DESCRIPTION
A piece-wise linear curve is drawn, based on the series of coordinate pairs specified
in the 2-dimensional var_object "input". Each row of "input" contains the coordinates
of one point. A number of adjacent points, specified by the value of "smooth", are
averaged and the mean value replaces the considered point. (That is, internally; the
data in "input" are not changed). The coordinates of the smoothed set are then
converted to the nearest integral pixel position and the points successively connected
by straight lines. The obtained curve is drawn into the image "output" using "value"
as drawing value.

If "circ" is Yes (1), the pixel corresponding with the last coordinate pair in "input" will
be connected to the pixel corresponding with the first coordinate pair in "input". Also
for the smoothing operation these points are considered as adjacent.

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) on failure

SEE ALSO
maximum_trace maximum_cost_path resample_perp back_project

SCIL_Image 1.4 – Reference Manual

122

dump_var_object
NAME

dump_var_object - show all data of a var_object (in ASCII)

SYNOPSIS
#include "objectsp.h"

int dump_var_object(VAR_OBJECT *object, char *filename, int number)

DESCRIPTION
The data of var_object "object" is dumped in ASCII to either the terminal or a file. If a
name is specified for the file ("filename") then the data will be stored in a file, else, if
"filename" is a NULL pointer or an empty string, the data will be dumped on the
terminal. The last parameter "number" specifies the number of values that will be
printed on a single line (default = 1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object read_var_object write_var_object

SCIL_Image 1.4 – Reference Manual

123

dyn_link

dyn_unlink
NAME

dyn_link - add a shared library at runtime

dyn_unlink - remove a shared library at runtime

PLATFORM
UNIX (Sun, SGI, HP)

SYNOPSIS
int dyn_link(char *library, int verbose)

int dyn_unlink(char *library, int verbose)

DESCRIPTION
dyn_link() adds the shared library file "library" runtime to SCIL_Image. This adds
functionality while the program is running. dyn_unlink() removes the library file
"library" again from the running program. If the "verbose" flag is on (1), the names of
the functions that are being linked/unlinked are listed. If "verbose" is off (0) nothing is
listed.

In SCIL_Image, the number of libraries that can be linked dynamically is limited to 20
and the maximum number of functions/variables that can be accessed from each
library is 128.

To link a shared library to SCIL_Image you must have two files with the same name
in one directory, the shared library itself (".so" extension) and a Command
Description File (".cdf" extension). In the CDF-file the functions in the library are
described in SCIL_Image format. (See chapters 3 & 5 of the User Manual). Without a
CDF-file, a shared library cannot be linked into SCIL_Image.

SCIL_Image will search for these files first in the current directory and if it does not
find them there, it will search in the directories specified in the environment variable
SCIL_DYN.

Creating a shared library is dependent upon the platform and operating system used.
For a detailed description, read the manual pages of the C compiler (cc) and the linker
(ld) on your platform.

RETURN VALUES
OK (1) on success
NOT_OK (0) on failure

SCIL_Image 1.4 – Reference Manual

124

eccentr
NAME

eccentr - obtain eccentricity of object

SYNOPSIS
#include "im_aio.h"

double eccentr(LIST *link)

DESCRIPTION
link - Link pointing to object

AIO primitive to obtain value of an object feature

eccentr returns the eccentricity of the object pointed to by "link" if this has previously
been measured.

RETURN VALUES
eccentricity of object on success
0.0 if link is not an object or if eccentricity has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas

SCIL_Image 1.4 – Reference Manual

125

ecvt

fcvt

gcvt
NAME

ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char *ecvt(double value, int ndigit, int *decpt, int *sign)

char *fcvt(double value, int ndigit, int *decpt, int *sign)

char *gcvt(double value, int ndigit, char *buf)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

ecvt() converts "value" to a null-terminated string of ndigit ASCII digits and returns a
pointer thereto. The position of the decimal point relative to the beginning of the
string is stored indirectly through "decpt" (negative means to the left of the returned
digits). If the sign of the result is negative, the word pointed to by "sign" is non-zero,
otherwise it is zero. The low-order digit is rounded.

fcvt() is identical to ecvt(), except that the correct digit has been rounded.

gcvt() converts "value" to a null-terminated ASCII string in "buf" and returns a pointer
to "buf". It attempts to produce "ndigit" significant digits in E format, ready for
printing. Trailing zeros may be suppressed.

SEE ALSO
printf

BUGS
The return values point to static data whose content is overwritten by each call.

SCIL_Image 1.4 – Reference Manual

126

edge_average
NAME

edge_average - texture measure, how much edge is in the image

SYNOPSIS
#include "im_proto.h"

double edge_average(IMAGE *input, IMAGE *mask, int filtersize, int
usegrad)

DESCRIPTION
Do a low-pass filter of the image "input", using a "filtersize"*"filtersize" uniform filter
which is performed twice. Subtract that image from the original. In that image, the
zero crossings are detected.

If "usegrad" is nonzero, the "input" image is filtered by a gradient filter, also using a
"filtersize" kernel. The average of the gradient values AT THE ZERO CROSSINGS is
the texture value.

If "usegrad" is zero, the number of skeleton segments in the zero crossings image is
counted. This number, divided by the number of pixels in the zero crossing image, is
used as the texture value.

The calculation of the texture is only done in the areas where the bit-image "mask"
has value 1.

RETURN VALUES
The texture value is returned. In case of error, this is 0.

SEE ALSO
box_dimension gld_mean gld_entropy gld_contrast gld_asymmetry
glc_entropy glc_contrast glc_asymmetry glr_nonuniformity
glr_shortrunemphasis glr_longrunemphasis glr_greynonuniformity
glr_percentage edge_average dist_average
uniform zcross

SCIL_Image 1.4 – Reference Manual

127

edge_object
NAME

edge_object - check whether object touches edge of image

SYNOPSIS
#include "im_aio.h"

int edge_object(IMAGE *image, LIST *link)

DESCRIPTION
image - Pointer to image with objects
link - Link pointing to object

edge_object() determines whether the object "link" touches the edges of the image
"image".

RETURN VALUES
1 if the object touches the edge
0 if it does not touch the edge
Negative error status on failure (see im_error.h)

edge_ok
NAME

edge_ok - check if the edge bit parameter is correct

SYNOPSIS
#include "im_infra.h"

int edge_ok(int bound)

DESCRIPTION
A lot of operations for binary images have a parameter to specify whether to set the
border pixels or not, this function checks to see if that parameter is in the correct
range of 0..1. If it is not an error is generated and the following message is added to
the error-stack:

Edge bits parameter [<bound>] out of range (0..1).

RETURN VALUES
IE_OK (1) if "bound" is either "0" or "1"
IE_NOT_OK (0) if "bound" is any other value

SEE ALSO
range_ok

SCIL_Image 1.4 – Reference Manual

128

edge_preserve
NAME

edge_preserve - edge preserving smoothing (general)

SYNOPSIS
#include "im_proto.h"

int edge_preserve(IMAGE *in1, IMAGE *in2, IMAGE *out, int filtx, int
filty)

DESCRIPTION
Combine a low pass filtered image "in1" with a variance filtered image "in2" to
perform an edge preserving smoothing and store the result in image "out".
A low pass filter replaces each pixel of its input image by some average of the pixel
values in a neighborhood. An example is the uniform filter.
A variance filter replaces each pixel of its input image by some estimate of the
variance of the pixel values in a neighborhood. For example, a minimum filter
subtracted from a maximum filter. To make sense, the low pass filtered image "in1"
and the variance filtered image "in2" should derive from the same original image. The
resulting image "out" is a smoothed, edges preserved, version of this original image.
The operation uses a window "filtx"*"filty". This same neighborhood should have
been used in the filters producing image "in1" and "in2".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
kuwahara

edgps
NAME

edgps

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See edge_preserve

SCIL_Image 1.4 – Reference Manual

129

eigen_segmentation
NAME

eigen_segmentation - segments a textured image by eigenfilters

SYNOPSIS
#include "im_proto.h"

int eigen_segmentation(IMAGE *in, IMAGE *out, int size, int nr,
double scale)

DESCRIPTION
Performs a segmentation on a textured image by means of eigenfilters. The size of the
square eigenfilters are given by "size". After calculation of "size"*"size" number of
eigenfilters, the last "nr" ones are taken for convolution. Local energy calculation is
performed (squaring the image and gaussian smoothing with "scale") and a non-linear
transform is applied (ln (1+x)). From the resulting feature set the largest principle
component is obtained by means of Karhunen-Loeve transform. The final result is
stored in image "out".

LITERATURE
M. Unser and M. Eden, Nonlinear operators for improving texture segmentation based
on features extracted by spatial filtering, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 20, 1990, 804-815.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
eigenfilters convolution mul_im vgauss ln_im karhunen_loeve

SCIL_Image 1.4 – Reference Manual

130

eigenfilters
NAME

eigenfilters - calculate eigenfilters of an image

SYNOPSIS
#include "im_proto.h"

int eigenfilters(IMAGE *in, IMAGE *out, int width, int height)

DESCRIPTION
Performs an eigenvector analysis on the covariance matrix of "in" and stores the
resulting vectors in de (3D) image "out". The covariance matrix is calculated for
window size "width" by "height". One can segment a textured image by calculating
the eigenfilters and applying for each filter (2D-plane of "out") convolution() and
calculating the local energy (squaring the image and smoothing).

EXAMPLE
readf texttank
eigenfilters A B 3 3
apply_spatial_bank A B C 1 -1
mul_im C C C
vgauss C C 5.0 5.0 1.0 .99 .99 .99 -1 -1 1
sqrt_im C C
karhunen_loeve C D 0 0

LITERATURE
F. Ade, Characterization of textures by eigenfilters, Signal Processing, vol. 5, 1983,
451-457.

M. Unser, On the approximation of the discrete Karhunen-Loeve transform for
stationary processes, Signal Processing, vol. 7, 1984, 231-249.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
covmatrix eigen_segmentation

SCIL_Image 1.4 – Reference Manual

131

eigenvectors
NAME

eigenvectors - calculate the eigenvectors and eigenvalues of an object

SYNOPSIS
#include "im_proto.h"

int eigenvectors(VAR_OBJECT *obj, VAR_OBJECT *vecs, VAR_OBJECT *vals)

DESCRIPTION
Performs an eigenvector analysis on the two-dimensional input "obj" and returns the
eigenvectors in "vecs" (2D) and the eigenvalues in "val" (1D). If NULL is given for
"vecs" or "vals", the corresponding data is not stored.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
covmatrix covplanematrix

entropy_threshold
NAME

entropy_threshold - thresholding using the entropy method.

SYNOPSIS
#include "im_proto.h"

int entropy_threshold(IMAGE *in, IMAGE *out, double fraction)

DESCRIPTION
Perform thresholding operation on the grey value image "in" and store the result in the
binary image "out". The threshold-level is determined by the entropy method. This
method is based upon an entropy measure in the grey level histogram of the image.
The algorithm divides the histogram into two parts, minimizing the interdependence
between the two parts, measured in terms of entropy.
The grey level that performs this division will be the threshold value.
As a condition, the user may specify the "fraction" of the image that minimally should
be assigned to be a foreground object. The algorithm then searches for the minimal
entropy within this constraint.

RETURN VALUES
The used threshold value.

SEE ALSO
threshold isodata_threshold

SCIL_Image 1.4 – Reference Manual

132

eql
NAME

eql

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See equalize

equal_images
NAME

equal_images - test if contents of two images is equal

SYNOPSIS
#include <im_proto.h>

int equal_images(IMAGE *im1, IMAGE *im2)

DESCRIPTION
equal_images() tests if the images "im1" and "im2" are the same, that is, if the type
and sizes of the images are same, and if so, if the contents of the images is equal. It
returns TRUE (1) if the images are equal and FALSE (0) if they are not.

RETURN VALUES
TRUE (1) if the image contents is equal
FALSE (0) if the image contents is not equal
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

133

equalize
NAME

equalize - histogram equalization

SYNOPSIS
#include "im_proto.h"

int equalize(IMAGE *in, IMAGE *out)

DESCRIPTION
Change the values of the pixels in image "in" is such a way that the histogram is
equalized, i.e. the histogram of "out" is as uniform (flat) as possible.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip threshold contrast_stretch tri_state_threshold lookup

equivalent_im
NAME

equivalent_im - pixel equivalence of images

SYNOPSIS
#include "im_proto.h"

int equivalent_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Set the value of a pixel in "out" according to the equivalence of the corresponding
pixels in "in1" and "in2".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

134

eqv
NAME

eqv

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See equivalent_im

erosion3x3
NAME

erosion3x3 - erosion

SYNOPSIS
#include "im_proto.h"

int erosion3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)

DESCRIPTION
Performs an erosion ("shrinking") on the binary image "in" and stores the result in
"out". For each pixel in "in" a 3*3 neighborhood is scanned for object pixels (pixels
with value 1). If the central pixel is an object pixel and at least one of the pixels in the
neighborhood is an non-object pixel, the central pixel is deleted as an object pixel (it
becomes a background pixel, value 0). The exact definition of the neighborhood
depends upon the connectivity argument "con".
Connectivity can be 4 or 8 connected, but also 48 or 84 can be specified, allowing for
alternating connectivity on each iteration to approach a 6 connected neighborhood.
With the "bound" argument the pixels around the edge of the image are either taken as
1 or 0.

The effect of this operation is the deletion of the object contours. The number of
contours deleted depends upon "iter".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
dilation3x3 arbit_erosion

SCIL_Image 1.4 – Reference Manual

135

err_report
NAME

err_report - report on last error in silo package

SYNOPSIS
#include "silo.h"

void err_report(void)

DESCRIPTION
The silo package keeps track of errors in the variable "silo_err". This function gives a
description of the last error that did occur. If no error has occurred, nothing will happen.

The error convention used in the silo package is as follows:
A positive (non zero) number is returned if no error occurred.

Zero is returned if a pointer error has occurred.

A negative number is returned on all other errors.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

136

eval
NAME

eval - dynamic grey/float valued image expression evaluation

SYNOPSIS
#include "im_proto.h"

int eval(char *expression, int border)

DESCRIPTION
The command eval() enables the user to do simple operations on images, using a very
intuitive syntax. The images may be either GREY_2D or FLOAT_2D or any
combination of these two types. The type of the resulting image is the type the right-
hand of the assignment evaluates to.

For example to add the images A and B pixel wise and store the result in C the
command:

eval "C=A+B"

is all it takes. Addition of images is not limited to two input images, the command:

eval "D=A+B+C"

can also be used. Images can even be used more than once in the same command:

eval "A=(B+C)*B"

The operands in the eval() expression are not restricted to images, constants can also
be used. The next command shows how to calculate the non-linear Laplace of the
original image A.

grey_erosion A B 5 5
grey_dilation A C 5 5
eval "D=-B+2*A-C"

Constants can be of type integer (octal, decimal or hexadecimal) or floating point.

Example: (examples are given in a simplified notation)
octal eval a=021
decimal eval a=17
hexadecimal eval a=0x11
floating point eval a=17.0

eval a=1.7e1

Although the calculations done with eval() are slower than using compiled routines
the advantages are obvious:

i) grey-valued intermediate results are calculated in 32 bit precision, only the
final result is converted to 16 bits, and

ii) the simple syntax makes it very easy to use.

SCIL_Image 1.4 – Reference Manual

137

Not only pixel wise expressions are supported in the eval() command, it is also
possible to define neighborhood operations using image indexes. The indexes can also
be expressions. Expressions can be up to, plus or minus, the size of the image.

Example:
eval a=a[1+1,1-1]
eval a=a[256,0] (valid if x > 256)
eval a=a[0,-256] (valid if y > 256)

The following command calculates the Laplacian of image A and stores the result in
B:

eval "B = 4 * A - A[1,0] - A[0,1] - A[-1,0] - A[0,-1]"

When using this feature do not expect great speed. Just experiment with it.

The second feature of eval() which is of great use is the availability of the x and y
coordinates of the pixel which is processed. The next command makes a grey value
ramp in image A:

eval "A=xx"

Note that the x coordinate is known under the name xx. The y coordinate is known
under the name yy. To calculate an image A[x,y]=sqrt(x*x+y*y) use something like:

eval "A=sqrt((xx-128)*(xx-128) + (yy-128)*(yy-128))"

As can be seen from the previous example some mathematical functions are available
in the eval() command. The following functions can be used:

abs(), cbrt(), exp(), hypot(), log(), pow(), sqrt() and rnd()

The third most important feature in eval() is the use of conditional expressions. To
generate a circle with its center at position 128,128 and radius 100 use:

eval "A=(((xx-128)*(xx-128)+(yy-128)*(yy-128))>10000)?255:0"

Another example of the use of a conditional expression is given below where an
image is thresholded at a level of 128:

eval "A= (B > 128) ? 255 : 0"

Also Boolean operators are allowed in the eval() command. To set a single point in
the center of image A use:

eval "A = ((xx==128)&&(yy==128)) ? 255 : 0"

Parser

SCIL_Image 1.4 – Reference Manual

138

The parser accepts the operators listed below, they are standard C except for the "&+"
(max) and "&-" (min) operators. It uses the priorities and associativities as defined in
"The C programming language" by Kernighan and Ritchie(pages 214-215).

The associativity and precedence of the "&+" and "&-" operators are chosen to be
those of the "+" and "-", this is an arbitrary choice, other choices may be "better".

OPERATORS ASSOCIATIVITY PRECEDENCE

 () [] left-associative HIGHEST
- ! ~ right_associative
* / % left_associative
+ - &+ &- left_associative
>> << left_associative
< > <= >= left_associative
== != left_associative
& left_associative
^ left_associative
| left_associative
&& left_associative
|| left_associative
? : right_associative LOWEST

The "border" parameter in the eval() command determines the border handling when
doing indexed image access. For instance the command:

eval "B=A[-10,0]", 0

tries to access pixels with x coordinate less than zero for xx<10. If "border" equals -1
the image is mirrored in its borders. This option is useful for linear filters. The second
option is to set border to a value (any value but -1). Now pixels outside the actual
image are assumed to have the "border" value. This option is most often used in non-
linear filters.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

139

even_ok
NAME

even_ok - check if a value is a even integer value

SYNOPSIS
#include "im_infra.h"

int even_ok(int value, char *text)

DESCRIPTION
The parameter "value" is checked to see if it is an even value. If it is not an even value
an error is generated and the following message is added to the error-stack:

<text> [<value>] should be even

RETURN VALUES
IE_OK (1) if the value is even
IE_NOT_OK (0) if the value is odd

SEE ALSO
odd_ok

SCIL_Image 1.4 – Reference Manual

140

EventType
NAME

EventType - obtain the type of an event

SYNOPSIS
#include "disp_p.h"

int EventType(IM_EVENT event)

DESCRIPTION
EventType can be used to find out the type of an obtained "event". The type returns
the type of event as one of the symbolic values:

PRESS_EVENT
RELEASE_EVENT
MOVE_EVENT
KEYBOARD_EVENT

These symbolic values are defined in the include file "imwindow.h"

EventType can only be used after a call to the "point_im" routine which returns an
event as one of its arguments.

EXAMPLE
#include "disp_p.h"
#include "imwindow.h"
#include "image.h"

IMAGE *ip;
int x, y;
int val;
IM_EVENT event;

while (point_im(&ip, &x, &y, &event) != ’q’) {
val = EventType(event);
if (val == PRESS_EVENT) printf("Press\n");
if (val == RELEASE_EVENT) printf("Release\n");
if (val == MOVE_EVENT) printf("Move\n");
if (val == KEYBOARD_EVENT) printf("Key\n");

}

RETURN VALUES
The type of the event as defined in the include file "imwindow.h"

PRESS_EVENT
RELEASE_EVENT
MOVE_EVENT
KEYBOARD_EVENT

SEE ALSO
point_im MousePress MouseRelease MouseMove IsMouseDown KeyPressed

SCIL_Image 1.4 – Reference Manual

141

exit

_exit
NAME

exit, _exit - terminate process

SYNOPSIS
void exit(int status)

void _exit(int status)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

exit() is the normal means of terminating a process. Exit closes all the process’s files
and notifies the parent process if it is executing a wait. The low-order 8 bits of status
are available to the parent process.

This call can never return.

The C function exit may cause cleanup actions before the final "sys exit". The
function "_exit" circumvents all cleanup, and should be used to terminate a child
process after a fork(2) to avoid flushing buffered output twice.

RETURN VALUES
The function does not return

SCIL_Image 1.4 – Reference Manual

142

exp

log

log10

pow

sqrt
NAME

exp, log, log10, pow, sqrt - exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp(double x)

double log(double x)

double log10(double x)

double pow(double x, double y)

double sqrt(double x)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

exp returns the natural exponent function of "x".

log returns the natural logarithm of "x".

log10 returns the base 10 logarithm.

pow returns "x"**"y", "x" to the "y" power.

sqrt returns the square root of "x".

RETURN VALUES
exp() and pow() return a huge value when the correct value would overflow; errno is
set to ERANGE.

pow() returns 0 and sets errno to EDOM when the second argument is negative and
nonintegral and when both arguments are 0.

log() returns 0 when "x" is zero or negative; errno is set to EDOM.

sqrt() returns 0 when "x" is negative; errno is set to EDOM.

SEE ALSO

SCIL_Image 1.4 – Reference Manual

143

hypot sinh

exp_im
NAME

exp_im - natural exponentiation

SYNOPSIS
#include "im_proto.h"

int exp_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Raise the base "e" to the power of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
exp10_im ln_im

SCIL_Image 1.4 – Reference Manual

144

exp10_im
NAME

exp10_im - 10 based exponentiation

SYNOPSIS
#include "im_proto.h"

int exp10_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Raise the base 10 to the power of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
exp_im ln_im log10_im

SCIL_Image 1.4 – Reference Manual

145

expand
NAME

expand - enable/disable command expanding

SYNOPSIS
expand <mode>

DESCRIPTION
The SCIL environment is provided with a command expander, which forms a
command layer on top of the C interpreter syntax.

In the command expander mode commands may be abbreviated, and need no C
punctuation. If arguments are missing defaults resident in a commando description file
will be inserted. All given arguments are checked for legitimate values.

With a question mark "?" as an argument a prompt range and default is generated.

"mode" is 1 enable the command expansion, "mode" is 0 disable it.

EXAMPLE
[C1] expand 1
[C2] readf ?
Filename [trui.im] :
Image <A|B|C|D> [A] :
[C3] expand 0
[C4] readf ?
readf ?--> variable used but not declared
[C5]

SCIL_Image 1.4 – Reference Manual

146

fabs

floor

ceil
NAME

fabs, floor, ceil - absolute value, floor, ceiling functions

SYNOPSIS
#include <math.h>

double floor(double x)

double ceil(double x)

double fabs(double x)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

fabs() returns the absolute value |"x"|.

floor() returns the largest integer not greater than "x".

ceil() returns the smallest integer not less than "x".

SEE ALSO
abs

SCIL_Image 1.4 – Reference Manual

147

fast_fourier
NAME

fast_fourier - Fast Fourier Transform

SYNOPSIS
#include "im_proto.h"

int fast_fourier(IMAGE *in, IMAGE *out, int direction)

DESCRIPTION
Calculate the forward or reverse fourier transform of the image "in" and store the
result in the image "out". The forward transform is performed if direction = 1, and the
reverse is performed if direction = 0. The algorithm is based upon the radix-2 fast
Fourier transform. The result is scaled with a factor 1/sqrt(M*N), sqrt being the square
root and M and N being the dimension of the operand in x- and y-direction. The
definition of the frequency domain representation corresponds with the so-called
"optical Fourier transform", which means that the frequency components range from -
fs/2 to +fs/2 and the zero frequency resides in the center of the image "out", fs being
the spatial sampling frequency in the corresponding direction. If the pixel coordinates
within the image where the frequency domain representation resides range from

i = 0 to N-1 for the x-direction and
j = 0 to M-1 for the y-direction,

the pixel with coordinates (i,j) corresponds with the frequency components:

fx = (i - N/2) / (N * dx) and
fy = (j - N/2) / (N * dy),

dx and dy being the sample intervals in the x-and y-direction in the image where
spatial domain representation resides.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fast_hartley

SCIL_Image 1.4 – Reference Manual

148

fast_hartley
NAME

fast_hartley - Fast Hartley Transform

SYNOPSIS
#include "im_proto.h"

int fast_hartley(IMAGE *in, IMAGE *out, int norescaling)

DESCRIPTION
Calculate the Hartley transform of the image "in" and store the result in the image
"out". The Hartley transform is symmetric; the forward transform is the same as its
reverse. The algorithm is based upon the radix-2 fast Hartley transform. The result is
scaled with a factor 1/sqrt(M*N),M and N being the dimension of the operand in x-
and y-direction. If "norescaling" is True (1), no scaling is performed.

The definition of the frequency domain representation corresponds with the so-called
"optical Fourier transform", which means that the frequency components range from
-fs/2 to +fs/2 and the zero frequency resides in the center of the image "out", fs being
the spatial sampling frequency in the corresponding direction. If the pixel coordinates
within the image where the frequency domain representation resides range from

i = 0 to N-1 for the x-direction and j = 0 to M-1 for the y-direction,

the pixel with coordinates (i,j) corresponds with the frequency components:

fx = (i - N/2) / (N * dx) and fy = (j - N/2) / (N * dy),

dx and dy being the sample intervals in the x-and y-direction in the image where
spatial domain representation resides.

LITERATURE
R.N. Bracewell, "Discrete Hartley Transform", Optical Society of America,
pp.1832-1835, 1983.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fast_fourier

SCIL_Image 1.4 – Reference Manual

149

fblow
NAME

fblow - interpolating image blow-up

SYNOPSIS
#include "im_proto.h"

int fblow(IMAGE *in, IMAGE *out, double hfact, double vfact, double
dfact, int adjust)

DESCRIPTION
Blow image "in" with a horizontal factor "hfact", a vertical factor "vfact" and depth
factor "dfact" by linear interpolation and store the result in image "out". The sizes of
the output image "out" are not adjusted to fit the result, only when the parameter
"adjust" is true (not zero), the sizes of "out" will be adjusted.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
blow reduce

SCIL_Image 1.4 – Reference Manual

150

fclose

fflush
NAME

fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose(FILE *stream)

int fflush(FILE *stream)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

fclose() causes any buffers for the named "stream" to be emptied, and the file to be
closed. Buffers allocated by the standard input/output system are freed to be used with
another fopen.

fclose() is performed automatically upon calling exit(2).

fflush() causes any buffered data for the named output "stream" to be written to that
file. The stream remains open.

RETURN VALUES
These routines return EOF if stream is not associated with an output file, or if buffered
data cannot be transferred to that file.

SEE ALSO
close fopen setbuf

fft
NAME

fft

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See fast_fourier

SCIL_Image 1.4 – Reference Manual

151

fg_buffers

fgr_buffers
NAME

fg_buffers, fgr_buffers - get the number of available image buffers

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_buffers(void)

int WINAPI fgr_buffers(void)

DESCRIPTION
fg_buffers() returns the number of buffers of the grabber that can be used to grab
images to. Framegrabbers may be able to rearrange their available memory depending
on the size of the grab-region and the roi settings. So when changing the sizes of the
region with fg_setres() or fg_setroi(), the number of available image buffers may
change.

fgr_buffers(): see fg_buffers().

RETURN VALUES
the number of available image buffers.
0 on failure

SEE ALSO
fg_grab

SCIL_Image 1.4 – Reference Manual

152

fg_channels

fgr_channels
NAME

fg_channels, fgr_channels - get the number of available channels

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_channels(void)

int WINAPI fgr_channels(void)

DESCRIPTION
fg_channels() returns the number of available video input channels. An RGB signal is
defined to be one channel of type FG_TYPE_RGB.

fgr_channels() : see fg_channels().

RETURN VALUES
The number of available channels on success
0 on failure

SEE ALSO
fg_type

SCIL_Image 1.4 – Reference Manual

153

fg_close

fgr_close
NAME

fg_close, fgr_close - close the frame grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_close(void)

int WINAPI fgr_close(void)

DESCRIPTION
fg_close() closes the framegrabber and tries to unload the grabber DLL from memory

fgr_close() must close/reset the grabber. Most grabbers require some cleanup, freeing
of memory and releasing of the hardware to reset the grabber board to a state it can be
used by other application.

RETURN VALUES
1 on success
0 on failure

SEE ALSO
fg_load fg_init

SCIL_Image 1.4 – Reference Manual

154

fg_depth

fgr_depth

fg_maxdepth

fgr_maxdepth
NAME

fg_depth, fgr_depth - get the pixel depth of the grabber

fg_maxdepth, fgr_maxdepth - get the maximum pixel depth of the grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_depth(void)

int WINAPI fgr_depth(void)

int fg_maxdepth(void)

int WINAPI fgr_maxdepth(void)

DESCRIPTION
fg_depth() returns the actual pixel depth from the grabber.

fg_maxdepth() returns the maximum pixel depth the grabber can grab at. For full
color grabbers (RGB grabbers), the pixel depth for one color component is returned.

fgr_depth(): see fg_depth().

fgr_maxdepth(): see fg_maxdepth().

RETURN VALUES
fg_depth (fgr_depth) returns the actual pixel depth of the grabber
fg_maxdepth (fgr_maxdepth) returns the maximum pixel depth of the grabber.

SEE ALSO
fg_setdepth

SCIL_Image 1.4 – Reference Manual

155

fg_exec

fgr_exec
NAME

fg_exec, fgr_exec - execute grabber specific function

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_exec(const void *input, int ilength, void *output, int
olength)

int WINAPI fgr_exec(const void *input, int ilength, void *output, int
olength)

DESCRIPTION
fg_exec() is a hook to call grabber specific functions. The contents and layout of the
parameters are undefined and left to the programmer of the DLL. Usage of this
function is inherently not portable between grabbers.

If any data is transported to or from the grabber to host memory, this must be
indicated by the "input" and "output" pointers and "ilength" and "olength" counts. The
return value must then be the amount of bytes transported to "output" (in a 16 bits
DLL the data is buffered and "input" and "output" together may not exceed 64 KB).

fgr_exec(): see fg_exec().

RETURN VALUES
any value except 0 is considered a good-status.
0 on failure

SCIL_Image 1.4 – Reference Manual

156

fg_gain

fgr_gain

fg_setgain

fgr_setgain
NAME

fg_gain, fgr_gain - retrieve the gain of the video signal

fg_setgain, fgr_setgain - set the gain of the video signal

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_gain(int *pgain)

int WINAPI fgr_gain(int *pgain)

int fg_setgain(int gain)

int WINAPI fgr_setgain(int gain)

DESCRIPTION
fg_setgain() sets the gain of the video signal before A/D conversion. The actual gain
value to use is "gain"/256. So "gain" =256 means a gain of 1.0 for the grabber.
Input values will be converted to appropriate values for the grabber. Input values out
of range will be clipped to the maximum or minimum board setting.

fg_gain() retrieves the gain used for the video signal and stores it the integer pointed
to by "pgain". The actual gain value is "*pgain"/256.

fgr_setgain() : see fg_setgain().

fgr_gain(): see fg_gain().

RETURN VALUES
1 on success
0 on failure

SEE ALSO
fg_offset fg_setoffset

SCIL_Image 1.4 – Reference Manual

157

fg_get_datasize

fgr_get_datasize
NAME

fg_get_datasize, fgr_get_datasize - get the size of one pixel in bits

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_get_datasize(void)

int WINAPI fgr_get_datasize(void)

DESCRIPTION
fg_get_datasize() returns the number of bits that one pixel from the grabber occupies
in memory rounded to byte size. E.g. a 12 bits grey-value grabber returns 16 (two
bytes), a full color grabber with 8 bits per color and a pad-byte returns 32. If the
grabber supports grabbing at different depths, the datasize of the currently set depth is
returned.

fgr_get_datasize(): see fg_get_datasize()

RETURN VALUES
The memory requirement for one pixel of the grabber

SEE ALSO
fg_type fg_depth

SCIL_Image 1.4 – Reference Manual

158

fg_get_last_error

fgr_get_last_error
NAME

fg_get_last_error, fgr_get_last_error - get error message on last error

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

const char *fg_get_last_error(void)

int WINAPI fgr_get_last_error(char *storage)

DESCRIPTION
fg_get_last_error() returns a pointer to a static string buffer containing a message on
the last occurred error. The buffer is not overwritten until the next call to a
framegrabber function.

fgr_get_last_error() must store a string describing the last occurred error in the buffer
pointed to by "storage". "storage" can contain a string of maximum 256 bytes
(including terminator). The DLL must store its error messages in such a way that it
can at any time retrieve the string describing the last occurred error. It is
recommended for the DLL to declare a static buffer "static char
fgr_error_message[256]" and store the error message in that buffer. See also the
function fgr_set_error_message() in the include file "scilgrab.h". fgr_get_last_error()
then only has to copy the local buffer to the "storage".

RETURN VALUES
1 on success
0 on failure

SCIL_Image 1.4 – Reference Manual

159

fg_get_rgb_order

fgr_get_rgb_order
NAME

fg_get_rgb_order, fgr_get_rgb_order - get the memory layout of a RGB triplet

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_get_rgb_order(void)

int WINAPI fgr_get_rgb_order(void)

DESCRIPTION
fg_get_rgb_order() returns the memory layout a RGB triplet of a full color
framegrabber. Possible values are

FG_ORDER_RGB: the RGB values are stored contiguously in memory, no
padding.

FG_ORDER_RGBX,
FG_ORDER_XRGB: the RGB triplets are stored using an extra pad-byte

before or after the triplet.

FG_ORDER_BGRX,
FG_ORDER_XBGR: the RGB triplets are stored in reverse order using an

extra pad-byte before or after the triplet.

fgr_get_rgb_order(): see fg_get_rgb_order().

NOTE
Currently, the SCIL_Image interactive grab-windows only support the native
SCIL_Image RGB triplet layout: FG_ORDER_RGBX.

RETURN VALUES
The layout of the RGB triplets on success
0 on failure

SEE ALSO
fg_get_datasize

SCIL_Image 1.4 – Reference Manual

160

fg_getdata

fgr_getdata
NAME

fg_getdata, fgr_getdata - retrieve imagedata from the grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_getdata(int framenumber, void *storage, int offsetx, int
offsety, int incrx, int incry, int countx, int county, int type)

int WINAPI fgr_getdata(int framenumber, void *storage, int offsetx,
int offsety, int incrx, int incry, int countx, int county, int type)

DESCRIPTION
fg_getdata() copies data from frame "framenumber" in the grabbers memory to host
memory pointed to by "pstorage". Which pixels must be copied is described by the
offsets ("offsetx" , "offsety"), increments ("incrx", "incry") and counts ("countx",
"county"). The data will be copied row by row, first the row with the lowest offset.
Positions in a frame are calculated with respect to the upper-left corner of the roi and
the increments of the roi (see fg_setroi()) must be multiplied with the increments of
fg_getdata().

"type" indicates the type of data to be transferred, for a list of possible value see
fg_type(). The type must correspond with the type as previously set with fg_settype()
or be a "subtype" of that type. E.g. if the type was set to FG_TYPE_RGB, it is also
allowed to request for FG_TYPE_GREY (grey value can be calculated from RGB1) or
just one color component like FG_TYPE_RED. For grey value grabbers, only
FG_TYPE_GREY is allowed.

The depth of the transported data must be the same as set with fg_setdepth(). In the
destination buffer "pstorage", the data must be aligned to byte-boundary. E.g. a 12 bits
grabber must convert its data to 16 bits data (see also fg_depth(), fg_setdepth() and
fg_get_datasize()).

fgr_getdata(): see fg_getdata().

1 grey value (intensity) = 0.299 * red + 0.587 * green + 0.114 * blue.

RETURN VALUES
The number of retrieved scanlines on success
0 on failure

SEE ALSO
fg_grab_image fg_grab fg_type fg_setroi

SCIL_Image 1.4 – Reference Manual

161

fg_grab

fgr_grab

fg_freeze

fgr_freeze
NAME

fg_grab, fgr_grab - start the grabber

fg_freeze, fgr_freeze - stop the grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_grab(int firstchan, int firstbuf, int nchannels)

int WINAPI fgr_grab(int firstchan, int firstbuf, int nchannels)

int fg_freeze(void)

int WINAPI fgr_freeze(void)

DESCRIPTION
fg_grab() starts the grabber to grab continuously, grabbing "nchannels" input
channels (channel "firstchan", "firstchan" +1, ..) simultaneously. The result must be
stored in the framebuffers "firstbuf", "firstbuf" + 1,.. Channel and buffer numbers start
from zero. Grabbing continues until the function fg_freeze() is called.

fgr_grab() : see fg_grab().

fgr_freeze() : see fg_freeze().

RETURN VALUES
1 on success
0 on failure

SEE ALSO
fg_getdata fg_grab_series fg_grab_next

SCIL_Image 1.4 – Reference Manual

162

fg_grab_image
NAME

fg_grab_image - grab an image from the framegrabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"
#include "image.h"

int fg_grab_image(IMAGE *out, int chan, int width, int height, int
slices, int hstep, int vstep, int tstep, int offx, int offy)

DESCRIPTION
fg_grab_image() grabs an image from the framegrabber and stores it in image "out".
The image is grabbed from the channel "chan". "width" and "height" indicate the X
and Y size of the region to be grabbed. "slices" is the number of frames that should be
grabbed. If "width", "height" or "slices" is set to 0, the corresponding size of the
output image "out" is taken for that parameter. "hstep" and "vstep" can be used to skip
pixels in the X and Y direction. E.g. hstep = 1 means using all the pixels from the
grabber, hstep = 2 means using every second pixels from the grabber, etc. "tstep" can
be used to skip entire frames. "offx" and "offy" indicate the offset from the upper-left
corner of the grabber-image.

RETURN VALUES
None

SEE ALSO
fg_grab fg_getdata

SCIL_Image 1.4 – Reference Manual

163

fg_grab_next

fgr_grab_next
NAME

fg_grab_next, fgr_grab_next - grab next frame using current settings

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_grab_next(void)

int WINAPI fgr_grab_next(void)

DESCRIPTION
Some grabbers do not support continues grabbing, they can only grab one frame and
then must be given an new command to grab another frame. fg_grab_next() grabs a
frame using all the current settings.

fgr_grab_next() : see fg_grab_next().

NOTE
Framegrabbers that do support continues grabbing should not implement this function
in the DLL.

RETURN VALUES
1 on success
0 on failure

SEE ALSO
fg_getdata fg_grab

SCIL_Image 1.4 – Reference Manual

164

fg_grab_series

fgr_grab_series
NAME

fg_grab_series, fgr_grab_series - grab a series of images

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_grab_series(int startchannel, int startbuffer, int nchannels,
int nbuffers, int nskip)

int WINAPI fgr_grab_series(int startchan, int startbuf, int
nchannels, int nbuffers, int nskip)

DESCRIPTION
fg_grab_series() grabs a number of images as fast as possible. The channels
"startchan", "startchan"+1, ... will be read "nbuf" times and put into "startbuf",
"startbuf"+1, "nskip" gives the possibility to slow down the process. After grabbing
a frame for all channels, the function waits for "nskip" frames before grabbing again a
frame for all channels. Actually the function executes "nskip" dummy grabs.

Channels and buffers are numbered 0, 1, ...

Reading can be done in one of two modes:
 - FG_GRAB_CHANNELS :
 The frames are stored in the following order:
 - all frames of channel "startchan"
 - all frames of channel "startchan"+1
 - ...

 - FG_GRAB_FRAMES
 The frames are stored in the order:
 - the frames of channel "startchan", "startchan"+1, …. for time 1
 - the frames of channel "startchan", "startchan"+1, …. for time 2
 - ...

fgr_grab_series(): see fg_grab_series

RETURN VALUES
Either FG_GRAB_CHANNELS or FG_GRAB_FRAMES on success
0 on failure

SEE ALSO
fg_grab fg_getdata

SCIL_Image 1.4 – Reference Manual

165

fg_init

fgr_init
NAME

fg_init, fgr_init - loads the DLL and initialize the frame-grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_init(const char *initfile)

int WINAPI fgr_init(const char *initfile)

DESCRIPTION
fg_init() tries to load the DLL specified with the fg_load() command and when
successful initializes the frame-grabber. "initfile" is the name of a file in which
grabber specific configurations are stored that may be needed by the frame-grabber. In
most cases this file will typically be a camera-configuration file. The layout and
contents of the file is defined by the creator of the DLL. If "initfile" == NULL (or an
empty string), the grabber will be initialized with default setting.

fgr_init(): see fgr_init().

RETURN VALUES
Version number of the framegrabber API (SCIL_GRAB_VERSION from scilgrab.h)

SEE ALSO
fg_load fg_close

SCIL_Image 1.4 – Reference Manual

166

fg_load
NAME

fg_load - specify grabber DLL

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_load(const char *dllname)

DESCRIPTION
Specify the name of the framegrabber DLL that is to be used in all subsequent fg_….
functions.

NOTE
The framegrabber DLL is not actually loaded until the next call to a framegrabber
function (fg_…. function)

RETURN VALUES
Always 1

SEE ALSO
fg_close

SCIL_Image 1.4 – Reference Manual

167

fg_maxwidth

fgr_maxwidth

fg_maxheight

fgr_maxheight
NAME

fg_maxwidth, fgr_maxwidth - get the maximum allowed image width of the grabber

fg_maxheight, fgr_maxheight - get the maximum allowed image height of the
grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_maxwidth(void)

int WINAPI fgr_maxwidth(void)

int fg_maxheight(void)

int WINAPI fgr_maxheight(void)

DESCRIPTION
fg_maxwidth() and fg_maxheight() return the maximum allowed image sizes (width
and height) of the grabber. The sizes of the images that can be grabbed usually depend
on the supplied video signal and/or the attached camera.

fgr_maxwidth() and fgr_maxheight(): see fg_maxwidth() and fg_maxheight()

RETURN VALUES
fg_maxwidth (fgr_maxwidth) returns the maximum allowed image width
fg_maxheight (fgr_maxheight) returns the maximum allowed image height

SEE ALSO
fg_width fg_minwidth fg_height fg_minheight fg_setres

SCIL_Image 1.4 – Reference Manual

168

fg_minwidth

fgr_minwidth

fg_minheight

fgr_minheight
NAME

fg_minwidth, fgr_minwidth - get the minimum allowed image width of the grabber

fg_minheight, fgr_minheight - get the minimum allowed image height of the grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_minwidth(void)

int WINAPI fgr_minwidth(void)

int fg_minheight(void)

int WINAPI fgr_minheight(void)

DESCRIPTION
fg_minwidth() and fg_minheight() return the minimum image sizes (width and height)
of the grabber. Often grabbers have a hardware related minimum size of the images
they can grab.

fgr_minwidth() and fgr_minheight(): see fg_minwidth() and fg_minheight()

RETURN VALUES
fg_minwidth (fgr_minwidth) returns the minimum allowed image width.
fg_minheight (fgr_minheight) returns the minimum allowed image height.

SEE ALSO
fg_width fg_maxwidth fg_height fg_maxheight fg_setres

SCIL_Image 1.4 – Reference Manual

169

fg_offset

fgr_offset

fg_setoffset

fgr_setoffset
NAME

fg_offset, fgr_offset - retrieve the offset of the video signal

fg_setoffset, fgr_setoffset - set the offset of the video signal

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_offset(int *poffset)

int WINAPI fgr_offset(int *poffset)

int fg_setoffset(int offset)

int WINAPI fgr_offset(int offset)

DESCRIPTION
fg_setoffset() sets the offset of the video signal before A/D conversion. The offset
value is specified in millivolts (mV). Input values out of range will be clipped to the
maximum or minimum board setting.

fg_offset() retrieves the offset used for the video signal and stores it the integer
pointed to by "poffset". The offset value is given in millivolts (mV).

fgr_setoffset() : see fg_setoffset().

fgr_offset(): see fg_offset().

RETURN VALUES
1 on success
0 on failure

SEE ALSO
fg_gain fg_setgain

SCIL_Image 1.4 – Reference Manual

170

fg_set_input_lut

fgr_set_input_lut
NAME

fg_set_input_lut, fgr_set_input_lut - set input lookup table

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_set_input_lut(const void *ptable, int nelem)

int WINAPI fgr_set_input_lut(const void *ptable, int nelem)

DESCRIPTION
fg_set_input_lut() loads an input lookup table into the grabbers memory. "ptable"
points to an array of "nelem" pixel values. For 8-bits grabbers the input values must be
of type "unsigned char". For a grabber up to 16 bits (but over 8-bits), the elements
must be of type "unsigned short" etc. If "nelem" is less the actual length of the input
lookup-table, remaining values must be set to zero

fgr_set_input_lut(): see fg_set_input_lut().

RETURN VALUES
1 on success
0 on failure

SCIL_Image 1.4 – Reference Manual

171

fg_setdepth

fgr_setdepth
NAME

fg_setdepth, fgr_setdepth - set the pixeldepth to a given value

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_setdepth(int depth)

int WINAPI fgr_setdepth(int depth)

DESCRIPTION
fg_setdepth() sets the pixeldepth of the grabber to "depth", if the grabber cannot grab
at the given depth, another depth (determined by the grabber) is used, which is also
returned. For full color grabbers, the depth of one color component is returned.

fgr_setdepth(): see fg_setdepth(). If the grabber hardware does not support the
requested depth, the depth must be set to a value the grabber can support and this
value must be returned.

RETURN VALUES
The new pixeldepth (may be different than the one supplied)

SEE ALSO
fg_depth fg_maxdepth

SCIL_Image 1.4 – Reference Manual

172

fg_setres

fgr_setres
NAME

fg_setres, fgr_setres - set the sizes of the image in the grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_setres(int width, int height)

int WINAPI fgr_setres(int width, int height)

DESCRIPTION
fg_setres() sets the sizes of the image to grab to "width" and "height". These sizes may
be rounded by the grabber to a higher value (not exceeding the maximum allowed
sizes) if the grabber hardware does not support the given sizes. This can be checked
with fg_width() and fg_height(), these should then return the sizes the grabber can
support.

fgr_setres(): see fg_setres(). If the grabber hardware does not support the given size,
the sizes must be converted to the nearest higher size the grabber can support, off
course never exceeding the maximum allowed sizes of the grabber.

RETURN VALUES
1 on success
0 on failure

SEE ALSO
fg_setroi fg_width fg_height fg_minwidth fg_maxwidth fg_minheight
fg_maxheight

SCIL_Image 1.4 – Reference Manual

173

fg_setroi

fgr_setroi
NAME

fg_setroi, fgr_setroi - set region of interest in the image

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_setroi(int ox, int oy, int ix, int iy, int cx, int cy)

int WINAPI fgr_setroi(int ox, int oy, int ix, int iy, int cx, int cy)

DESCRIPTION
fg_setroi() specifies within the sizes of the grabber image a roi (Region Of Interest) to
be used for data acquisition. The roi start at position ("ox", "oy") from the upper-left
corner of the image. "cx" and "cy" are the number of pixels in the X and Y direction in
the ROI and "ix" and "iy" are the increments i.e. the distance between two pixels of
the ROI in the image itself. E.g. "ix" = 2 means that every second pixel in the X
direction of the image is part of the ROI.

fgr_setroi(): see fg_setroi().

RETURN VALUES
1 on success
0 on failure

SEE ALSO
fg_getdata fg_setres

SCIL_Image 1.4 – Reference Manual

174

fg_type

fgr_type

fg_settype

fgr_settype
NAME

fg_type, fgr_type - get the image type of the grabber

fg_settype, fgr_settype - set the image type of the grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_type(int *ptype)

int WINAPI fgr_type(int *ptype)

int fg_settype(int type)

int WINAPI fgr_settype(int type)

DESCRIPTION
The images type supported for grabbing are:

FG_TYPE_GREY: grab grey value images, only type a grey value grabber
can support.

FG_TYPE_RGB: grab full color images, the default for a color grabber.

FG_TYPE_RED,
FG_TYPE_GREEN,
FG_TYPE_BLUE: grab a single color component from an RGB video

signal.

fg_type() retrieves the grab type the grabber is set at, the value is returned in the
integer pointed to by "ptype".

fg_settype() sets the grab type of the grabber board to "type" -which must be on of the
above listed value-. If the grabber does not support the requested grab type, the
function sets the grab type to a value it can support and returns that value.

fgr_type(): see fg_type()

fgr_settype(): see fg_settype()

SCIL_Image 1.4 – Reference Manual

175

RETURN VALUES
fg_settype (and fgr_settype) returns the grab type actually set or
0 on failure

fg_type (and fgr_type) returns 1 on success and
0 on failure

SEE ALSO
fg_getdata

SCIL_Image 1.4 – Reference Manual

176

fg_width

fgr_width

fg_height

fgr_height
NAME

fg_width, fgr_width - get the actual image width of the grabber

fg_height, fgr_height - get the actual image height of the grabber

PLATFORM
MS-Windows.

SYNOPSIS
#include "scilgrab.h"

int fg_width(void)

int WINAPI fgr_width(void)

int fg_height(void)

int WINAPI fgr_height(void)

DESCRIPTION
fg_width() and fg_height() return the actual settings of the width and height of the
image in the grabber.

fgr_width() and fgr_height(): see fg_width() and fg_height().

RETURN VALUES
fg_width (fgr_width) returns the image width
fg_height (fgr_height) returns the image height

SEE ALSO
fg_setres fg_minwidth fg_maxwidth fg_minheight fg_maxheight

SCIL_Image 1.4 – Reference Manual

177

fgetpos

fsetpos
NAME

fgetpos, fsetpos - manipulate pointer position in a stream

SYNOPSIS
#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *ptr)

int fsetpos(FILE *stream, fpos_t *ptr)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

fgetpos() records the current position in "stream" in "*ptr", for subsequent use by
fsetpos() . The type fpos_t is suitable for recording such values.

fsetpos() positions "stream" at the position recorder by fgetpos() in "*ptr".

RETURN VALUES
fgetpos() and fsetpos() return non-zero on error.

SEE ALSO
ftell fseek

SCIL_Image 1.4 – Reference Manual

178

fgreater0_ok
NAME

fgreater0_ok - check if a float value is bigger than zero

SYNOPSIS
#include "im_infra.h"

int fgreater0_ok(double value, char *text)

DESCRIPTION
The floating point value "value" is checked to see if it is greater than zero or not. If it
is zero or negative an error is generated and the following message is added to the
error-stack:

<text> [<value>] must be bigger than 0

NOTE
This function can only handle float values, to check on integer values, use the function
greater0_ok().

RETURN VALUES
IE_OK (1) if the value is bigger than zero
IE_NOT_OK (0) if it is zero or negative

SEE ALSO
greater0_ok fpositive_ok

SCIL_Image 1.4 – Reference Manual

179

filter_energy_ratio
NAME

filter_energy_ratio - calculates discriminative power of a filter

SYNOPSIS
#include "im_proto.h"

double filter_energy_ratio(IMAGE *in1, IMAGE *in2, IMAGE *filter)

DESCRIPTION
These functions calculate the energy ratio between the images "in1" and "in2" for
filter image "filter". This ratio is a measure of the discriminative power of "filter"
between pattern "in1" and pattern "in2". It is assumed that the mean value of the filter
is zero. The ratio is calculated by taking the ratio of the variance between both images
after convolution by "filter". The ratio is corrected for the (maybe different) size of the
input images.

RETURN VALUES
The energy ratio

SEE ALSO
benke

flip
NAME

flip - rotate an image on X, Y or Z axis over 90, 180 or 270 degrees

SYNOPSIS
#include "im_proto.h"

int flip(IMAGE *in, IMAGE *out, int axis, int angle)

DESCRIPTION
flip() rotates the image "in" over angle of 90, 180 or 270 degrees on either the X, Y or
Z axis of the image. The result is stored in the image "out". Two dimensional images
can only be rotated on the Z axis. "axis" specifies the axis on which to rotate, X=1,
Y=2 and Z=3. The angle "angle" must be specified in degrees, so valid angles are 90,
180 and 270.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
rotate

SCIL_Image 1.4 – Reference Manual

180

fmod

frexp

ldexp

modf
NAME

fmod, frexp, ldexp, modf - manipulate part of floating point numbers

SYNOPSIS
#include <math.h>

double fmod(double x, double y)

double frexp(double x, int *exp)

double ldexp(double x, int n)

double modf(double x, double *ip)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

fmod() returns the floating-point remainder of "x/y", with the same sign as "x". If "y"
is zero, the result is implementation dependent.

frexp() splits "x" into normalized fraction in the interval [1/2,1), which is returned,
and a power of 2, which is stored in "*exp". If "x" is zero, both parts of the result are
zero

ldexp() returns "x * 2 ** n"

modf() splits "x" into integral and fractional parts, each with the same sign as "x". It
stores the integral part in "*ip", and returns the fractional part.

RETURN VALUES
see description of the functions

SCIL_Image 1.4 – Reference Manual

181

fopen

freopen

fdopen
NAME

fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(char *filename, char *type)

FILE *freopen(char *filename, char *type, FILE *stream)

FILE *fdopen(int fildes, char *type)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

fopen() opens the file named by "filename" and associates a stream with it. fopen()
returns a pointer to be used to identify the stream in subsequent operations.

"type" is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a "+" to have the file opened for reading
and writing.
"r+" positions the stream at the beginning of the file,
"w+" creates or truncates it,
"a+" positions it at the end.
Both reads and writes may be used on read/write streams, with the limitation that an
fseek(), rewind(), or reading an end-of-file must be used between a read and a write or
vice-versa.

freopen() substitutes the named file in place of the open "stream". It returns the
original value of "stream". The original stream is closed.

freopen() is typically used to attach the preopened constant names, stdin, stdout,
stderr, to specified files.

fdopen() associates a stream with a file descriptor "fildes" obtained from open(),
dup(), creat(), or pipe(2). The "type" of the stream must agree with the mode of the
open file.

SCIL_Image 1.4 – Reference Manual

182

BUGS
fdopen() is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write
modes will probably treat the type as if the "+" was not present.

RETURN VALUES
fopen() and freopen() return the pointer NULL if filename cannot be accessed.

SEE ALSO
open fclose

fpositive_ok
NAME

fpositive_ok - check if a float value is positive

SYNOPSIS
#include "im_infra.h"

int fpositive_ok(double value, char *text)

DESCRIPTION
The float value "value" is checked to see if it is not negative or not. If the value is
negative an error is generated and the following message is added to the error-stack:

<text> [<value>] must be positive

Zero is considered to be positive as well in this function, if a check must be performed
on a value that may not be zero then the function fgreater0_ok() can be used.

NOTE
This function can only handle floating point values, to check on integer values, use the
function fpositive_ok().

RETURN VALUES
IE_OK (1) if the value is positive (zero included)
IE_NOT_OK (0) if the value is negative

SEE ALSO
fgreater0_ok positive_ok

SCIL_Image 1.4 – Reference Manual

183

fraction_im
NAME

fraction_im - take the fractional part of pixel values

SYNOPSIS
#include "im_proto.h"

int fraction_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Take from each element of the image "in" the fractional part and store the results into
the corresponding element of "out". The fractional part has the same sign as the
original value.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
truncate_im nearest_int lowest_int

SCIL_Image 1.4 – Reference Manual

184

frange_ok
NAME

frange_ok - check is a float value is in the specified range

SYNOPSIS
#include "im_infra.h"

int frange_ok(double value, double vmin, double vmax, char *text)

DESCRIPTION
frange_ok() checks to see if floating point "value" is in the range specified by "vmin"
and "vmax" (borders included). If it is, a true status is returned. If "value" is outside
the range an error is generated and the following message is added to the error-stack:

<text> [<value>] out of range (<vmin>..<vmax>)

A lot of the checking routines use this function to do the actual checking and supply a
default message for that specific check.

NOTE
The function has exactly the same behavior as range_ok(), except that this function
handles only floating point values and range_ok() can only handle integer values.

RETURN VALUES
IE_OK (1) if the value is inside the range (borders included).
IE_NOT_OK (0) if the value is outside the range.

SEE ALSO
range_ok fpositive_ok fgreater0_ok funequal0_ok

SCIL_Image 1.4 – Reference Manual

185

fread

fwrite
NAME

fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

int fread(void *ptr, int size, int nitems, FILE *stream)

int fwrite(void *ptr, int size, int nitems, FILE *stream)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

fread reads, into a block beginning at "ptr", "nitems" of data of the type of "*ptr" from
the named input "stream". It returns the number of items actually read.

If "stream" is stdin and the standard output is line buffered, then any partial output line
will be flushed before any call to read(2) to satisfy the fread.

Fwrite() writes at most "nitems" of data of the type of "*ptr" beginning at "ptr" to the
named output "stream". It returns the number of items actually written.

RETURN VALUES
fread and fwrite return 0 upon end of file or error.

SEE ALSO
read write fopen getc putc gets puts printf scanf

SCIL_Image 1.4 – Reference Manual

186

fseek

ftell

rewind
NAME

fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include <stdio.h>

int fseek(FILE *stream, long offset, int ptrname)

long ftell(FILE *stream)

void rewind(FILE *stream)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

fseek() sets the position of the next input or output operation on the "stream". The new
position is at the signed distance "offset" bytes from the beginning, the current
position, or the end of the file, according to whether "ptrname" has the value 0, 1, or
2.

fseek() undoes any effects of ungetc.

ftell() returns the current value of the offset relative to the beginning of the file
associated with the named "stream". It is measured in bytes on UNIX; on some other
systems it is a magic cookie, and the only foolproof way to obtain an offset for fseek.

rewind(stream) is equivalent to fseek(stream, 0L, 0).

RETURN VALUES
fseek() returns -1 for improper seeks.

SEE ALSO
lseek fopen

SCIL_Image 1.4 – Reference Manual

187

funequal0_ok
NAME

funequal0_ok - check to see if a float value is unequal to zero

SYNOPSIS
#include "im_infra.h"

int funequal0_ok(double value, char *text)

DESCRIPTION
If the value "value" is not equal to zero, an error is generated and the following
message is added to the error-stack:

<text> [<value>] must be unequal to 0

NOTE
This functions can only check on floating point values, to check on integer values, use
the function unequal0_ok()

RETURN VALUES
IE_OK (1) if "value" is unequal to zero
NOT_OK (0) if it is equal to zero

SEE ALSO
fpositive_ok fgreater0_ok unequal0_ok

SCIL_Image 1.4 – Reference Manual

188

fuzzy_derivative

vfuzzy_derivative

fuz_width
NAME

fuzzy_derivative, vfuzzy_derivative - filter to compute the fuzzy derivatives in high
precision

fuz_width - determine the width of the fuzzy filter kernel

SYNOPSIS
int fuzzy_derivative(IMAGE *in, IMAGE *out, double sigmax, double
sigmay, int derix, int deriy, double accx, double accy, int fwidthx,
int fwidthy)

int vfuzzy_derivative(IMAGE *in, IMAGE *out, double sigmax, double
sigmay, double sigmaz, int derix, int deriy, int deriz, double accx,
double accy, double accz, int fwidthx, int fwidthy, int fwidthz)

int fuz_width(double sigma, int deri, double acc, int maxlen)

DESCRIPTION
fuzzy_derivative() and vfuzzy_derivative() compute the fuzzy derivatives of image
"in" and store the result in image "out". For accuracy reasons the filter is computed in
floating point so the output will be a float image. vfuzzy_derivative() is the 3D
version of fuzzy_derivative(), the only difference is the parameter list, which is
extended with parameters for the Z-dimension ("sigmaz", "accz", "deriz" and
"fwidthz").

fuz_width() returns the width of the filter kernel given a specific "sigma", order of
derivative "deri" and accuracy "acc".

The filter coefficients for the different order of derivatives are given by:

degree of derivative filter function

0 gauss(x,s) = 1/((sqrt(2*pi)*s)exp(-x**2/2*s**2),
1 (-x/s)*gauss (x,s)
2 (x**2/s**2 - 1)*gauss (x,s)
3 (-x**3/s**4 + 3*x/s**2)*gauss (x,s)

where s is the sigma.

The filter has parameter "sigmax", "sigmay" and "sigmaz" governing the effective
width of the filter, where the minimum value of 1.0 corresponds to the size of one
pixel. The maximum value of sigma is 10.0. The parameter "derix", "deriy" and
"deriz" give the order of the derivatives. They may have different values for each
dimension. For higher values of "sigma", the image can safely be analyzed at a
reduced resolution.

SCIL_Image 1.4 – Reference Manual

189

The actual width of the filter as the length of the set of filter coefficients is governed
by the parameter "accx", "accy" and "accz". It indicates how close the filter set
resembles the Gauss function. In the implementation of the Gauss filter, the left and
right tails are chopped off to keep a fraction of "acc" of the total filter mass. The mass
fraction of 1-acc being chopped off is redistributed over the remaining coefficients to
ensure proper values.

The filter outcome is normalized for constant images for no derivation (order 0),
linear ramps for derivatives of order 1, parabolas for order 2, and cubes for order 3.
The image is mirrored near the edges during the computation of the filter to prevent
strong edge effects.

Note carefully that parameter "acc" determines the actual width of the filter. For the
same value of "acc", the parameter will cause different widths for different values of
"deri". This may cause undesired effects in case a mixture of derivatives is used in
one formula. To that end, the parameters "fwidthx", "fwidthy" or "fwidthz" when
given a positive and odd value overrule the parameter "accx", "accy" or "accz". Then,
the actual filter width is the value of this parameter, regardless its accuracy. "fwidthx",
"fwidhty" or "fwidthz" may not be larger then the width, the height or the depth of the
image. When "fwidthx", "fwidthy" or "fwidthz" has the value of -1, the parameter
"acc" will function as described above.

fuz_width() returns width (or height) of the filter kernel that is used by
fuzzy_derivative() and gauss(). "sigma", "deri" and "acc" have the same meaning as
the corresponding arguments of fuzzy_derivative().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
gauss vgauss

SCIL_Image 1.4 – Reference Manual

190

g_copy_object
NAME

g_copy_object - copy object grey source with object mask as reference

SYNOPSIS
#include "im_aio.h"

int g_copy_object(IMAGE *grey_src, IMAGE *mask_src, IMAGE *dst, LIST
*link)

DESCRIPTION
grey_src - Image with object grey sources
mask_src - Image with labeled objects
dst - Destination image
link - Link pointing to object

g_copy_object() copies the object grey value sources to the same coordinate in the
destination image, with help of a labeled mask image.

EXAMPLE
To copy the grey value objects not touching the edge to another
image:

#include "image.h "
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b,c,8,0);
FORALL(o,l)
 if (!edge_object(c, o))
 g_copy_object(a,c,d,o);
display_image(d);
l = rm_list(l);

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_object g_copy_object_to

SCIL_Image 1.4 – Reference Manual

191

g_copy_object_to
NAME

g_copy_object_to - copy object grey source with object mask as reference to a
specified coordinate

SYNOPSIS
#include "im_aio.h"

int g_copy_object_to(IMAGE *grey_src, IMAGE *mask_src, IMAGE *dst,
LIST *link, int x, int y)

DESCRIPTION
grey_src - Image with object grey sources
mask_src - Image with labeled objects
dst - Destination image
link - Link pointing to object
x, y - Coordinate X, Y

g_copy_object_to() copies the object grey value sources to the specified coordinate in
the destination image, with help of a labeled mask image.

EXAMPLE
To copy the grey value objects not touching the edge to another image
at coordinate 0,0:

#include "image.h "
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b,c,8,0);
FORALL(o,l)
 if (!edge_object(c, o))
 g_copy_object_to(a,c,d,o,0,0);
display_image(d);
l = rm_list(l);

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_object g_copy_object

SCIL_Image 1.4 – Reference Manual

192

gauss

vgauss
NAME

gauss, vgauss - gauss filter

SYNOPSIS
#include "im_proto.h"

int gauss(IMAGE *in, IMAGE *out, double sigmax, double sigmay, double
accx, double accy, int fwidthx, int fwidthy)

int vgauss(IMAGE *in, IMAGE *out, double sigmax, double sigmay,
double sigmaz, double accx, double accy, double accz, int fwidthx,
int fwidthy, int fwidthz)

DESCRIPTION
gauss() and vgauss() perform Gauss filtering on image "in", resulting in image "out".
The filter coefficient values are given by:

gauss(x,s) = 1/((sqrt(2*pi)*s)exp(-x**2/2*s**2)

where s is the sigma

The filter has parameter "sigmax", "sigmay" and "sigmaz" governing the effective
width of the filter, where the minimum value of 1.0 corresponds to the size of one
pixel. The maximum value of sigma is 10.0. For higher values of sigma, the image
can safely be analyzed at a reduced resolution.

The actual width of the filter as the length of the set of filter coefficients is governed
by the parameter "accx", "accy" and "accz". It indicates how close the filter set
resembles the Gauss function. In the implementation of the Gauss filter, the left and
right tails are chopped off to keep a fraction of "acc" of the total filter mass. The mass
fraction of 1-acc being chopped off is redistributed over the remaining coefficients to
ensure proper values.

The filter outcome is normalized for constant images. The image is mirrored near the
edges during the computation of the filter to prevent strong edge effects.

Note carefully that parameter "acc" determines the actual width of the filter. The
parameters "fwidthx", "fwidthy" or "fwidthz" when given a positive and odd value
overrule the parameter "accx", "accy" or "accz". Then, the actual filter width is the
value of this parameter, regardless its accuracy. "fwidthx", "fwidthy" and "fwidhtz"
may not be larger than the width, the height and the depth of the image. When
"fwidthx", "fwidthy", "fwidthz" have the value of -1, the parameter "acc" will function
as described above.

vgauss() is the 3D version of gauss(), the only difference is the parameter list, which is
extended with parameters for the Z-dimension ("sigmaz", "accz" and "fwidthz").

RETURN VALUES

SCIL_Image 1.4 – Reference Manual

193

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fuzzy_derivative vfuzzy_derivative

gauss_deblur
NAME

gauss_deblur - gaussian deblurring enhancement

SYNOPSIS
#include "im_proto.h"

int gauss_deblur(IMAGE *in, IMAGE *out, double sigma, int order,
double accuracy, double factor)

DESCRIPTION
The image "in" is deblurred by extrapolating the taylor expansion in the scale
direction. Differentiation up to order "order" is performed and a weighted sum (given
by the taylor_polynomial()) of all even derivatives is stored in the image "out". The
fuzzy_derivative() function is used for differentiation of the input image, with scale
parameter "sigma". The extrapolation parameter "factor" determines the enhancement
factor; 0.5 agrees to the natural scale. The scale parameter used for extrapolation is -
"factor" * "sigma" ** 2; this results in extrapolation of scale linear with "factor".
Since blurring is a destructive (semi-group) operation, this is only a enhancement
technique; no new detail is created.

LITERATURE
L. Florack, The syntactical structure of scalar images, PhD Thesis, University of
Utrecht, The Netherlands, 1991.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
taylor_polynomial

SCIL_Image 1.4 – Reference Manual

194

gauss_family
NAME

gauss_family - complete set of derived gaussians

SYNOPSIS
#include "im_proto.h"

int gauss_family(IMAGE *in, IMAGE *out, double sigma, int order,
double accuracy, int zero, int even)

DESCRIPTION
Differentiate the input image" in" and store the result in each plane of the 3D-output
image "out". In the output image, first the highest y derivative is put, then incremently
the x derivatives. For each order, there are order+1 components. So the output result
will be such as:

{f}, {f/dy , f/dx}, {f/dydy, f/dydx, f/dxdx},
Differentiation is performed by means of derived gaussian filtering, for which the
scale is given by "sigma". If "zero" is true, the zero-order (smoothed) is included in
the output. If "even" is true, only even orders are included. This result in:

{f}, {f/dydy, f/dxdx}, {f/dydydydy, f/dydydxdx, f/dxdxdxdx},
This expansion can be used for extrapolation of image scale.

LITERATURE
L. Florack, The syntactical structure of scalar images, PhD Thesis, University of
Utrecht, The Netherlands, 1991.

J.J. Koenderink and A.J. van Doorn, Receptive field families, Biological Cybernetics,
vol. 63, 1990, 291-297.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
gauss_deblur taylor_polynomial

SCIL_Image 1.4 – Reference Manual

195

geo_affine

geo_rotate

geo_warp
NAME

geo_affine, geo_rotate, geo_warp - geometric transformations

SYNOPSIS
#include "im_proto.h"

int geo_affine(IMAGE *in, IMAGE *out, double A0, double A1, double
A2, double B1, double B2, double B3, int method, int adapt, int
border)

int geo_rotate(IMAGE *in, IMAGE *out, double angle, int method, int
adapt, int border)

int geo_warp(IMAGE *in, IMAGE *out)

DESCRIPTION
geo_affine() performs an affine geometric transformation on the image "in" and stores
the result in image "out".

The affine transformation maps the pixels at coordinates (x,y) in the input image to
the coordinates (x’,y’) in the output image as:

x’ = a0 + a1*x + a2*y
y’ = b0 + b1*x + b2*y

We can write this in matrix notation as:

(x’) (a0) (a1 a2)(x)
(y’) = (b0) + (b1 b2)(y)

As any geometric operation, the affine transformation implemented in SCIL_Image
uses the backward transformation, i.e. calculating (x,y) given (x’, y’):

(x) (A0) (A1 A2)(x’)
(y) = (B0) + (B1 B2)(y’)

Given the forward transformation, the backward transformation reads:

(x) _____1_____ (a2b0-a0b2) _____1_____ (b2 -a2)(x’)
(y) = a1b2 - a2b1 (a0b1-a1b0) + a1b2 - a2b1 (-b1 a1)(y’)

Comparing this with the definition of the backward transform gives the values for
"A0", "A1", "A2", "B0", "B1" and "B2".

If we choose a1=b2=1 a2=b1=0 we obtain:

(x’) (a0) (1 0)(x) (a0 + x)
(y’) = (b0) + (0 1)(y) = (b0 + y)

SCIL_Image 1.4 – Reference Manual

196

i.e. a translation over the vector (a0,b0) from input to output image. A rotation around
the origin over a degrees is given by the rotation matrix:

(x’) (a0) (cos a -sin a)(x)
(y’) = (b0) + (sin a cos a)(y)

Note that this is the forward transform; the backward transform equals the inverse
transform. The rotation around a point (xa, ya) is obtained by first a translation such
that (xa,ya) is moved to the origin, then followed by a rotation around the origin and
finally the result is translated back. Thus:

(x’) (x - xa)
(y’) = (y - ya)

(x’’) (cos a -sin a)(x’)
(y’’) = (sin a cos a)(y’)

(x’’’) (x’’ + xa)
(y’’’) = (y’’ + ya)

Substitution then gives an expression for (x’’’,y’’’) as function of (x,y). This is
the forward transform describing a rotation around the point (xa,ya) over a degrees.
The inverse of an arbitrary affine transform has been calculated before and that gives
us the backward transform.

geo_rotate() and geo_warp() are two dedicated implementations of the geo_affine()
function.

geo_rotate() rotates the image "in" (or a part of it) over an arbitrary angle "angle"
around the center of the image and puts the result in image "out". The rotation angle
"angle" must be specified in degrees.

geo_warp() blows or reduces the image "in" to fit in the image "out". It uses bilinear
interpolation for pixel calculation.

The "method" parameter specifies whether to use "bilinear interpolation"
(INTERPOLATE (=1)) or "nearest neighbor" (NEAREST (=2)) pixel calculation. The
size of the output image is determined by "adapt" and can be either of these values:

SIZE_OF_IN (1) output image same size as input image
SIZE_OF_RESULT (2) output image large enough to contain the

entire rotated image (only valid for
geo_rotate()).

SIZE_OF_OUT (3) output image size remains as it is, if the size is
smaller than the input, not all of the image
will be visible in the output. Only a part
around the center of the image

"border" determines what to do with the border in the output; either leave it black
(EMPTY (=0)), or wrap the image (WRAP (=1))

SCIL_Image 1.4 – Reference Manual

197

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
rotate flip blow reduce warp_image fblow

get_bool_mask
NAME

get_bool_mask - convert a binary image to a Boolean mask

SYNOPSIS
#include "im_infra.h"

BOOL_MASK *get_bool_mask(IMAGE *im)

DESCRIPTION
get_bool_mask() converts the specified binary image "im" into a Boolean mask. This
Boolean mask can be used in the roi_define function.

RETURN VALUES
A pointer to the Boolean mask on success
NULL on failure

SEE ALSO
roi_define

SCIL_Image 1.4 – Reference Manual

198

get_display_mode
NAME

get_display_mode - retrieve the display mode of an image

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int get_display_mode(IMAGE *image)

DESCRIPTION
get_display_mode() retrieves the display mode that is set for "image". The meaning of
the values are defined in the include file "dmodes.h" Only the modes set with
set_display_mode() are returned.

RETURN VALUES
the display mode if it is set
0 if no display mode is set, a non existing image is specified,

a roi is specified or no display window is attached to the image.

SEE ALSO
set_display_mode show_dmode_flags

get_free_entry
NAME

get_free_entry - get free entry in an image-silo

SYNOPSIS
#include "silo.h"

int get_free_entry(SILOPTR siloptr)

DESCRIPTION
siloptr - Pointer to the image-silo.

Searches the silo-entry-list for a free entry.

RETURN VALUES
The silo-key of the free entry is returned.
Negative error status if no free entry available (see im_error.h)

SCIL_Image 1.4 – Reference Manual

199

get_image_by_name
NAME

get_image_by_name - obtain image pointer belonging to name

SYNOPSIS
#include "im_infra.h"

IMAGE *get_image_by_name(char *name, int case_sensitive)

DESCRIPTION
get_image_by_name() retrieves the pointer to the image whose name "name". If
"case_sensitive" is non-zero upper case and lower case characters are distinct,
otherwise no distinction between upper and lower case is made.

RETURN VALUES
NULL image "name" does not exist
a pointer to the image otherwise

SEE ALSO
create_image destroy_image roi_define

get_image_window_info
NAME

get_image_window_info - get information to display in window title

SYNOPSIS
#include "im_proto.h"

int get_image_window_info(IMAGE *im, char *buf)

DESCRIPTION
get_image_window_info() puts a string in "buf"describing the type and sizes of image
"im". This string is used by the display interface andplaced in the title-bar of an
image-display behind the name of the image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

200

get_pixel

put_pixel
NAME

get_pixel, put_pixel - generic pixel value getting/putting

SYNOPSIS
Due to the variable number of arguments needed for different image types, the syntax
is not unique.

#include "im_proto.h"

int get_pixel(IMAGE *im, int x, int y, [int z,] [int/double *val1,
...])

int put_pixel(IMAGE *im, int x, int y, [int z,] int/double val1,
[int/double val2, ...])

DESCRIPTION
get_pixel and put_pixel are generic functions for getting and putting pixel values in
images. At the moment GREY, LABEL, BINARY, FLOAT, COMPLEX and COLOR
images are supported.

The parameters between square brackets "[]" are dependent upon the image type.
The first three parameters are equal for all image types, "im" a pointer to the image
and the X- and Y-position "x", "y".

For all 3D images, the Z-position "z" must immediately follow the X- and Y-position
(for 2D "z" may NOT be specified).

put_pixel() expects the pixel value(s) to be either an "int" or "double". "int" for the
integer based image-types: BINARY, GREY, LABEL and COLOR, "double" for the
floating-point based images-types FLOAT and COMPLEX. The number of values is
one for BINARY, GREY, LABEL and FLOAT, two for COMPLEX and three for
COLOR.

get_pixel() returns the requested pixel value dependent upon the image type using
either of these two methods:

1) as its return value (an "int") for BINARY, GREY and LABEL.

2) by means of (a) pointer(s) in its parameter list FLOAT, COLOR and
COMPLEX. For COLOR the number and type of the pointers depend on
the color-model, three "int" pointer for RGB, three "float" pointers for
XYZ, HSI anf Lab and four "float" pointers for CMYK. One "double"
pointer for FLOAT images and two "double" pointers for COMPLEX
images. NULL pointers are permitted to suppress the retrieval of unwanted
values.

NOTE

SCIL_Image 1.4 – Reference Manual

201

If the number and type of the parameters are not correct for the image type, the result
is undefined.

EXAMPLE
To get the pixel value of position (95, 56) of a GREY_2D image:

int val;
val = get_pixel(im, 95, 56);
printf("Grey value is : %d\n", val);

To put the pixel value 1 to position (102, 54, 10) of a BINARY_3D image:

put_pixel(im, 102, 54, 10, 1);

To set pixel (34, 87) of a COLOR_2D image to (R,G,B) = (10,200,123):

put_pixel(im, 34, 87, 10, 200, 123);

To retrieve the value of pixel (300, 0, 5) of a COMPLEX_3D image :

double real, imag;
get_pixel(im, 300, 0, 5, &real, &imag);
printf("Complex value is : %g, %g\n", real, imag);

RETURN VALUES
On success either the requested value or the return status IE_OK (1) (when the value
is returned through a pointer)
On failure IE_NOT_OK (0): -not implemented for image type

-position x, y [,z] is outside the image)

SCIL_Image 1.4 – Reference Manual

202

get_pixel_range
NAME

get_pixel_range - determine the range of pixel values in an image

SYNOPSIS
#include "im_proto.h"

int get_pixel_range(IMAGE *image, double minval, double maxval)

DESCRIPTION
get_pixel_range() calculates the range of the pixel values in the image "image". If the
pointer to a double "minval" is not NULL, the minimum value is stored in the space
pointed to by "minval", the maximum value is stored in the space pointed to by
"maxval" (if not NULL).

The range is also stored in a PIX_INFO structure, attached to the IMAGE structure of
image "image" (see AddImageInfo()). In this structure, the range of the image is stored
together with an "operation-counter", a value that indicates for which values of the
image’s "operation-counter" the range was valid. The range information in stored with
the name "SI_PixRange".

If get_pixel_range() finds valid range information for an image in the PIX_INFO
structure, these values are returned instead of calculating them from the image data.

STRUCTURES
typedef struct image_pix_info {

double minval;
double maxval;
int range_op_cnt;

} PIX_INFO;

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
AddImageInfo post_op

SCIL_Image 1.4 – Reference Manual

203

get_pixel_size
NAME

get_pixel_size - return memory size of one pixel (in bits)

SYNOPSIS
#include "im_proto.h"

int get_pixel_size(IMAGE *im)

DESCRIPTION
get_pixel_size() returns the amount of memory that one pixel in image "im" occupies.
This size is specified in bits.

RETURN VALUES
The number of bits per pixel on success.
Negative error status on failure (see im_error.h)

get_sizes
NAME

get_sizes - obtain sizes of an image in the image-silo

SYNOPSIS
#include "silo.h"

int get_sizes(SILOPTR siloptr, int silo_key, int *sizex, int *sizey)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry label.
sizex - Variable to return the width of the entry.
sizey - Variable to return the height of the entry.

Finds out what the width and height are of a given entry. Returns these values in the
variables sizex and sizey.

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) if entry was empty

SCIL_Image 1.4 – Reference Manual

204

get_slice

put_slice
NAME

get_slice - copy a 2D-slice from a 3D image

put_slice - copy a 2D-slice into a 3D image

SYNOPSIS
#include "im_proto.h"

int get_slice(IMAGE *im3d, IMAGE *im2d, int orientation, int slice)

int put_slice(IMAGE *im2d, IMAGE *im3d, int orientation, int slice)

DESCRIPTION
get_slice() copies the pixel values from the selected slice of the 3D image "im3d" to
the 2D image "im2d". The possible "orientation"s are : xy(0), xz(1) or yz(2). "im3d"
must be a 3D image, "im2d" is adjusted to the sizes of the slice that is copied. "slice"
must be in the range <0..(len-1)>, with len the total number of slices in the 3D image
for the selected direction.

put_slice() copies the pixel values from the 2D image "im2d" to the selected slice of
the 3D image "im3d". The possible "orientation"s are : xy(0), xz(1) or yz(2). "im2d"
must be a 2D image, "im3d" is adjusted to 3D. "slice" must be in the range <0..(len?-
1)>, with len? the total number of slices in the 3D image for the selected direction.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

205

get_super_im

get_super_clut

get_super_histo
NAME

get_super_im - retrieve pointer to super image object.

get_super_clut - retrieve pointer to super clut object.

get_super_histo - retrieve pointer to super histogram object.

SYNOPSIS
#include "im_infra.h"

void *get_super_im(void)

void *get_super_clut(void)

void *get_super_histo(void)

DESCRIPTION
get_super_im() returns a pointer to the global super image object. Through this object
all creations and destructions of images are published.

get_super_clut() returns a pointer to the global super clut object. Through this object
all changes to cluts are published.

get_super_histo() returns a pointer to the global super histogram object. Through this
object all creations and destructions of histograms are published.

RETURN VALUES
A pointer to the requested object.

SEE ALSO
spb_publish spb_subscribe spb_unsubscribe

SCIL_Image 1.4 – Reference Manual

206

getc

getchar

fgetc

getw
NAME

getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#include <stdio.h>

int getc(FILE *stream)

int getchar(void)

int fgetc(FILE *stream)

int getw(FILE *stream)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

getc() returns the next character from the named input stream.

getchar() is identical to getc(stdin).

fgetc() behaves like getc(), but is a genuine function, not a macro.

getw() returns the next word from the named input stream. It returns the constant EOF
upon end of file or error, but since that is a good integer value, feof() and ferror()
should be used to check the success of getw(). getw() assumes no special alignment in
the file.

RETURN VALUES
These functions return the integer constant EOF at end of file or upon read error.

A stop with message, "Reading bad file", means an attempt has been made to read
from a stream that has not been opened for reading by fopen.

SEE ALSO
fopen putc gets scanf fread ungetc

SCIL_Image 1.4 – Reference Manual

207

GETENV

SETENV
NAME

GETENV, SETENV - retrieval and storage of environment variables

SYNOPSIS
#include "support.h"

void SETENV(const char *string)

char *GETENV(const char *name)

DESCRIPTION
SETENV() puts the variable specified in "string" into the environment of the program. If
the operating system also supports an environment, the variable is also put in the
system’s environment. The syntax of "string" is "variable=value". If "string" is of the
form "variable" or "variable=" the variable is cleared (not destroyed). Spaces before of
after variable and value are stripped, however spaces within the value are kept. If the
equal sign "=" is not supplied, the first white space after variable is considered to be the
separator. If variable already exists in the program’s environment the space of the
existing value is freed using free().

GETENV() retrieves the value of the environment variable "name". First the
environment of the program is searched and if "name" is not found, the operating
system’s environment is searched (if present). When neither the program’s nor the
system’s environment contain the variable, NULL is returned

RETURN VALUES
SETENV() returns nothing.
GETENV() returns a pointer to the value of the variable or NULL if not found

SCIL_Image 1.4 – Reference Manual

208

getlogin
NAME

getlogin - get login name

PLATFORM
UNIX.

SYNOPSIS
char *getlogin(void)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

getlogin() returns a pointer to the login name as found in /etc/utmp. It may be used in
conjunction with getpwnam() to locate the correct password file entry when the same
userid is shared by several login names.

RETURN VALUES
Returns NULL (0) if name not found.

SCIL_Image 1.4 – Reference Manual

209

gets

fgets
NAME

gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(char *s)

char *fgets(char *s, int n, FILE *stream)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

gets() reads a string into "s" from the standard input stream stdin. The string is
terminated by a newline character, which is replaced in "s" by a null character. gets()
returns its argument.

fgets() reads n-1 characters, or up to a newline character, whichever comes first, from
the stream into the string "s". The last character read into "s" is followed by a null
character. fgets() returns its first argument.

RETURN VALUES
gets() and fgets() return the constant pointer NULL upon end of file or error.

SEE ALSO
puts getc scanf fread ferror

SCIL_Image 1.4 – Reference Manual

210

glc_entropy

glc_contrast

glc_asymmetry
NAME

glc_entropy - texture measure, co-occurence of grey-levels

glc_contrast - texture measure, co-occurence of grey-levels

glc_asymmetry - texture measure, co-occurence of grey-levels

SYNOPSIS
#include "im_proto.h"

double glc_entropy(IMAGE *input, IMAGE *mask, int vectorx, int
vectory)

double glc_contrast(IMAGE *input, IMAGE *mask, int vectorx, int
vectory)

double glc_asymmetry(IMAGE *input, IMAGE *mask, int vectorx, int
vectory)

DESCRIPTION
The functions calculate a 2-dimensional histogram of the combinations of grey-values
of pixels that are the startpoint/endpoint of a vector with a specified
("vectorx","vectory") displacement.

The functions calculate:

glc_asymmetry Asymmetry of the histogram
Sum over g1,g2 of (p(g1,g2)**2)

glc_contrast Contrast of the histogram
Sum over g1,g2 of ((g1-g2)**2)*p(g1,g2)

glc_entropy Entropy of the histogram
Sum over g1,g2 of p(g1,g2)*log(p(g1,g2))

Where g1 and g2 are the grey-values at the start and end of the vector, and p(g1,g2) is
the chance of this combination in the image.

The calculation of the texture is only done in the areas where the bit-image "mask"
has value 1.

RETURN VALUES
The texture value is returned. In case of error, this is 0.

SEE ALSO
box_dimension gld_mean gld_entropy gld_contrast gld_asymmetry

SCIL_Image 1.4 – Reference Manual

211

glr_nonuniformity glr_shortrunemphasis glr_longrunemphasis
glr_greynonuniformity glr_percentage edge_average dist_average

SCIL_Image 1.4 – Reference Manual

212

gld_mean

gld_entropy

gld_contrast

gld_asymmetry
NAME

gld_mean - texture measure, difference of grey-levels

gld_entropy - texture measure, difference of grey-levels

gld_contrast - texture measure, difference of grey-levels

gld_asymmetry - texture measure, difference of grey-levels

SYNOPSIS
#include "im_proto.h"

double gld_mean(IMAGE *input, IMAGE *mask, int vectorx, int vectory)

double gld_entropy(IMAGE *input, IMAGE *mask, int vectorx, int
vectory)

double gld_contrast(IMAGE *input, IMAGE *mask, int vectorx, int
vectory)

double gld_asymmetry(IMAGE *input, IMAGE *mask, int vectorx, int
vectory)

DESCRIPTION
The functions calculate a histogram of the absolute differences of all combinations of
pixels that are the startpoint/endpoint of a vector with a specified
("vectorx","vectory") displacement.

The functions calculate:
gld_mean Mean of the histogram

Sum of i*p(i)

gld_entropy Entropy of the histogram
Sum of p(i)*log(p(i))

gld_contrast Contrast of the histogram
Sum of (i**2)*p(i)

gld_asymmetry Asymmetry of the histogram
Sum of (p(i)**2)

Where i is the absolute difference, and p(i) is the chance of that absolute difference in
the image.

SCIL_Image 1.4 – Reference Manual

213

The calculation of the texture is only done in the areas where the bit-image "mask"
has value 1.

RETURN VALUES
The texture value is returned. In case of error, this is 0.

SEE ALSO
box_dimension glc_entropy glc_contrast glc_asymmetry glr_nonuniformity
glr_shortrunemphasis glr_longrunemphasis glr_greynonuniformity
glr_percentage edge_average dist_average

SCIL_Image 1.4 – Reference Manual

214

glr_nonuniformity

glr_shortrunemphasis

glr_longrunemphasis

glr_greynonuniformity

glr_percentage
NAME

glr_nonuniformity - texture measure, run-length statistics

glr_shortrunemphasis - texture measure, run-length statistics

glr_longrunemphasis - texture measure, run-length statistics

glr_greynonuniformity - texture measure, run-length statistics

glr_percentage - texture measure, run-length statistics

SYNOPSIS
#include "im_proto.h"

double glr_nonuniformity(IMAGE *input, IMAGE *mask)

double glr_shortrunemphasis(IMAGE *input, IMAGE *mask)

double glr_longrunemphasis(IMAGE *input, IMAGE *mask)

double glr_greynonuniformity(IMAGE *input, IMAGE *mask)

double glr_percentage(IMAGE *input, IMAGE *mask)

DESCRIPTION
The functions calculate a histogram of the grey-value/run-length
combinations in the image.

The functions calculate:

glr_shortrunemphasis Run-length short run emphasis
Sum over i,j of p(i,j)/(j**2)

glr_longrunemphasis Run-length long run emphasis
Sum over i,j of p(i,j)*(j**2)

glr_greynonuniformity Run-length grey-level non-uniformity
Sqrt (Sum over i of ((Sum over j of p(i,j))**2))

glr_nonuniformity Run-length non-uniformity
Sqrt (Sum over j of ((Sum over i of p(i,j))**2))

glr_percentage Run-length percentage

SCIL_Image 1.4 – Reference Manual

215

100*(Number of runs/number of pixels)

Where i is the grey-level, j is the run-length and p(i) is the chance of that combination
in the image.

The calculation of the texture is only done in the areas where the bit-image "mask"
has value 1.

RETURN VALUES
The texture value is returned. In case of error, this is 0.

SEE ALSO
box_dimension gld_mean gld_entropy gld_contrast gld_asymmetry
glc_entropy glc_contrast glc_asymmetry edge_average dist_average

gravx
NAME

gravx - obtain x coordinate of center of gravity of object

SYNOPSIS
#include "im_aio.h"

double gravx(LIST *link)

DESCRIPTION
link - Link pointing to object

AIO primitive to obtain value of an object feature

gravx() returns the x coordinate of the center of gravity of the object pointed to by
"link" if this has previously been measured.

RETURN VALUES
x coordinate of center of gravity of object on success
0.0 if link is not an object or if center of gravity has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas

SCIL_Image 1.4 – Reference Manual

216

gravy
NAME

gravy - obtain y coordinate of center of gravity of object

SYNOPSIS
#include "im_aio.h"

double gravy(LIST *link)

DESCRIPTION
link - Link pointing to object

AIO primitive to obtain value of an object feature

gravy() returns the y coordinate of the center of gravity of the object pointed to by
"link" if this has previously been measured.

RETURN VALUES
y coordinate of center of gravity of object
0.0 if link is not an object or if center of gravity has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas

SCIL_Image 1.4 – Reference Manual

217

greater0_ok
NAME

greater0_ok - check if a integer value is greater than zero

SYNOPSIS
#include "im_infra.h"

int greater0_ok(int value, char *text)

DESCRIPTION
The integer value "value" is checked to see if it is greater than zero or not. If it is zero
or negative an error is generated and the following message is added to the error-
stack:

<text> [<value>] must be bigger than 0

NOTE
This function can only handle integer values, to check on float values, use the function
fgreater0_ok().

RETURN VALUES
IE_OK (1) if the value is bigger than zero
IE_NOT_OK (0) if it is zero or negative

SEE ALSO
fgreater0_ok positive_ok

SCIL_Image 1.4 – Reference Manual

218

greduce
NAME

greduce - grey value reduction of image

SYNOPSIS
#include "im_proto.h"

int greduce(IMAGE *in, IMAGE *out, int nlev, int auto_contr)

DESCRIPTION
greduce() reduces the number of grey values in image "in" to "nlev" levels and stores
the result in image "out". By default the range of the pixel values is assumed to be 0 -
255. Any values outside that range are clipped to 0 and 255. The "auto_contr"
parameter determines that the actual range of the pixel values should be calculated and
used instead of the 0 - 255 range.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
dither pseudo

grey_dilation
NAME

grey_dilation - grey value dilation (local maximum)

SYNOPSIS
#include "im_proto.h"

int grey_dilation(IMAGE *in, IMAGE *out, int filtx, int filty, int
filtz)

DESCRIPTION
Non-linear local maximum filter.
Image "in" is scanned with a moving window with sizes "filtx" and "filty" and "filtz"
(for 3D images). For each window position the maximum of the pixel values within
the window is calculated. This local maximum value is stored in the pixel in image
"out" that corresponds with the central pixel within the window

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
grey_erosion

SCIL_Image 1.4 – Reference Manual

219

grey_erosion
NAME

grey_erosion - grey value erosion (local minimum)

SYNOPSIS
#include "im_proto.h"

int grey_erosion(IMAGE *in, IMAGE *out, int filtx, int filty, int
filtz)

DESCRIPTION
Non-linear local minimum filter.
Image "in" is scanned with a moving window with sizes "filtx" and "filty" and "filtz"
(for 3D images). For each window position the minimum of the pixel values within
the window is calculated. This local minimum value is stored in the pixel in image
"out" that corresponds with the central pixel within the window

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
grey_dilation

SCIL_Image 1.4 – Reference Manual

220

grey_mean

trans_mean

od_mean
NAME

grey_mean - mean of grey values of objects area

trans_mean - mean of transmission over objects area

od_mean - mean of optical density over objects area

SYNOPSIS
#include "im_aio.h"

double grey_mean(LIST *link)

double trans_mean(LIST *link)

double od_mean(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitives to obtain value of an object feature

grey_mean() returns the mean of the pixel values of the object pointed to by "link".

trans_mean() returns the mean of the pixel values of the object pointed to by "link"
according to a transmission pixel table.

od_mean() returns the mean of the pixel values of the object pointed to by "link"
according to a optical density pixel table

The features must have been measured beforehand with object_dens_meas().

RETURN VALUES
Mean of all pixel values of object on success.
0.0 if link is not an object or if mean value has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

221

grey_morph_round

grey_morph_ellipse

grey_morph_hollow_ellipse

grey_morph_diamond

grey_morph_arbit
NAME

grey_morph_round, grey_morph_ellipse, grey_morph_hollow_ellipse,
grey_morph_diamond, grey_morph_arbit - grey valued morphology

SYNOPSIS
#include "im_proto.h"

int grey_morph_round(IMAGE *in, IMAGE *out, int fsize, int norm, int
type)

int grey_morph_ellipse(IMAGE *in, IMAGE *out, int x_axis, int y_axis,
double orient, int norm, int type)

int grey_morph_hollow_ellipse(IMAGE *in, IMAGE *out, int x_axis, int
y_axis, double orient, int conn, int type)

int grey_morph_diamond(IMAGE *in, IMAGE *out, int fsize_nw_se, int
fsize_ne_sw, int type)

int grey_morph_arbit(IMAGE *in, IMAGE *filter, IMAGE *out, int norm,
int type)

DESCRIPTION
These functions are morphological operators with different shaped structuring
elements: circular, elliptic, hollow elliptic, diamond and arbitrary shaped.

Each of these functions can perform a dilation, an erosion, an opening or a closing on
GREY_2D images. The round, elliptic and hollow elliptic also support a uniform and
a kuwahara filter. The arbitrary shaped supports the uniform filter too.

For FLOAT_2D images, the round, the elliptic and the hollow elliptic shapes support
dilation, erosion, opening, closing and uniform.

Kuwahara, diamond shaped and arbitrary shaped are not supported for FLOAT_2D.

For all functions the image "in" is the input image and the image "out" is the output
image. "type" is the type of operator, being :

UNIF (1) uniform
DILA (2) dilation
EROS (3) erosion
CLOSE(4) closing
OPEN (5) opening

SCIL_Image 1.4 – Reference Manual

222

KUWA (6) kuwahara

If "norm" is set (1), the result of the uniform filter is normalized.

The size of the structuring element of the grey_morph_round() function is specified by
"fsize", the diameter of the circle.

The sizes of the elliptic structuring element of grey_morph_ellipse() and
grey_morph_hollow_ellipse() are given by "x_axis" and "y_axis", the axis of the
ellipse by an orientation "orient" of 0 degrees.

The sizes of the diamond shaped structuring element of grey_morph_diamond() are
specified by "fsize_nw_se" and "fsize_ne_sw".

For the arbitrary shaped structuring element, a separate image is needed in which the
structuring element is present. The sizes of this structuring element should be odd in
both dimensions.

The sizes of all the types of structuring elements should be odd.

LITERATURE
J. Serra, Image Analysis and Mathematical Morphology, Academic Press.

B.J.H. Verwer, L.J. van Vliet and P.W. Verbeek, Binary and Grey-value Skeletons
Metrics and Algorithms, International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 7(5), 1993.

R. v.d. Boomgaard, Mathematical Morphology: Extensions towards Computer Vision,
Ph.D.-thesis, University of Amsterdam, 1992.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
upper_gskeleton lower_gskeleton uniform_round kuwahara_round

SCIL_Image 1.4 – Reference Manual

223

grey_stdev

trans_stdev

od_stdev
NAME

grey_stdev - standard deviation of grey values of objects area

trans_stdev - standard deviation of transmission over objects area

od_stdev - standard deviation of optical density over objects area

SYNOPSIS
#include "im_aio.h"

double grey_stdev(LIST *link)

double trans_stdev(LIST *link)

double od_stdev(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitives to obtain value of an object feature

grey_stdev() returns the standard deviation of the pixel values of the object pointed to
by "link".

trans_stdev() returns the standard deviation of the pixel values of the object pointed to
by "link" according to a transmission pixel table.

od_stdev() returns the standard deviation of the pixel values of the object pointed to
by "link" according to a optical density pixel table.

The features must have been measured beforehand with object_dens_meas().

RETURN VALUES
Standard deviation of pixel values of object on success.
0.0 if link is not an object or if standard deviation has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

224

grey_sum

trans_sum

od_sum
NAME

grey_sum - sum of grey values of objects area

trans_sum - sum of transmission over objects area

od_sum - sum of optical density over objects area

SYNOPSIS
#include "im_aio.h"

double grey_sum(LIST *link)

double trans_sum(LIST *link);

double od_sum(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitives to obtain value of an object feature

grey_sum() returns the sum of the pixel values of the object pointed to by "link".

trans_sum() returns the sum of the pixel values of the object pointed to by "link"
according to a transmission pixel table.

od_sum() returns the sum of the pixel values of the object pointed to by "link"
according to a optical density pixel table.

The features must have been measured beforehand with object_dens_meas().

RETURN VALUES
Sum of all pixel values of object.
0.0 if link is not an object or if sum of pixels has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

225

handle_pim
NAME

handle_pim - handle the point image display buffer

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int handle_pim(int activate)

DESCRIPTION
handle_pim() shows ("activate" = 1) or hides ("activate" = 0) the pim_window, the
window in which the pixel information is shown when clicking the left mouse button
in an image display window. For more information see point_im_display_buf() or the
demo "my_point.c" in the standard demo directory.

RETURN VALUES
None

SEE ALSO
point_im_display_buf point_im

SCIL_Image 1.4 – Reference Manual

226

have_diff
NAME

have_diff - Lee-Haralick-Verbeek edge detector

SYNOPSIS
#include "im_proto.h"

int have_diff(IMAGE *in, IMAGE *out, int mode)

DESCRIPTION
Differential edge detection based upon local minimum and local maximum filters.
Within the moving window, with dimensions 3*3, the minimum and the maximum
are calculated. For both these values the absolute differences with the central pixel in
the window are obtained.
The smaller of these differences becomes the output pixel value and is stored in the
corresponding pixel in image "out".
This value is used as a sharp edge detector and is called the Lee-Haralick variant.
A variant of the algorithm modifies the final result in such a way that the result is
multiplied by a factor -1 is the difference with the local minimum was chosen, thus
taking into account the original sign of the difference. This signed variant can be used
for edge sharpening and is called the Verbeek variant. If the output image of the
Verbeek variant is added to the original image, the result is to replace each pixel of the
original image by either the local minimum or the local maximum value (taken in a
3*3 neighborhood), depending upon which value is closer to the original pixel value.
The result may be considered as a non-linear way of edge sharpening.
"mode" 1 Lee-Haralick variant

0 Verbeek variant.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

227

height
NAME

height - height of object

SYNOPSIS
#include "im_aio.h"

int height(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitive to obtain value of an object feature

height() returns the height of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The height of the object in pixels on success
0 if link is not an object

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

228

help
NAME

help, ? - get help information

SYNOPSIS
help <pattern>

? <pattern>

DESCRIPTION
The help command (or ?) supplies information on the specified topic <pattern>. If a
command or function name is specified, information on that command (function) is
given. If wildcards are present in <pattern>, all commands and/or variables that match
that pattern are listed. If a double question mark (??) is followed by a pattern than all
help files on all commands/functions that match that pattern are displayed.

HELP OPTIONS:
? This information
help This information
?command Information on SCIL command
?pattern List of variables/functions matching pattern
?strcmp Information about strcmp()
?count Information about global variable "count"

Pattern may contain the wildcard "*" to match anything

EXAMPLE
[C1] ?s*p
sleep
strcmp
strncmp
[C2]

SCIL_Image 1.4 – Reference Manual

229

hide_object

hide_object_at
NAME

hide_object - obscure labeled object

hide_object_at - obscure labeled object at specified position

SYNOPSIS
#include "im_aio.h"

int hide_object(IMAGE *image, LIST *link)

int hide_object_at(IMAGE *image, LIST *link, int x, int y)

DESCRIPTION
image - Pointer to image with labeled objects
link - Link pointing to object
x, y - coordinate of top left of objects rectangle

hide_object() obscures the object in a labeled image by setting all its pixels at zero.

hide_object_at() obscures the object in a labeled image if the left top of the objects
surrounding rectangle is at position "x", "y".

NOTE
The object is not removed from the list. You need to call rm_object() followed by
update() to remove an object from the list.

EXAMPLE
To hide objects touching the edge of an image:

#include "image.h "
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b,c,8,0);
FORALL(o,l) if(edge_object(c,o)) hide_object(c,o);
display_image(c);
l = rm_list(l);

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

230

hild_skelet
NAME

hild_skelet - skeletonization according to Hilditch

SYNOPSIS
#include "im_proto.h"

int hild_skelet(IMAGE *in, IMAGE *out, int iter, int endp, int bound)

DESCRIPTION
Changes the objects in image "in" into skeletons and stores the result in image "out".
The skeleton is defined as a set of connected, one pixel thick arcs, lying midway
between the object boundaries and being a topological retraction with the same
connectedness as the original object. The skeleton represents the morphologic
("shape") features of the original object.

The thinning operation may be executed for only a limited number of cycles, as
specified by the parameter "iter". Full skeletonization results if the value specified for
this parameter is equal or larger than half the image-size.

"endp" specifies that the endpixels of the skeleton must be preserved with each
thinning iteration (1 is preserve, 0 is do not preserve).

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
holt_skelet skelpoints

SCIL_Image 1.4 – Reference Manual

231

hist

:
NAME

hist - display the commands history

: - recall command

PLATFORM
UNIX.

SYNOPSIS
hist [start], [end]

:[number]

:[pattern]

DESCRIPTION
The history command "hist" shows previously given commands. The numbers "start""
and "end" specify which ones should be listed. If no "number" is given, the last 20
commands are listed. If a single "number" is specified, only that particular command
is shown. A range can be specified by supplying the begin and end separated by a
comma. If the argument before the comma is omitted, "start" is 1 (the first
commands). If the "number" after the comma is omitted, "end" is the last command.

Apart from recalling commands by their number, also a "pattern" can be used. This
"pattern" must be the start of the command line to recall. E.g. ":read" recalls the last
command that started with "read".

Typing a colon ":" followed by a command number or pattern recalls this command.
In case of a pattern only the last 20 commands are compared.

A recalled command is placed in the insert mode of the line editor.

EXAMPLE
hist list the last 20 commands
hist 3 show command number 3
hist 3, list command 3 up to last command
hist ,30 list command 1 up to 30
hist 3,30 show command 3 up to 30

:<number> recall command [C<number>]
:<pattern> recall last command starting with <pattern>
: recall last given command.

SCIL_Image 1.4 – Reference Manual

232

hist2d
NAME

hist2d - 2-dimensional image histogram calculation

SYNOPSIS
#include "im_proto.h"

int hist2d(IMAGE *in1, IMAGE *in2, IMAGE *out, int clip)

DESCRIPTION
Calculate the histogram of co-incidences of grey values in the image "in1" and "in2"
and store the resulting two-dimensional histogram in image "out". For each element of
the image "out" with indices I and J, the number of times a pixel in "in1" has the value
I and its corresponding pixel in "in2" has the value J is counted and stored as the new
pixel value in the output image "out". When "clip" is set (=1), pixel values in the input
images "in1" and "in2" that are either negative or greater than the size of the output
image, are truncated to zero or the appropriate image size of "out" respectively. If
"clip" is not set (=0), pixel values outside the range from zero to the output image
size, cause an error condition..

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
histdata

SCIL_Image 1.4 – Reference Manual

233

histdata
NAME

histdata - image histogram calculation

SYNOPSIS
#include "im_proto.h"

int histdata(IMAGE *in, VAR_OBJECT *data, int len, int clip)

DESCRIPTION
Calculates the grey level histogram of image "in" and stores the resulting histogram in
the var_object "data". For each pixel value in image "in" the number of pixels is
counted in a corresponding element of array "data", a so-called bin. "len" is the
number of bins. When "clip" is true (=1), pixel values in image "in" that are less than
zero or greater than "len" are truncated to zero and "len" respectively. If "clip" is false
(=0), pixel values outside the range zero to "len" cause an error condition.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hist2d

histogram
NAME

histogram - plot histogram in display window

SYNOPSIS
#include "im2scil.h"

int histogram(IMAGE *in)

DESCRIPTION
Calculates the grey level histogram of image "in" and plots the resulting histogram.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
histdata hist2d plot_histogram

SCIL_Image 1.4 – Reference Manual

234

histogram_by_name

histogram_ok

is_histogram
NAME

histogram_by_name - get the pointer to a histogram by its name

histogram_ok - check if pointer is a histogram and pop alert if not

is_histogram - check if pointer is a histogram object

SYNOPSIS
#include "im_infra.h"

HISTOGRAM *histogram_by_name(char *name, int case_check)

int histogram_ok(HISTOGRAM *histo)

int is_histogram(HISTOGRAM *histo)

DESCRIPTION
histogram_by_name() retrieves the pointer to the histogram "name". "case_check"
specifies whether a distinction between lower case and upper case characters should to
be made. If zero then no distinction is made.

histogram_ok() and is_histogram() check the pointer "histo" to see if it points to a
valid histogram. The linked list in which all the histograms are present is scanned for
the occurrence of "histo". If it is a valid histogram, a true status (1) is returned, else a
false status (0). Additionally, if it is not a valid histogram pointer, histogram_ok()
generates an error and adds the following message to the error-stack:

Non existing histogram pointer.

SEE ALSO
create_histogram destroy_histogram histo_data copy_histogram
histogram_to_image histogram_to_var_object image_to_histogram
histogram_comment dump_histogram list_histograms show_histogram_info

SCIL_Image 1.4 – Reference Manual

235

histogram_comment

dump_histogram

list_histograms

show_histogram_info
NAME

histogram_comment - attach a comment string to a histogram object

dump_histogram - show the histogram data in ASCII

list_histograms - list all histograms

show_histogram_info - list information on a histogram

SYNOPSIS
#include "im_infra.h"

int histogram_comment(HISTOGRAM *histo, char *comment)

int dump_histogram(HISTOGRAM *histo, char *file, int num)

int list_histograms(void)

int show_histogram_info(HISTOGRAM *histo)

DESCRIPTION
histogram_comment() adds a (null-terminated) string "comment" to the structure of
the histogram "histo". The string may be of any length as long as it is null-terminated.
The function itself allocates memory for the string, so if adding comment to an
histogram while not using this function, be sure that the memory was allocated with
malloc() for other functions rely on it (they use free()). Any previously attached
comment is removed before the comment is added.

dump_histogram() dump the data of histogram "histo" in ASCII to either the
controlling terminal or a file. If a name is specified for the file ("file") then the data
will be stored in a file, else the data will be dumped on the terminal. The last
parameter "num" specifies the number of values that will be printed on a single line
(default = 1). If the data is dumped to an already existing file, the old file will be
overwritten without warning (provided the file permissions allow this).

list_histograms() displays a list of all existing histogram on the controlling terminal.

show_histogram_info() displays information about a histogram object on the terminal.
The name, sizes, lowest and highest bin median values and the comment are shown on
the controlling terminal.

SEE ALSO
create_histogram destroy_histogram histo_data copy_histogram

SCIL_Image 1.4 – Reference Manual

236

histogram_to_image histogram_to_var_object image_to_histogram
histogram_by_name histogram_ok is_histogram

histogram_to_image

image_to_histogram

histogram_to_var_object
NAME

histogram_to_image - copy the histogram data to an image

image_to_histogram - copy image data to an histogram

histogram_to_var_object - copy the histogram data to an var_object

SYNOPSIS
#include "im_infra.h"

int histogram_to_image(HISTOGRAM *histo, IMAGE *image, int out_type)

int image_to_histogram(IMAGE *image, HISTOGRAM *histo)

int histogram_to_var_object(HISTOGRAM *histo, VAR_OBJECT *object)

DESCRIPTION
histogram_to_image() copies the data of histogram "histo" to the image "image". The
image sizes are changed to match the sizes of the histogram. The image type is not
changed.

image_to_histogram() copies the data of image "image" to the histogram object
"histo". The sizes of the histogram are changed to match those of the image.

histogram_to_var_object() copies the data of histogram "histo" to the var_object
"object". The sizes of the var_objects are changed to match those of the histogram.
The type of the var_object is changed to LONG_T.

SEE ALSO
create_histogram destroy_histogram histo_data copy_histogram
histogram_by_name histogram_ok is_histogram
histogram_comment dump_histogram list_histograms show_histogram_info

SCIL_Image 1.4 – Reference Manual

237

hit_or_miss
NAME

hit_or_miss - "hit or miss" transform

SYNOPSIS
#include "im_proto.h"

int hit_or_miss(IMAGE *in, IMAGE *out, IMAGE *se, int bound)

DESCRIPTION
Performs a "hit or miss" transform on image "in" using the "hit or miss" mask encoded
in image "se" and stores the result in image "out". The "hit or miss transform"
calculates the intersection of the erosion of image "in" using structuring element S1
and the erosion of the complement (inverted image) of image "in" using structuring
element S2. The pixels belonging to S1 are encoded in image "se" with positive grey
values, those belonging to S2 are encoded with negative grey values.

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_erosion arbit_dilation real_time_recognizer t_morphology

SCIL_Image 1.4 – Reference Manual

238

holt_skelet
NAME

holt_skelet - skeleton according to Holt, Stewart, Clint & Perrott

SYNOPSIS
#include "im_proto.h"

int holt_skelet(IMAGE *in, IMAGE *out, int iter, int bound)

DESCRIPTION
Changes the objects in image "in" into skeletons and stores the result in image "out".
The skeleton is defined as a set of connected, one pixel thick arcs, lying midway
between the object boundaries and being a topological retraction with the same
connectedness as the original object. The skeleton represents the morphologic
("shape") features of the original object.

The thinning operation may be executed for only a limited number of cycles, as
specified by the parameter "iter". Full skeletonization results if the value specified for
this parameter is equal or larger than half the image-size.

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hild_skelet skelpoints

SCIL_Image 1.4 – Reference Manual

239

homomorphic
NAME

homomorphic - contrast enhancement filter

SYNOPSIS
#include "im_proto.h"

int homomorphic(IMAGE *in IMAGE *,out, double low_amplitude, double
filt_size)

DESCRIPTION
This FFT based function can only be used on 2D images of which sizes are a power of
two. The filter is based on the idea that the image is the result of multiplication of an
illumination function with a "scene" function. The illumination function is assumed to
be composed of low frequency components only. The aim of the filter is to remove the
contribution of the illumination function to the image by executing the following
steps.

1) Take logarithm of image "in". The result is the SUM of an illumination and a scene
component.

2) Apply a high pass filter. The filter size is controlled through "filt_size"; the
attenuation of the lower frequency components by "low_amplitude".

3) Reverse of 1) and store the result in the image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
local_contrast

SCIL_Image 1.4 – Reference Manual

240

hull
NAME

hull - object convex hull detection

SYNOPSIS
#include "im_proto.h"

int hull(IMAGE *in, IMAGE *out)

DESCRIPTION
Calculate the convex hull of each object in the labeled image "in" and store the result
in image "out". For each object in "in", all combinations of two contour points are
connected by a straight line. If a background pixel is found on such a line, it is added
to the original object. This operation closes all holes in an object. The contour of an
object is also smoothed, as all gaps in it are filled.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
label objectsize rhull small_object_removal

SCIL_Image 1.4 – Reference Manual

241

hypot

cabs
NAME

hypot, cabs - Euclidean distance

SYNOPSIS
#include <math.h>

double hypot(double x, double y)

double cabs(struct { double x, y;}z)

DESCRIPTION
These functions are interface functions to the C functions as implemented on the
current operating system. The functionality of these functions is:

hypot() and cabs() return

sqrt("x"*"x" + "y"*"y"),

taking precautions against unwarranted overflows.

SEE ALSO
exp sqrt

SCIL_Image 1.4 – Reference Manual

242

Ibenke
NAME

Ibenke - interactive search for texture segmentation filter

SYNOPSIS
#include "itools.h"

int Ibenke(IMAGE *filter, IMAGE *out, double gain, double
convergence, double sigma, int width, int height)

DESCRIPTION
Ibenke() asks the user to draw a rectangle in the object and in the background textured
regions, and tries to find a (sub-)optimal separation filter. The convergence speed is
determined by "gain". The search is finished when the energy difference between the
two textures is less than "convergence" compared to the previous iteration. If
"convergence" is greater than one, it will be converted to the number of iterations to
perform. After training, the input image is segmented by applying convolution(),
squaring the image and applying a Gaussian filtering with spatial extend given by
"sigma". This gives a measure of local energy. The filter dimensions are given by
"width" and "height".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
benke convolution mul_im gauss

SCIL_Image 1.4 – Reference Manual

243

ics_readfile
NAME

ics_readfile - read an image from a file in ICS format

SYNOPSIS
#include "im_proto.h"

IMAGE *ics_readfile(char *filename, IMAGE *image, ICS *ics_header,
int xpos, int ypos)

DESCRIPTION
Read the image "filename" stored in ICS-format into the image "image". "filename"
may be specified with or without the file extensions ".ics"/".ids". If "USE_NAME" (a
NULL pointer) is specified as the image, a new image is created at position "xpos",
"ypos", with the same name as the file. If an image is already present with that name,
that image will be used.

Information about the image is stored in the ICS structure "ics_header". If a NULL
pointer is passed for "ics_header, the header informatin is not returned to the calling
program.

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL on failure

SEE ALSO
readfile tiff_readfile tcl_readfile aim_readfile writefile ics_writefile

SCIL_Image 1.4 – Reference Manual

244

ics_writefile
NAME

ics_writefile - write an image to a file in ICS format

SYNOPSIS
#include "im_proto.h"

int ics_writefile(IMAGE *image, char *filename, ICS *ics_header)

DESCRIPTION
Stores the image "image" into the file "filename" according to the ICS-format. If a
NULL pointer is supplied for "ics_header", one is created internally in ics_writefile()
and filled with appropriate default values.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
writefile tiff_writefile tcl_writefile readfile ics_readfile

ifft
NAME

ifft

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See fast_fourier

SCIL_Image 1.4 – Reference Manual

245

IGreyMap
NAME

IGreyMap - Interactive grey lookup table editor

SYNOPSIS
#include "itools.h"

void IGreyMap(IMAGE *image)

DESCRIPTION
IGreyMap() interactively changes the grey lookup table of the image "image". By
dragging the knots that are on the red line, the shape of the lookup table can be
changed.

The number of knots used to define the curve can be changed from 2 to 12. The
leftmost knot as well as the rightmost knot cannot be dragged from the sides. Knots
can be added and removed using the right mouse button (<command> key together
with the mouse button on the Mac). To add a knot press the button at the location the
new knot is to be positioned. To remove an existing knot press the right mouse button
on the knot to be removed.

In the editor window several buttons are available for changing the behavior of the
editor:

"LINE" Connect the knots using straight lines.
"SPLINE" Connect the knots using splines.
"UPDATE" Update the image "image" continuously, default is that "image"

is updated only if the mouse button is released.
"BRIGHTER" Move all knots upwards
"DIMMER" Move all knots downwards
"SHARPER" Enhance the contrast in the table.
"DULLER" Remove contrast.
"LINEAR" Reset the editor to a linear curve.
"OK" Exit the editor and attach the new lookup table to "image".
"CANCEL" Exit the editor, discarding the new lookup table
"HELP" Short on-line help.

RETURN VALUES
None

SEE ALSO
IThreshold

SCIL_Image 1.4 – Reference Manual

246

im_begin_func

im_end_func

im_report_error

im_get_status

im_debug_stack
NAME

im_begin_func - push a function name on the error-stack

im_end_func - pop a function name from the error-stack

im_report_error - report an error occurrence to the error-stack

im_get_status - retrieve error status from error-stack

im_debug_stack - report inconsistent usage of error-stack

SYNOPSIS
#include "im_error.h "

void im_begin_func(const char *fname)

void im_end_func(const char *fname)

int im_report_error(const char *fname, int status, const char
*message)

int im_get_status(void)

void im_debug_stack(int flag)

DESCRIPTION
fname name of the C-function
status error value identifying the error
message string with additional information
flag enable/disable run-time checking of error-stack inconsistencies

Error reporting mechanism for image processing routines. The function
im_begin_func() is put at the beginning of each C-function and im_end_func() is put
at every exit of that C-function. These two function keep a function-stack up-to-date
with the exact location the program is at.

SCIL_Image 1.4 – Reference Manual

247

When an error is detected by a C-function, it should try to handle and correct it. If it
can not correct the error, it must report this error to the error-stack. First it must clean
up and then report the error using the im_report_error() function. This report must
specify the function name "fname", the error-value "status" and an (optional) message
string "message" in which additional textual information can be put. Additionally the
function should return the error-value to the higher-level function. im_report_error()
also calls im_end_func(), so in case of an error calling im_end_func() is superfluous
(but not an error).

im_report_error() also returns its "status" argument so it can be used directly in a
"return" statement (see EXAMPLE).

After an error is detected and reported, the error-stack is initialized with the location
of the error (the current contents of the function-stack and the error-value and message
of the function that reported the error. Only higher-level functions that are on this
error-stack can put their error-values and -messages on this stack while handling the
error from the lower-level function. The error-stack can hold only one error and its
location. When during the handling of this error another error occurs in a different
location, this last error is ignored by the error-stack.

im_get_status() retrieves the error-status of the function that is just below the current
function on the error-stack. It should be used when the lower-level function can not
return a error-value through its return-value (e.g. the return-type is a float or a
pointer). When no error has been been reported yet or when im_get_status() is called
from a function that is not in the "frozen" error-stack, it always returns 1 (no error).

When all higher-level functions have handled the error and reported the error-values
and messages to the error-stack, the error is published by the global error-object
"im_error_stack". The User Interface then gets notified of the fact that an error has
occurred and can present that information to the user/programmer.

im_debug_stack() enables/disables the run-time consistency checking of the function-
and error-stack. "flag" is 1 enables and "flag" is 0 disables the checking. Empty
function-names, typing errors, forgotten im_end_func() calls all will lead to a corrupt
error-stack. When the checking is enabled, this will be reported as soon as it is
detected. It is recommended to use this checking only when testing your new code
because the amount of output can be extensive.

The include file "im_error.h " contains a number of pre-defined error values that are
used by Image.

EXAMPLE
Example of a function that can not allocate a temporary buffer due to
insufficient memory:

#include <stdlib.h>
#include "image.h "
#include "im_error.h "

int my_function(IMAGE *in, IMAGE *out)
{

SCIL_Image 1.4 – Reference Manual

248

int *ptr, size;

im_begin_func("my_function");

...
size = ...
...
if (!(ptr = malloc(size)))
return im_report_error("my_function", IE_NOMEM,

 "No memory for table");
...
...
free(ptr);
im_end_func("my_function");
return IE_OK;

}

RETURN VALUES
im_report_error() returns its second ("status") argument.
im_get_status() returns the error status of the function that is one level down on the
error-stack (if an error has previously been reported).

SEE ALSO
im_debug_stack im_get_func_stack_copy im_clear_errors im_clear_func_stack
show_func_stack show_error_stack

im_from_silo
NAME

im_from_silo - transfer image from silo to destination image

SYNOPSIS
#include "image.h"
#include "silo.h"

int im_from_silo(SILOPTR siloptr, int silo_key, IMAGE *dstimage)

DESCRIPTION
siloptr - Pointer to an image-silo.
silo_key - Numerical entry silo_key.
dstimage - Image pointer

Copies the image at position "silo_key" from the silo "siloptr" to the image "dstimage".
The sizes of the image "dstimage" are set to the sizes of the image from the silo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

249

im_input_func

del_im_input_func

im_exposure_func

del_im_exposure_func
NAME

im_input_func, del_im_input_func, im_exposure_func, del_im_exposure_func -
functions for image event handling

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int im_input_func(void (*fp)(IMAGE *, int, int, int, IM_EVENT), int
handle_err)

int del_im_input_func(void (*fp)(IMAGE *, int, int, int, IM_EVENT))

int im_exposure_func(void (*fp)(IMAGE *), int handle_err)

int del_im_exposure_func(void (*fp)(IMAGE *))

DESCRIPTION
These functions can be used to indicate that a program is interested in exposure- and
input-events for images.

im_input_func() can be used to specify a function that is to be called when input
events for an image occurs. "fp" is a pointer to the function to be called. If
"handle_err" is set (1), the specified function is removed from the list when an error
occurs (and the program is interrupted).

The function to handle the input events must have the following syntax:

void func(IMAGE *imptr, int x, int y, int ch, IM_EVENT but)

imptr; /* image in which the event occurs */
x, y; /* position of the pointer */
ch; /* key pressed (if any) */
but; /* button state */

im_exposure_func() can be used to specify a function that is to be called when
exposure events for the images occur. "fp" is a pointer to the function to be called. If
"handle_err" is set (1), the specified function is removed from the list when an error
occurs (and the program is interrupted).

The function to handle the exposure event must have the following syntax:

void func(IMAGE *imptr)

SCIL_Image 1.4 – Reference Manual

250

imptr; /* image in which the exposure event occurred */

del_im_input_func() deletes the specified function "func" from the list of functions
that are called on input events.

del_im_exposure_func() deletes the specified function "func" from the list of
functions that are called on exposure events.

NOTE
These functions form a new interface to the events in images for application
programs. The old interface which consisted of the functions
add_applic_exposure_func(), add_applic_win_input_func() and the mandatory names
for interpreted event handling functions handle_exposure() and handle_win_input()
have become obsolete. The support of those function is no longer guaranteed in future
versions of SCIL_Image.

RETURN VALUES
IE_OK (1)

SCIL_Image 1.4 – Reference Manual

251

im_set_output_handler
NAME

im_set_output_handler - intercept textual output.

SYNOPSIS
#include "imtxtout.h"

IM_OHFUNC im_set_output_handler(IM_OHFUNC funcptr)

DESCRIPTION
im_set_output_handler() registers a function that is used to handle all textual output
that has been "printed" using the image_output() function. An application that uses the
Image library may have its own way of presenting textual data and therefore wishes to
overrule the default way, im_set_output_handler enables this. "functptr" must be a
pointer to a function that has the following function header:

void WINAPI funcname(int stream, char *buffer)

"stream" is the type of the text as defined with image_output().
"buffer" is a text-buffer containing the text to be shown.

im_set_output_handler() returns the previous output handler so an application is
capable of overruling and restoring other handlers.

NOTE
We use WINAPI on the MS-Windows platform to provide greater flexibility. On other
platforms WINAPI is an empty define (see the include file imtxtout.h)

RETURN VALUES
im_set_output_handler() returns the previous output handler.

SEE ALSO
image_output

SCIL_Image 1.4 – Reference Manual

252

im_to_silo
NAME

im_to_silo - add existing image to an image-silo

SYNOPSIS
#include "image.h"
#include "silo.h"

int im_to_silo(SILOPTR siloptr, int silo_key, IMAGE *image)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in silo.
image - Pointer to image.

Transfers the image "image" to the image-silo "siloptr" at position "silo_key".

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

253

im_val_ok
NAME

im_val_ok - check if value(s) is(are) smaller than the image size(s)

SYNOPSIS
#include im_infra.h"

int im_val_ok(IMAGE *image, int a1 [, int v1, int a2, int v2, ...])

DESCRIPTION
The function performs a series of checks on the values "v1", "v2", ... (depending on
the amount specified) to see if they are smaller than or equal to the image size(s). A
variable number of argument pairs "aX-vX" (up to 8 pairs) can be checked. Each
value "vX" is checked if it is positive and smaller than or equal to the image
dimension specified by "aX". Each pair of arguments is checked by calling the
function val_check(). Each argument "aX" can have one of the following values:

WIDTH (1) check if the corresponding value "vX" is smaller than or equal to the
image width.

HEIGHT (2) check if the corresponding value "vX" is smaller than or equal to the
image height.

DEPTH (3) check if the corresponding value "vX" is smaller than or equal to the
image depth.

END (-1) if less than 8 pairs of arguments are supplied, the first not used
argument "aX" must be END to stop checking.

RETURN VALUES
IE_OK (1) if all the values are positive and smaller than the image size(s) specified
IE_NOT_OK (0) if one of the value is bigger than an image size.

SEE ALSO
val_check

SCIL_Image 1.4 – Reference Manual

254

im1ps

im2ps

im3ps

im4ps
NAME

im1ps - print one image in postscript

im2ps - print two images

im3ps - print three images

im4ps - print four images

SYNOPSIS
#include "im_proto.h"

void im1ps(IMAGE *im, char *title, double xsize, double ysize, int
fntsize, int border, char *filename)

void im2ps(IMAGE *im1, char *title1, IMAGE *im2, char *title2, double
xsize, double ysize, int fntsize, int border, char *filename)

void im3ps(IMAGE *im1, char *title1, IMAGE *im2, char *title2, IMAGE
*im3, char *title3, double xsize, double ysize, int fntsize, int
border, char *filename)

void im4ps(IMAGE *im1, char *title1, IMAGE *im2, char *title2, IMAGE
*im3, char *title3, IMAGE *im4, char *title4, double xsize, double
ysize, int fntsize, int border, char *filename)

DESCRIPTION
The functions im1ps(), im2ps(), im3ps() and im4ps() output one or more images in a
postscript file. The size of the image can be specified (in centimeters) by "xsize" and
"ysize", the title of the image by "title" together with the font-size "fntsize" in which it
is printed (in points). If "border" is set (1), a rectangle is drawn around the image. The
output is stored in the file "filename".

im1ps() plots one image centered on the page.

im2ps() plots two images aligned vertically (the images are numbered from top to
bottom).

im3ps() plots three images aligned vertically.

im4ps() plots 4 images in a 2x2 matrix. The images are numbered as:

1 2
3 4

SCIL_Image 1.4 – Reference Manual

255

SEE ALSO
ps_head ps_image ps_tail

image_ok
NAME

image_ok - check if the supplied pointer is a valid image pointer

SYNOPSIS
#include "im_infra.h"

int image_ok(IMAGE *image)

DESCRIPTION
The pointer "image" is checked if it points to a valid image. The linked list in which
all the images are present is scanned for the occurrence of "image". If no image exist
with this pointer, an error is generated and the following message is added to the
error-stack:

Non existing image pointer.

The function is_image() performs the same check and has the same return values but
does not put an alert box on the screen.

RETURN VALUES
IE_OK (1) if the pointer is a valid image.
IE_NOT_OK (0) if the pointer is not an image.

SEE ALSO
images_ok is_image

SCIL_Image 1.4 – Reference Manual

256

image_output
NAME

image_output - show formatted output

SYNOPSIS
#include "image.h "
#include "im_infra.h"

void image_output(int stream, const char *format, ...)

DESCRIPTION
To enable the image processing routines to be used under any user-interface, all
textual messages from these functions must be visualized by the user-interface, not by
the image processing. Therefore printf() and other standard output functions should
not be used. The image_output() function is used in the image processing functions to
channel all the textual information to the user-interface. image_output() is called
almost the same way as printf() except that a parameter "stream" has been inserted to
identify the type of information. At present, the following types have been defined:

IMO_OUTPUT: ordinary-output (e.g.) measurement results
IMO_INSTRUCT: instruction messages
IMO_WARING: warning messages
IMO_ERROR : error-messages

How these different streams are shown to the user, is entirely up to the user-interface
e.g. in SCIL_Image the error stream is visualized by means of a alert_box showing the
message. Execution is resumed after the alert_box has been removed by the user.

RETURN VALUES
im_set_output_handler

SCIL_Image 1.4 – Reference Manual

257

image_readwrite_ok
NAME

image_readwrite_ok - check if an image is writeble

SYNOPSIS
#include "im_infra.h"

int image_readwrite_ok(IMAGE *image)

DESCRIPTION
The pointer "image" is checked if it does not have the READ_ONLY flag set. If the
image is read-only, an error is generated and the following message is added to the
error-stack:

Illegal output image: <imagename> (read only)

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) when the image is read-only

image_text
NAME

image_text - generate text within an image

SYNOPSIS
#include "im_proto.h"

int image_text(IMAGE *out, int x, int y, int val, int boxval, int
zoom, char *str)

DESCRIPTION
Write the text string specified by "str" into the image "out", starting at relative
position (x,y). The intensity of the characters is specified by "val", the background
intensity is "boxval". "zoom" specifies the zoom factor.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

258

image_to_chaincode
NAME

image_to_chaincode - convert labeled skeleton into chain-code list

SYNOPSIS
#include "grey_2dp.h"

int image_to_chaincode(IMAGE *image, VAR_OBJECT *output)

DESCRIPTION
The labeled image "image" is scanned for objects, which should be 8-connected
skeletons, and a Freeman chain-code description of the objects is stored into the
1-dimensional VAR_OBJECT "output" of type SHORT_T.

Freeman chain-codes

Freeman chain-codes describe an 8-connected curve in the following way. The
coordinates of the first point of the curve are stored. Then for all points of the curve,
the direction to the next point is stored (Freeman code). In a rectangular grid, an
8-connected curve can only step in 8 different directions, so the directions are coded
as:

3 2 1
4 * 0
5 6 7

In this way, an 8-connected curve can be represented by:

the x-coordinate of the first point,
the y-coordinate of the first point,
the number of Freeman codes, N,
N Freeman codes.

If the curve is closed, N is equal to the number of pixels on the curve: the last
chain-code points to the first point. If the curve is open, N equals the number
of points minus one, as there is no successor to the last point.

Each object in "image" is parsed into a set of curve segments, connecting two
endpoints or branch-points or being a closed loop. Each curve segment is then
represented by a starting point and a set of chain-codes.

The representations of the objects are stored into "output" in the following
order:

the number of objects stored,
the representation of the first object,
the representation of the second object,
...

The representation of each object is as follows:

SCIL_Image 1.4 – Reference Manual

259

the number of curves in the object,
the representation of the first curve,
the representation of the second curve,
...

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
chaincode_to_image chaincode_to_xy put_xy_into_image

image_to_var_object
NAME

image_to_var_object - convert an image into a var_object

SYNOPSIS
#include "objectsp.h"

int image_to_var_object(IMAGE *image, VAR_OBJECT *object, int
type_of_object)

DESCRIPTION
Convert the image "image" into a the var_object "object". "type_of_object" specifies
the type that the object will become. If "type_of_object" is zero, then the type of the
object itself will be taken.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object var_object_convert var_object_to_image

SCIL_Image 1.4 – Reference Manual

260

ImageMotionEvents
NAME

ImageMotionEvents - enable/disable motion events for an image

PLATFORM
UNIX.

SYNOPSIS
#include "disp_p.h"

int ImageMotionEvents(IMAGE *image, int mode)

DESCRIPTION
An interactive application must react to all events generated by the windowing system
in order to perform its tasks. However not all events that can be generated by a
windowing system are of interest to certain applications. One of these events is the
ButtonMotionEvent generated by the X-windows system. The number of this type of
event can be quite large, decreasing the performance of the application and creating
undesired delayed feedback effects. ImageMotionEvents() enables the programmer to
turn of this event for the window attached to "image". To turn off these events,
"mode" must be set to No (0). The events are turned back on again by mode Yes (1).

Any application that turns off these events, should turn them back on again before the
application ends.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
im_input_func del_im_input_func im_exposure_func del_im_exposure_func
set_image_interaction handle_events point_im poll_mouse

SCIL_Image 1.4 – Reference Manual

261

images_ok
NAME

images_ok - check if the two pointers supplied are valid images

SYNOPSIS
#include "im_infra.h"

int images_ok(IMAGE *image1, IMAGE *image2)

DESCRIPTION
The pointers "image1" and "image2" are checked if they point to valid images. The
linked list in which all the images are present is scanned for the occurrence of
"image1" and "image2". If not both pointers are valid images, an error is generated
and the following message is added to the error-stack:

Non existing image pointer.

RETURN VALUES
IE_OK (1) if both pointers are valid images
Negative error status on failure (see im_error.h)

SEE ALSO
image_ok is_image

imaginary_im
NAME

imaginary_im - get the imaginary part of an complex image

SYNOPSIS
#include "im_proto.h"

int imaginary_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Take the imaginary part of each element of the image "in" (a complex image) and
store the results in the image "out". If "out" is a complex image then the result will be
stored in the real part of each element of "out" and the imaginary part will be cleared.
If "out" is not a complex image the result will be a float image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
real_im complex_im

SCIL_Image 1.4 – Reference Manual

262

Imeasure
NAME

Imeasure - Interactive object measurements

SYNOPSIS
#include "im_aio.h"

LIST *Imeasure(IMAGE *grey, IMAGE *binary, int garb, unsigned long
shape, unsigned long dens, int print_it, char *file)

DESCRIPTION
grey - Grey value image containing original object
binary - Binary image containing mask of the objects
garb - Object garbage level
print_it - Print results
shape, dens - Bitmaps with feature specification
file - Store results in file

Imeasure() is the interactive measurement routine of the AIO package.

The function list_label() is used to label the objects in the binary image using 8
connectivity and a garbage level "garb". Then the functions object_shape_meas() and
object_dens_meas() are used to measure the shape and densitometry features specified
in the "shape" and "dens" bitmaps. The results of the measurements are shown on your
terminal/worksheet if "print_it" is 1. If a filename other than "-" is given in "file" the
results are stored in that file.

RETURN VALUES
A list with object information is returned on success
NULL on failure.

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

263

increment_im
NAME

increment_im - increment

SYNOPSIS
#include "im_proto.h"

int increment_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Increment each element of "in" and store the result in the corresponding element of
"out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
decrement_im eval

SCIL_Image 1.4 – Reference Manual

264

init_func_overload
NAME

init_func_overload - initialize the function overload tables

SYNOPSIS
#include "im_infra.h"

int init_func_overload(void)

DESCRIPTION
init_func_overload() initializes the function overload tables used by the function
overload mechanism of Image. If init_func_overload() is not done the overload
mechanism will not work.

NOTE
This routine is intended for system administrational use only.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
show_func_overload overloadable_func

init_scil_image
NAME

init_scil_image - perform necessary initialization of the SCIL_Image package

SYNOPSIS
void init_scil_image(void)

DESCRIPTION
init_scil_image() performs the necessary initialization for the correct operation of the
SCIL_Image environment.. It must be present in the "scilinit" executed before any
image-processing operation is performed.

RETURN VALUES
None

SEE ALSO
default_images

SCIL_Image 1.4 – Reference Manual

265

init_silo
NAME

init_silo - initialize image-silo package

SYNOPSIS
void init_silo(void)

DESCRIPTION
Initializes the silo-package. The silo_err variable is defined here. An array of binary
masks used to maintain an entry list is filled here.

RETURN VALUES
None

initimage
NAME

initimage - initialize the image processing package

SYNOPSIS
#include "im_infra.h"

int initimage(void)

DESCRIPTION
initimage() performs necessary initialization for correct operation of the image
infrastructure. It must be called before any image-processing operation is executed.

RETURN VALUES
None

interpret
NAME

interpret - interpret a command

SYNOPSIS
void interpret(char *str)

DESCRIPTION
interpret() sends the given string "str" to the SCIL command interpreter. The string is
then interpreted as if it was typed at the keyboard.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

266

intlow
NAME

intlow

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See lowest_int

invert_im
NAME

invert_im - bitwise inversion of image pixels

SYNOPSIS
#include "im_proto.h"

int invert_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Perform a bitwise invert operation of each element of "in" and store the result in "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
and_im or_im xor_im shift_im

SCIL_Image 1.4 – Reference Manual

267

Irectangle
NAME

Irectangle - interactive box selection

SYNOPSIS
#include "itools.h"

int Irectangle(IMAGE **im, char *mess, int *x, int *y, int *z, int
*w, int *h, int *d)

DESCRIPTION
Irectangle() enables the user to select a rectangular region in an image. First the user is
shown the string "mess" as a message to start dragging; if "mess" is NULL or an
empty string, no message is shown. After the user has drawn a rectangle in "im", and
(for 3D) extended the Z slice, the coordinates of the rectangle are returned in "x", "y"
and "z", and the sizes of the rectangle in "w","h" and "d". If "im" or "*im" is NULL,
every image may be pointed in; in that case the image in which the rectangle is drawn
is returned in "*im". The user may interrupt pointing by pressing a key, which will be
returned. The visual feedback given during selection is removed at the end of
selection.

RETURN VALUES
The key pressed or 0

SEE ALSO
point_im

SCIL_Image 1.4 – Reference Manual

268

is_image
NAME

is_image - tell if the supplied pointer is a image (no warning)

SYNOPSIS
#include "im_infra.h"

int is_image(IMAGE *image)

DESCRIPTION
The pointer "image" is checked against the linked list of existing images and if it is a
valid image a true status is returned. If it is not an image then just a false status is
returned, no error is generated. This function and the function image_ok() perform the
same check and have the same return status, except that image_ok() does generate an
error if the pointer is not an image.

The function is meant for situations that a pointer can point to several different
structure (or to nothing at all) and the software has to find out where it is pointing at.

RETURN VALUES
TRUE (1) if the pointer "image" is a valid image.
FALSE (0) if not.

SEE ALSO
image_ok images_ok

SCIL_Image 1.4 – Reference Manual

269

is_var_object
NAME

is_var_object - tell if the pointer is a var_object (no warning)

SYNOPSIS
#include "objectsp.h"

int is_var_object(VAR_OBJECT *var_object)

DESCRIPTION
The pointer "var_object" is checked against the linked list of existing var_objects and
if it is a valid var_object a true status is returned. If it is not an var_object then just a
false status is returned, no warning is displayed on the screen. This function and the
function var_object_ok() perform the same check and have the same return status,
except that var_object_ok() does put a warning on the screen.

The function is meant for situations that a pointer can point to several different
structure (or to nothing at all) and the software has to find out where it is pointing at.

RETURN VALUES
TRUE (1) if the pointer "var_object" is a valid var_object.
FALSE (0) if not.

SEE ALSO
var_object_ok var_object

SCIL_Image 1.4 – Reference Manual

270

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit
NAME

isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, isxdigit - character classification

SYNOPSIS
#include <ctype.h>

int isalnum(int c)

int isalpha(int c)

int isascii(int c)

int iscntrl(int c)

int isdigit(int c)

int isgraph(int c)

int islower(int c)

int isprint(int c)

int ispunct(int c)

int isspace(int c)

int isupper(int c)

int isxdigit(int c)

SCIL_Image 1.4 – Reference Manual

271

DESCRIPTION
These functions are interfaces function to the standard C macros as implemented on
thecurrent system. The functionality of these macros is:

These macros classify ASCII-coded integer values by table lookup. Each is a predicate
returning nonzero for true, zero for false. Isascii is defined on all integer values; the
rest are defined only where isascii is true and on the single non-ASCII value EOF (see
stdio.h).

isalnum c is an alphanumeric character
isalpha c is a letter
isascii c is an ASCII character, code less than 0200
iscntrl c is a delete character (0177) or ordinary control character (less than

040).
isdigit c is a digit
isgraph c is a printing character except space
islower c is a lower case letter
isprint c is a printing character, code 040 (space) through 0176 (tilde)
ispunct c is a punctuation character (neither control nor alphanumeric)
isspace c is a space, tab, carriage return, newline, or formfeed
isupper c is an upper case letter
isxdigit c is a hexadecimal digit

RETURN VALUES
The functions all return a non-zero (true) value if the argument c satisfies the
condition described, and zero if not

SCIL_Image 1.4 – Reference Manual

272

IsMouseDown
NAME

IsMouseDown - test whether a specified mouse button is down

SYNOPSIS
#include "disp_p.h"

int IsMouseDown(IM_EVENT mouse_event, int button)

DESCRIPTION
IsMouseDown() can be used to find out whether the specified button or buttons are
down. The "button" argument can be a combination of the symbolic values LEFT,
MIDDLE, RIGHT, separated by "|" (the bitwise OR). The function returns the
"bitwise OR" of the buttons which were specified and being down (e.g. if the button
argument reads "LEFT | MIDDLE | RIGHT" and the buttons being down are LEFT
and RIGHT, the value "LEFT | RIGHT" will be returned. IsMouseDown() can only be
used after a call to the "point_im" routine which returns a mouse-event as one of its
arguments.

EXAMPLE
#include "disp_p.h"
#include "image.h"

IMAGE *ip;
int x, y;
int val;
IM_EVENT event;

printf("Left Middle Right\n");
while (point_im(&ip, &x, &y, &event) != ’q’) {

val = IsMouseDown(event, LEFT | RIGHT | MIDDLE);
printf(" %d %d %d\r", (val&LEFT)>0, (val&MIDDLE)>0,

(val&RIGHT)>0);
fflush(stdout);

}

RETURN VALUES
"Bitwise OR" combination of LEFT, MIDDLE and RIGHT buttons being down.
0 if none of the specified button(s) was down.

SEE ALSO
point_im MousePress MouseRelease MouseMove EventType KeyPressed

SCIL_Image 1.4 – Reference Manual

273

isodata_threshold
NAME

isodata_threshold - thresholding using the isodata algorithm.

SYNOPSIS
#include "im_proto.h"

int isodata_threshold(IMAGE *in, IMAGE *out)

DESCRIPTION
Perform thresholding operation on the grey value image "in" and store the result in the
binary image "out". The threshold-level is determined by the isodata algorithm. This
algorithm is an iterative method based upon the grey level histogram of the image.
The histogram is split up into two parts, the foreground pixels and the background
pixels, assuming an initial threshold value. Then the average value of the foreground
and of the background pixels is calculated and a new threshold value is taken midway
between those two values.
This process is repeated, based upon the new threshold estimate until the threshold
value does not change any more.

RETURN VALUES
The used threshold value.

SEE ALSO
threshold entropy_threshold

SCIL_Image 1.4 – Reference Manual

274

iter_ok
NAME

iter_ok - check if the number of iterations is positive or zero

SYNOPSIS
#include "im_infra.h"

int iter_ok(int iter)

DESCRIPTION
The function checks if the number "iter" is zero or greater than zero. If it is not an
error is generated and the following message is added to the error-stack:

Nr of iterations [<iter>] must be a positive number

The function is used in operations that have an argument that specifies a number of
iterations.

RETURN VALUES
IE_OK (1) if the number is positive or zero
IE_NOT_OK (0) if the number is negative

SEE ALSO
range_ok positive_ok

SCIL_Image 1.4 – Reference Manual

275

IThreshold
NAME

IThreshold - interactive threshold editor

SYNOPSIS
#include "itools.h"

void IThreshold(IMAGE *image)

DESCRIPTION
IThreshold() is an interactive threshold editor with two threshold levels. The
histogram of the image "image" is shown in a separate window. The two vertical lines
that run through the histogram of the image represent the threshold levels, the
numbers printed above them are the number of pixels equal to those levels. These two
lines are part of the scrolling mechanism present under the histogram which can be
used to change the threshold levels. The result of thresholding with the two levels can
be seen simultaneously in the image through the use of the colors green, red and blue.
The pixels that have a value equal to the lower level are shown in red, the pixels equal
to the upper level in blue and the pixels in between in green. Pixels outside both levels
keep their original appearance.

To move the scrolling mechanism, click the mouse button and drag the middle part.
Both the threshold levels will move synchronously. Dragging with the mouse button
in the left part of the mechanism will alter the lower level only. The upper level can be
moved by dragging the right part of the scrolling mechanism.

At the bottom of the threshold editor three buttons are located with the following
functions:

"OK" Exit the editor, threshold the image according to the two levels set.

"CANCEL" Exit the editor, leave the image intact.

"HELP" Short on-line help.

RETURN VALUES
None

SEE ALSO
IGreyMap

SCIL_Image 1.4 – Reference Manual

276

jpeg_readfile

jpeg_writefile

set_jpeg_quality
NAME

jpeg_readfile - read an image from a file in JPEG (JFIF) format

jpeg_writefile - write an image to a file in JPEG (JFIF) format

set_jpeg_quality - change the JPEG quality percentage

SYNOPSIS
#include "im_proto.h"

IMAGE *jpeg_readfile(char *filename, IMAGE *image, int xpos, int
ypos)

int jpeg_writefile(IMAGE *image, char *filename)

int set_jpeg_quality(int percentage)

DESCRIPTION
jpeg_readfile() reads the image stored in the JPEG file "filename" and puts it in image
"image". If "USE_NAME" (a NULL pointer) is specified as the image, a new image is
created at position "xpos", "ypos", with the same name as the file. If an image is
already present with that name, that image will be re-used.

jpeg_writefile() writes the image "image" to the file "filename" using the JPEG
format.

These functions are capable of handling JPEG-files according to the JPEG File
Interchange Format (JFIF) specifications.

The obligatory filename extension for this file format is ".jpg".

By default the image quality is set at 75%. To change this percentage for subsequent
writes, use the set_jpeg_quality() function.

RETURN VALUES
jpeg_readfile() returns the pointer to the image in which the data was put, either an
existing image or a newly created one. It returns NULL on failure to load the file.

jpeg_writefile() and set_jpeg_quality() :
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
writefile readfile

SCIL_Image 1.4 – Reference Manual

277

karhunen_loeve

im_eigenvectors

im_principle_component
NAME

karhunen_loeve, im_eigenvectors, im_principle_component - principle component
analysis of image planes

SYNOPSIS
#include "im_proto.h"

int karhunen_loeve(IMAGE *in, IMAGE *out, int start, int end)

int im_eigenvectors(IMAGE *in, VAR_OBJECT *vecs, VAR_OBJECT *vals)

int im_principle_component(IMAGE *in, VAR_OBJECT *vecs, IMAGE *out,
int nr)

DESCRIPTION
These functions apply an eigenvector analysis on the planes of image "in". This 3D
input image is interpreted as a set of 2D image "features". The karhunen_loeve()
function returns directly the "start" to "end" principle components of the input, where
the first principle component has the largest eigenvalue and the last
(=ImageDepth(in)-1) principle component the smallest. The im_eigenvectors()
function returns the eigenvectors "vecs" and eigenvalues "vals" in the corresponding
var_objects (DOUBLE_T). After analysis, the components can be extracted by
applying im_principle_component(). The "vecs" var_object is the one returned from
im_eigenvectors(); "nr" determines which component will be returned in "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
covplanematrix

SCIL_Image 1.4 – Reference Manual

278

KeyPressed
NAME

KeyPressed - test whether a key has been pressed inside an image

SYNOPSIS
#include "disp_p.h"

int KeyPressed(IM_EVENT event)

DESCRIPTION
KeyPressed() can be used to find out whether a key has been pressed inside an image.
It returns the ASCII value of the key pressed or 0 (zero) if no key was pressed.
KeyPressed can only be used after a call to the "point_im" routine which returns an
event as one of its arguments.

EXAMPLE
#include "disp_p.h"
#include "image.h"

IMAGE *ip;
int x, y;
int val;
IM_EVENT event;

while (point_im(&ip, &x, &y, &event) != ’q’) {
val = KeyPressed(event);
if(val) printf("[%c]", val);

}

NOTE
The KeyPressed mechanism ensures the mapping of carriage return to new-line, no
matter what mode the terminal is in.

RETURN VALUES
The ASCII value of the key pressed.
0 if no key pressed.

SEE ALSO
point_im MousePress MouseRelease MouseMove IsMouseDown EventType

SCIL_Image 1.4 – Reference Manual

279

kirsch_temp
NAME

kirsch_temp - edge detection filter

SYNOPSIS
#include "im_proto.h"

int kirsch_temp(IMAGE *in, IMAGE *out, IMAGE *direction, int flag)

DESCRIPTION
Template type edge detection based upon the Kirsch operator. Within the moving
window in the image "in", with dimensions 3 * 3, eight convolutions with the
following masks are calculated:

(0) (1) (2) (3)
-3 -3 5 -3 5 5 5 5 5 5 5 -3
-3 0 5 -3 0 5 -3 0 -3 5 0 -3
-3 -3 5 -3 -3 -3 -3 -3 -3 -3 -3 -3

(4) (5) (6) (7)
5 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
5 0 -3 5 0 -3 -3 0 -3 -3 0 5
5 -3 -3 5 5 -3 5 5 5 -3 5 5

The output value is the maximum of the results of all these convolutions. It is stored
into "out", in the pixel corresponding with the central pixel of the window. The
sequence number of the convolution mask with the maximum result is an estimate of
the direction of the first derivative and it is stored in the image "direction", if this is
specified (flag = 1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
laplace prewitt_temp robinson_temp prewitt_diff roberts_diff sobel_diff

SCIL_Image 1.4 – Reference Manual

280

kuwahara
NAME

kuwahara - edge preserving smoothing (Kuwahara)

SYNOPSIS
#include "im_proto.h"

int kuwahara(IMAGE *in, IMAGE *out, int fsize)

DESCRIPTION
Perform an edge preserving smoothing (Kuwahara filter) on the pixels of image "in"
and store the result in image "out".
Image "in" is scanned with a moving window with dimensions "fsize" * "fsize".
The command subdivides the moving window into four sub-windows. In each sub-
window the variance of the pixel values is calculated. The window with the lowest
variance is taken as the averaging window. The resulting average value is stored in the
pixel in image "out" that corresponds with the central pixel in the moving window.
This approach tends to avoid the sub-windows with large variations in pixel values,
e.g. due to the occurrence of an edge.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
edge_preserve

SCIL_Image 1.4 – Reference Manual

281

kuwahara_round
NAME

kuwahara_round - kuwahara filter using a circular filter window

SYNOPSIS
#include "im_proto.h"

int kuwahara_round(IMAGE *in, IMAGE *out, int fsize)

DESCRIPTION
Perform an edge preserving smoothing (Kuwahara filter) on the pixels of image "in"
and store the result in image "out". Image "in" is scanned with a moving circular
window with diameter "fsize".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
grey_morph_round kuwahara vkuwahara

SCIL_Image 1.4 – Reference Manual

282

label
NAME

label - image labeling

SYNOPSIS
#include "im_proto.h"

int label(IMAGE *in, IMAGE *out, int conn)

DESCRIPTION
Subdivide binary image "in" into different components, based upon connectivity
analysis, label each object with a sequence number, assign this sequence number as a
new pixel value to each pixel of the object and store the resulting image in the labeled
image "out". "conn" is the connectivity which can be either 4 or 8..

For 2D images the maximum number of objects that can be present in the image is
limited by the maximum label number that can be stored in the output image (short =
32767).

For 3D images the number of object that can be present in the image is limited to
4095 due to the implementation of the algorithm.

RETURN VALUES
The number of objects in the input image "in".

SEE ALSO
hull objectsize rhull small_object_removal

SCIL_Image 1.4 – Reference Manual

283

laplace
NAME

laplace - Laplace edge detector

SYNOPSIS
#include "im_proto.h"

int laplace(IMAGE *in, IMAGE *out, int mask)

DESCRIPTION
Differential edge detection based upon the Laplacian operator. Within the moving
window in the image "in", with dimensions 3 * 3 a convolution with one of the
following masks is calculated. The mask to be applied may be specified by the
parameter "mask", where "mask" is 1, 2 or 3 corresponding with the following masks:

(1) (2) (3)
0 -1 0 -1 -1 -1 1 -2 1

-1 4 -1 -1 8 -1 -2 4 -2
0 -1 0 -1 -1 -1 1 -2 1

The convolution result of the selected mask is stored into the corresponding central
pixel of the image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
prewitt_temp kirsch_temp robinson_temp prewitt_diff roberts_diff sobel_diff

SCIL_Image 1.4 – Reference Manual

284

laxis
NAME

laxis - obtain long axis of fitted ellipse of object

SYNOPSIS
#include "im_aio.h"

double laxis(LIST *link)

DESCRIPTION
link - Link pointing to object

AIO primitive to obtain value of an object feature

laxis() returns the length of the long axis of fitted ellipse of the object pointed to by
"link" if this has previously been measured.

RETURN VALUES
length of the long axis of fitted ellipse of object on success
0.0 if link is not an object or if long axis has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas saxis

SCIL_Image 1.4 – Reference Manual

285

lens

stop_lens
NAME

lens, stop_lens - interactive part image processing

SYNOPSIS
#include "im2scil.h"

int lens(IMAGE *output, int width, int height, char *command)

int stop_lens(void)

DESCRIPTION
lens() is a function, which allows interactive image processing on small part images of
dimensions "width" * "height".

In lens() when the user to points to any of the visible images a small rectangle of
dimensions "width" * "height" is copied to the output image, and the specified
command string is executed. If command is 0 only the copy action is performed.

The lens() command is especially useful when trying out new algorithms which are
still in interpreted rather than in compiled form. Since lens() lets you choose
interesting parts of the image the data to process can be kept small, and the slower
interpreted speed can be used without to much frustration. It certainly makes a
difference in SCIL whether you are operating on an 31*31 image, or on a 256*256
image.

To stop lens() either give a <RETURN> at the keyboard or use the function
stop_lens().

stop_lens() halts lens(), which normally keeps on running until a <RETURN> is typed
at the keyboard.

EXAMPLE
To use lens() as a simple magnifier, only the copy action of lens() is needed, since the
user can resize the output image at will. The following can be typed:

readf bnoise.im
lens(B, 41, 41, NULL);

Now pointing at image A will result in a magnification of the pointed area displayed
in image B.

The following example illustrates the use of lens in combination with a command. In
the example noise removal through percentile filtering can be done almost in real
time:

int small;
small = make_image small GREY_2D 64 64;
lens(small, 31, 31, "percentile small small");

SCIL_Image 1.4 – Reference Manual

286

RETURN VALUES
None.

SEE ALSO
copy_part_image

life
NAME

life - Conway’s game of life

SYNOPSIS
#include "im_proto.h"

int life(IMAGE *in, IMAGE *out, int iter, int bound)

DESCRIPTION
Calculate the next generation(s) from a given generation from image "in" according to
the rules of the "Conway’s game of life". The result is stored in the image "out". "iter"
can be used to calculate several generations in one cycle. "bound" specifies that the
edge around the image must be set to foreground (1) or to background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

287

list

more
NAME

list, more - show contents of the program buffer

SYNOPSIS
list [start],[end]

more [start],[end]

DESCRIPTION
The loaded text program can be inspected with the similar commands "list" or "more".
The difference between "more" and "list" is that the first offers the text interactively in
chunks while the latter just bulks away. "more" asks what to do at the end of each
page. The following answers are possible:

<SPACE> hitting the space bar will show the next full page on the screen
<CR> shows one more line
d shows half a page more
q prevents more from more

EXAMPLE
 [C1] list list all
 [C2] list 5 displays line 5 of program text
 [C3] list 5,10 lists lines from 5 to 10
 [C4] list ,10 lists from start to line 10
 [C5] list 10, lists from line 10 until end

Instead of separating "start" and "end" with a comma a space is also allowed.

SCIL_Image 1.4 – Reference Manual

288

list_cluts
NAME

list_cluts - display a list of all cluts

SYNOPSIS
#include "im_infra.h"

int list_cluts(void)

DESCRIPTION
"list_cluts" generates a list terminal of all cluts that are available on the controlling.

RETURN VALUES
IE_OK (1)

SEE ALSO
create_clut clut_by_name

SCIL_Image 1.4 – Reference Manual

289

list_label
NAME

list_label - label image and create list with objects

SYNOPSIS
#include "im_aio.h"

LIST *list_label(IMAGE *in, IMAGE *out, int con, int garb)

DESCRIPTION
in - Pointer to binary image
out - Pointer to output image
con - Connectivity (4/8)
garb - Garbage level

list_label() labels the objects in the input image "in". Objects smaller than "garb"
pixels are not labeled and do not appear in the output image "out". "con" is the
connetivity used for the labeling, values can be 4 or 8. During the labeling a linked list
is created with all the objects. This list can later be used to manipulate or measure the
objects according to the AIO concept.

The recursive labeling algorithm tries not to use the same label on a horizontal
scanline.

During the labeling process some object information is automatically obtained and
placed in the object list:

xmin, xmax - Minimum and maximum x coordinate
ymin, ymax - Minimum and maximum y coordinate
area - Number of object pixels

NOTE
list_label is part of the AIO package. It is the users responsibility to remove the list
with "rm_list(list)"

EXAMPLE
To label object bigger than 20 pixels, measure the perimeter
and hide those objects whose perimeter is bigger than 70.0:

#include "image.h "
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b,c,8,20);
FORALL(o,l) object_shape_meas(c,o,PERI);
FORALL(o,l) if(peri(o) > 70.0) hide_object(c,o);
display_image(c);
l = rm_list(l);

RETURN VALUES

SCIL_Image 1.4 – Reference Manual

290

A list with information on the labeled objects is returned.

SEE ALSO
aio_label rm_list

list_var_objects
NAME

list_var_objects - display a list of all var_objects

SYNOPSIS
#include "objectsp.h"

int list_var_objects(void)

DESCRIPTION
"list_var_objects" displays a list of all var_objects and their classes on the controlling
terminal.

RETURN VALUES
Always IE_OK (1)

SEE ALSO
var_object destroy_var_object show_var_object_info var_object_by_name

lmax
NAME

lmax

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See grey_dilation

SCIL_Image 1.4 – Reference Manual

291

lmin
NAME

lmin

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See grey_erosion

ln_im
NAME

ln_im - natural logarithm

SYNOPSIS
#include "im_proto.h"

int ln_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Calculate the natural logarithm of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
Number of domain conflicts (number of negative or zero pixels in the input image), so
0 is OK.
Negative error status on failure (see im_error.h).

SEE ALSO
exp_im log10_im

SCIL_Image 1.4 – Reference Manual

292

load
NAME

load - load a C source code file into the interpreter

SYNOPSIS
load [filename]

DESCRIPTION
With the command "load" program text is loaded into SCIL. When no filename is
given, SCIL will prompt for one. When loading a specific file the contents of a
previous loaded file is overwritten, also global variables are deleted.

EXAMPLE
[C1] load demo.c

or

[C1] load
filename: demo.c
[C2]

Evidently both examples will load the file "demo.c".

SCIL_Image 1.4 – Reference Manual

293

local_contrast
NAME

local_contrast - contrast enhancement filter

SYNOPSIS
#include "im_proto.h"

int local_contrast(IMAGE *in, IMAGE *out, int radius, int
frightmarexp, int fleftmarexp, int fleftmargin, int frightmargin)

DESCRIPTION
local_contrast() is a filter that locally enhances the contrast of image "in" by
evaluating the histogram in a circular window around a pixel of interest and stores the
result in the image "out". The variable "radius" determines the radius of the window.

This procedure operates on the basis of a simplified from of histogram equalization:
assuming the histogram is sparse (number of pixels in window is low compared to
grey-value range). See below for details about processing of large dynamic range
images. Equalization is then realized by numbering the non-empty bins starting from
zero. The numbered bins can be thought to present an equalized histogram. Due to the
sparseness and image noise, the number of bins will, usually, not vary much.

The resulting histogram is stretched using a pre-determined constant (see below). Its
center (median) is shifted to coincide with the median of the original histogram.
Subsequently, the value of the "central" pixel is traced to its location in the equalized
histogram and form there to the stretched histogram.

To understand why this results in contrast enhancement, consider two neighboring
pixels: Since the windows around these pixels largely overlap, the range of both
histograms will be roughly the same. As a result, the overall expansion factor from
original histogram to stretched equalized the two pixel-values will be multiplied with
the expansion factor: contrast is enhanced. In image areas where the range original
histogram was large (edges) no stretching occurs; contrast may even be reduced
depending on the value of the stretching factor. The positions of the margins is
controlled through "leftmargin" and "rightmargin"; the stretch values at these
positions are controlled through "frightmarexp" and "fleftmarexp".

A special condition occurs when shifting of the histogram would result in (stretched)
histogram bins outside the range in the original image. In these cases shifted is limited
to avoid this situation. In some applications it is desirable to enhance contrast only in
light or dark areas of the image. This is achieved by making the stretch factor
dependent on the median in the original histogram. This dependency has the form of a
simple linear mapping between two bound or "margins". Outside the margins the
stretch factor is equal to the value at the nearest margin.

Processing of large dynamic range images.

SCIL_Image 1.4 – Reference Manual

294

Images with a grey-value range larger than 0..255 are assumed to be recorded using
photon counting or equivalent sensors. Since the procedure will not work well on
images where the variance is strongly dependent on the signal level (as in photon
limited images), the input image is transformed by taking the square root of the pixels
values. Subsequently, the operation is performed and the transform is reversed.

LITERATURE
van der Voort, H.T.M, G.J. Brakenhoff, J.A.C. Valkenburg & N.Nanninga. 1985.
Design and use of a computer- controlled confocal microscope. Scanning 7: 66-78.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
homomorphic

SCIL_Image 1.4 – Reference Manual

295

local_glc_entropy

local_glc_contrast

local_glc_asymmetry
NAME

local_glc_entropy - local texture measure, co-occurence of greylevels
local_glc_contrast - local texture measure, co-occurence of greylevels
local_glc_asymmetry - local texture measure, co-occurence of greylevels

SYNOPSIS
#include "im_proto.h"

int local_glc_entropy(IMAGE *input, IMAGE *output, int fwidth, int
fheight int vectorx, int vectory)

int local_glc_contrast(IMAGE *input, IMAGE *output, int fwidth, int
fheight, int vectorx, int vectory)

int local_glc_asymmetry(IMAGE *input, IMAGE *output, int fwidth, int
fheight, int vectorx, int vectory)

DESCRIPTION
The functions calculate a local 2-dimensional histogram of the combinations of
greyvalues of pixels that are the startpoint/endpoint of a vector with a specified
("vectorx","vectory") displacement. Calculation takes place in a rectangle
"fwidth"*"fheight" around each centre pixel. The calculated value is stored in image
"output".

The functions calculate:

local_glc_asymmetry Asymmetry of the histogram
Sum over g1,g2 of (p(g1,g2)**2)

local_glc_contrast Contrast of the histogram
Sum over g1,g2 of ((g1-g2)**2)*p(g1,g2)

local_glc_entropy Entropy of the histogram
Sum over g1,g2 of p(g1,g2)*log(p(g1,g2))

Where g1 and g2 are the grey-values at the start and end of the vector, and p(g1,g2) is
the chance of this combination in this local "fwidth"*"fheight" part of the image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
local_gld_mean local_gld_entropy local_gld_contrast local_gld_asymmetry
local_glr_nonuniformity local_glr_shortrunemphasis
local_glr_longrunemphasis local_glr_greynonuniformity local_glr_percentage

SCIL_Image 1.4 – Reference Manual

296

glc_asymmetry glc_contrast glc_entropy

SCIL_Image 1.4 – Reference Manual

297

local_gld_mean

local_gld_entropy

local_gld_contrast

local_gld_asymmetry
NAME

local_gld_mean - local texture measure, difference of greylevels
local_gld_entropy - local texture measure, difference of greylevels
local_gld_contrast - local texture measure, difference of greylevels
local_gld_asymmetry - local texture measure, difference of greylevels

SYNOPSIS
#include "im_proto.h"

int local_gld_mean(IMAGE *input, IMAGE *output, int fwidth, int
fheight, int vectorx, int vectory)

int local_gld_entropy(IMAGE *input, IMAGE *output, int fwidth, int
fheight, int vectorx, int vectory)

int local_gld_contrast(IMAGE *input, IMAGE *output, int fwidth, int
fheight, int vectorx, int vectory)

int local_gld_asymmetry(IMAGE *input, IMAGE *output, int fwidth, int
fheight,int vectorx, int vectory)

DESCRIPTION
The functions calculate a local histogram of the absolute differences of all
combinations of pixels that are the startpoint/endpoint of a vector with a specified
("vectorx","vectory") displacement. Calculation takes place in a rectangle
"fwidth"*’fheight" around each centre pixel. The calculated value in the image"
output".

The functions calculate:
local_gld_mean Mean of the histogram

Sum of i*p(i)

local_gld_entropy Entropy of the histogram
Sum of p(i)*log(p(i))

local_gld_contrast Contrast of the histogram
Sum of (i**2)*p(i)

local_gld_asymmetry Asymmetry of the histogram
Sum of (p(i)**2)

Where i is the absolute difference, and p(i) is the chance of that absolute difference in
the local "fwidth"*’fheight" part of the image.

SCIL_Image 1.4 – Reference Manual

298

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
local_glc_entropy local_glc_contrast local_glc_asymmetry
local_glr_nonuniformity local_glr_shortrunemphasis
local_glr_longrunemphasis local_glr_greynonuniformity local_glr_percentage
gld_mean gld_entropy gld_contrast gld_asymmetry

SCIL_Image 1.4 – Reference Manual

299

local_glr_nonuniformity

local_glr_shortrunemphasis

local_glr_longrunemphasis

local_glr_greynonuniformity

local_glr_percentage
NAME

local_glr_nonuniformity - local texture measure, runlength statistics
local_glr_shortrunemphasis - local texture measure, runlength statistics
local_glr_longrunemphasis - local texture measure, runlength statistics
local_glr_greynonuniformity - local texture measure, runlength statistics
local_glr_percentage - local texture measure, runlength statistics

SYNOPSIS
#include "im_proto.h"

double local_glr_nonuniformity(IMAGE *input, IMAGE *output, int
fwidth, int fheight)

double local_glr_shortrunemphasis(IMAGE *input, IMAGE *output, int
fwidth, int fheight)

double local_glr_longrunemphasis(IMAGE *input, IMAGE *output, int
fwidth, int fheight)

double local_glr_greynonuniformity(IMAGE *input, IMAGE *output, int
fwidth, int fheight)

double local_glr_percentage(IMAGE *input, IMAGE *output, int fwidth,
int fheight)

DESCRIPTION
The functions calculate a local histogram of the greyvalue/runlength combinations in
the image. Calculation takes place in a rectangle "fwidth"*"fheight" around each
center pixel. The calculated value is stored in the image "output".

The functions calculate:

local_glr_shortrunemphasis Runlength short run emphasis
Sum over i,j of p(i,j)/(j**2)

local_glr_longrunemphasis Runlength long run emphasis
Sum over i,j of p(i,j)*(j**2)

local_glr_greynonuniformity Runlength greylevel nonuniformity
Sqrt (Sum over i of ((Sum over j of p(i,j))**2))

local_glr_nonuniformity Runlength nonuniformity
Sqrt (Sum over j of ((Sum over i of p(i,j))**2))

SCIL_Image 1.4 – Reference Manual

300

local_glr_percentage Runlength percentage
100*(Number of runs/number of pixels)

Where i is the greylevel, j is the runlength and p(i) is the chance of
that combination in the local "fwidth"*"fheight" part of the image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
local_gld_mean local_gld_entropy local_gld_contrast local_gld_asymmetry
local_glc_entropy local_glc_contrast local_glc_asymmetry
glr_nonuniformity glr_shortrunemphasis glr_longrunemphasis
glr_greynonuniformity glr_percentage

log10_im
NAME

log10_im - 10 based logarithm

SYNOPSIS
#include "im_proto.h"

int log10_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Calculate the base 10 logarithm of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
Number of domain conflicts (number of negative or zero pixels in the input image), so
0 is OK.
Negative error status (see im_error.h).

SEE ALSO
exp10_im ln_im

SCIL_Image 1.4 – Reference Manual

301

logon

logoff
NAME

logon - open a logbook file

logoff - close a logbook file

SYNOPSIS
logon <logfile>

logoff

DESCRIPTION
The command "logon" followed by a filename "logfile" creates a logbook, to keep
track of all direct commands given during the session. At a later stage this file can be
used as a macro to feed the interpreter. The command logoff disconnects and closes
the logbook file.

EXAMPLE
 [C1] logon last_session

Opens the file "last_session" and from then on echoes all direct commands into the
file.

If a logon command is given while there already was a logfile connected, this file is
closed first.

SCIL_Image 1.4 – Reference Manual

302

lookup
NAME

lookup - table look-up based grey level modification

SYNOPSIS
#include "im_proto.h"

int lookup(IMAGE *in, IMAGE *out, VAR_OBJECT *table, int clip)

DESCRIPTION
Substitute image "in" pixel by pixel through table lookup and store the result in "out".
The original pixel value in "in" is used as an index in the look-up table stored in the
var_object "table" which must be 1 dimensional and of type PIXEL_T or SHORT_T.
The value of the corresponding position in "table" is used as the new pixel value for
"out". "clip" is used to avoid error conditions. If "clip" is set, no error is generated but
the input value is clipped between 0 and the lenght of the "table" before it is used

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip threshold contrast_stretch equalize tri_state_threshold

SCIL_Image 1.4 – Reference Manual

303

lower_gskeleton

upper_gskeleton
NAME

lower_gskeleton, upper_gskeleton - grey value skeleton

SYNOPSIS
#include "im_proto.h"

int lower_gskeleton(IMAGE *in, IMAGE *g_out, int border, int
endpixel)

int upper_gskeleton(IMAGE *in, IMAGE *g_out, IMAGE *b_out, int
metric, int border, int endpixel)

DESCRIPTION
There exists two definitions for grey-value skeletons: the upper skeleton and the lower
skeleton. Pruning the branches of the upper skeleton yields a watershed. Whereas the
upper skeleton always runs across the surface of the grey-value landscape, the lower
skeleton may run inside. Both skeletons support options for the preservation of
endpixels and setting the border of the output image ("endpixel" and "border", 0 = off,
1 = on). The upper_g_skeleton() also stores the binary skeleton image in "b_out".

The skeletons erode each elevation (grey-level) in order of increasing distance to the
background. The lower_gskeleton() uses the Hilditch skeleton which is based on a
city-block metric. The upper_gskeleton() uses a 3x3 Chamfer metric which allows the
user to choose either the city-block metric or a pseudo Euclidian metric ("metric" = 1
= use pseudo Euclidian).

The upper skeleton is computational advantageous and is done independent of the
number of grey levels (number of bits). The execution time of the lower skeleton is
linear in the number of grey levels. Each level takes about the same execution time as
the upper skeleton. The upper skeleton only accepts images with a maximum
grey-value of 255.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

304

lowest_int
NAME

lowest_int - truncate pixel values to lowest integer value

SYNOPSIS
#include "im_proto.h"

int lowest_int(IMAGE *in, IMAGE *out)

DESCRIPTION
Convert each element of image "in" into an integer value by taking the integer value
just less than or equal to the original value and store the results into the corresponding
elements of image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fraction_im truncate_im nearest_int

SCIL_Image 1.4 – Reference Manual

305

lseek

tell
NAME

lseek, tell - move read/write pointer

SYNOPSIS
long lseek(int fildes, long offset, int whence)

long tell(int fildes)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

The file descriptor refers to a file open for reading or writing. The read (resp. write)
pointer for the file is set as follows:

If "whence" is 0, the pointer is set to offset bytes.

If "whence" is 1, the pointer is set to its current location plus offset.

If "whence" is 2, the pointer is set to the size of the file plus offset.

The returned value is the resulting pointer location.

The function tell(fildes) is identical to lseek(fildes, 0L, 1).

RETURN VALUES
-1 is returned for an undefined file descriptor, seek on a pipe, or seek to a position
before the beginning of file.

SEE ALSO
open creat fseek

SCIL_Image 1.4 – Reference Manual

306

macro
NAME

macro - execute a macro file

SYNOPSIS
macro [-i] [-v] <macrofile>

DESCRIPTION
The command macro executes the lines in a macrofile as if they were directly typed.
Therefore the macrofiles are restricted to the direct command mode.

Options:
-i every line can be executed interactively i.e. for each line the user can

choose to execute it, to skip it or to quit the macro all together.
-v every line is shown on the screen

EXAMPLE
 [C1] macro -i cleanup.mac
<whatever_in_file> [y/n/q]q
 [C2]

SCIL_Image 1.4 – Reference Manual

307

majority
NAME

majority - majority voting

SYNOPSIS
#include "im_proto.h"

int majority(IMAGE *in, IMAGE *out, int bound, int weight)

DESCRIPTION
Performs "weighted" majority voting on image "in" and stores the result in image
"out". The image is scanned by a moving 3*3 window. If the majority of the pixels
within the window are object pixels, the central pixel within the window becomes an
object pixel (value 1). If the majority of the pixels within the window are background
pixels, the central pixel within the window becomes a background pixel (0). The
"weight" parameter can be used to influence the "voting-weight" of the central pixel as
shown below. Legal values for the "weight" parameter are 0, 1, 2 and 3.

1 1 1
1 2*weight+1 1
1 1 1

The threshold value used to determine the outcome of the voting is also dependent on
"weight" (threshold = "weight + 5"). In case "weight" = 0, the following filter kernel
is created:

1 1 1
1 1 1
1 1 1

and the threshold value becomes 5, effectively making it a median filter. Setting
"weight" to 3 creates the kernel:

1 1 1
1 7 1
1 1 1

and threshold is set to 8, thus making it a true "pepper and salt removal" filter, only
isolated foreground pixels are converted to background pixels and vice versa.

Choosing the values 1 or 2 for "weight. creates filters whose action on the image is
somewhere in-between a median filter and a pepper-and-salt filter

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

308

make_color_im

split_color_im
NAME

make_color_im - convert three images into a color image

split_color_im - convert a color image into three separate images

SYNOPSIS
#include "color_2dp.h"

int make_color_im(IMAGE *im1, IMAGE *im2, IMAGE *im3, IMAGE *out)

int split_color_im(IMAGE *in, IMAGE *out1, IMAGE *out2, IMAGE *out3)

DESCRIPTION
make_color_im() takes the three images "im1", "im2" and "im3" and store the pixels
of each image in the corresponding pixels of "out". "im1" will be stored in the red
component of "out", "im2" in the green component and "im3" in the blue component
of "out".

split_color_im() takes a color-image "in" and stores the red, green and blue
components of each pixel into the images "out1", "out2" and "out3" respectively.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_color convert

SCIL_Image 1.4 – Reference Manual

309

make_gabor

standard_gabor

gabor_bank
NAME

make_gabor, standard_gabor, gabor_bank - make gabor filters

SYNOPSIS
#include "im_proto.h"

int make_gabor(IMAGE *out, double fcentral, double sigma_u, double
sigma_v, double orientation)

int standard_gabor(IMAGE *out, double radial_bandw, double fcentral,
double angular_bandw, double orientation)

int gabor_bank(IMAGE *out, double radial_bandw, double angular_bandw,
int nr)

DESCRIPTION
make_gabor() calculates an even-symmetric Gabor-filter in the Fourier-domain
around the central frequency "fcentral" with standard deviations "sigma_u" and
"sigma_v". The filter is rotated "orientation" degrees. For the function
standard_gabor(), the filter sigmas can be specified as the radial bandwith
"radial_bandw" (in octaves) and the angular bandwith "angular_bandw" (in degrees).
gabor_bank() calculates a bank of standard_gabor filters for which the central
frequencies are chosen in such way that the half-values of the filters are touching. The
number of circles filled in the frequency domain is given by "nr".

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
apply_frequency_bank

SCIL_Image 1.4 – Reference Manual

310

make_image
NAME

make_image - make an image with a display window attached

SYNOPSIS
#include "im2scil.h"

IMAGE *make_image(char *name, int type, int lenx, int leny, int lenz,
int posx, int posy)

DESCRIPTION
make_image() creates an image with the specified "name" of the specified "type" with
the specified dimensions "lenx", "leny" and "lenz". make_image() also creates a
display window for the image at ("posx","posy"). The available standard image types
(see image.h) are:

GREY_2D
BINARY_2D
FLOAT_2D
COMPLEX_2D
GREY_3D
BINARY_3D
FLOAT_3D
COMPLEX_3D
COLOR_2D
COLOR_3D
LABEL_2D
LABEL_3D

make_image() works by calling create_image() followed by create_display().

RETURN VALUES
A pointer to the newly defined image
NULL if the image could not be created.

SEE ALSO
create_image create_display destroy_image roi_define

SCIL_Image 1.4 – Reference Manual

311

MakeNewMenu

AddToMenu

ActivateMenu
NAME

MakeNewMenu - building block for system independent menu model

AddToMenu - building block for system independent menu model

ActivateMenu - make menu visible

SYNOPSIS
#include "md_gen.h"

ABSTRACT *MakeNewMenu(char *name, ABSTRACT *parentmenu)

void AddToMenu(char *name, ABSTRACT *menu, ABSTRACT *parentmenu)

void ActivateMenu(ABSTRACT *top)

DESCRIPTION
MakeNewMenu:
name Name of the new menu
parentmenu Abstract pointer to parent menu. If NULL then a new menu tree

is started

AddToMenu:
name Name of menu item
menu Indicates whether a pull-right menu or just an item should be

added. If NULL name is seen as an simple item, otherwise name
is the name of the pull-right item in the parent menu

parentmenu Parent menu to which the item or pull-right should be added.

ActivateMenu:
top The root of a menu tree

MakeNewMenu() and AddToMenu() are the two building blocks with which any
menu can be build. Any Menu and Dialog generator for SCIL must contain these two
routines. The system independent parts of SCIL uses these two routines to build its
menus.

A menu is activated or made invisible through:
ActivateMenu(top);

EXAMPLE
The simple interface will consist of:

ABSTRACT *FillMenu(TopLevel, menustr, ... menustr, NULL)
ABSTRACT *MenuFromFile(file)

Abstract Menu model

SCIL_Image 1.4 – Reference Manual

312

 +--------+
Basic building block: | label | Item/submenu name
 +--------+
 | ptr | NULL or pointer to submenu
 +--------+

Example menu:

 File Option
+----------+ +----------+
| Special ---->+-------+ | Special ------>+-------+
| open | | spec1 | | dialog | | spec1 |
| close | | spec2 | | menu | | spec2 |
| quit | +-------+ | spec2 | +-------+
+----------+ +----------+

Abstract model:

Menu handle
 +--------+
 | Control|
 +---+----+
 |
 V
 <---+----> <---+---->
 | |
 V V
 +--------+ +--------+
 | File | | Option |
 +---+----+ +---+----+
 | |
 | V
 | <---+---> <----+---> <---+--> <---+--->
 | | | | |
 +-----~ | ~---------+ V V V
 | | +--------+ +------+ +-------+
 | | | dialog | | menu | | spec2 |
 | | +---0----+ +---0--+ +---0---+
 | V
 | <---+----> <---+---> <----+---> <---+--->
 | | | | |
 | V V V V
 | +--------+ +-------+ +--------+ +-------+
 +-> | Special| | open | | close | | quit |
 +---+----+ +---0---+ +---0----+ +---0---+
 |
 |
 V
 <---+---> <---+--->
 | |
 V V
 +--------+ +-------+
 | spec1 | | spec2 |
 +---0----+ +---0---+

The example menu can be build by:

THING Menu, File, Option, Special;

/* Start new menu tree */
Menu = MakeNewMenu("Control", NULL);
/* Create File menu and add to top */
File = MakeNewMenu("File", Menu);
/* Create Option menu and add to top */

SCIL_Image 1.4 – Reference Manual

313

Option = MakeNewMenu("Option", Menu);
/* Create Special menu,add to File menu*/
Special = MakeNewMenu("Special", File);

AddToMenu("open", 0, File); /* Add open item to File menu */
AddToMenu("close", 0, File); /* Add close item to File menu */
AddToMenu("quit", 0, File); /* Add quit item to File menu */

/* Add Special menu to Option menu */
AddToMenu("Special", Special, Option);

AddToMenu("dialog", 0, Option); /* Add dialog item to Option menu */
AddToMenu("menu", 0, Option); /* Add menu item to Option menu */
AddToMenu("spec2", 0, Option); /* Add spec2 item to Option menu */

AddToMenu("spec1", 0, Special); /* Add spec1 item to Special menu */
AddToMenu("spec2", 0, Special); /* Add spec2 item to Special menu */

NOTE
Although the routines can be used directly in a SCIL session, they are meant to be
used by system programmers only. For occasional use of menu’s, other more easy to
use menu creation interfaces will be provided for. These interfaces however do use
these routines to build the menu’s.

RETURN VALUES
MakeNewMenu() returns a pointer to an abstract structure representing the new menu.

AddToMenu() and ActivateMenu return nothing

SCIL_Image 1.4 – Reference Manual

314

malloc

free

realloc

calloc
NAME

malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
void *malloc(unsigned int size)

void free(void *ptr)

void *realloc(void *ptr, unsigned int size)

void *calloc(unsigned int nelem, unsigned int elsize)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

malloc() and free() provide a simple general-purpose memory allocation package.
malloc() returns a pointer to a block of at least size bytes beginning on a word
boundary.

The argument to free() is a pointer to a block previously allocated by malloc(); this
space is made available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc() is overrun
or if some random number is handed to free().

malloc() allocates the first big enough contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing adjacent free blocks
as it searches. It calls sbrk (see break(2)) to get more memory from the system when
there is no suitable space already free.

realloc() changes the size of the block pointed to by "ptr" to "size" bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the lesser
of the new and old sizes.

calloc() allocates space for an array of "nelem" elements of size "elsize". The space is
initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

RETURN VALUES

SCIL_Image 1.4 – Reference Manual

315

malloc, realloc and calloc return a null pointer (0) if there is no available memory or if
the area has been detectably corrupted by storing outside the bounds of a block.
malloc may be recompiled to check the area very stringently on every transaction; see
the source code.

max_element

min_element
NAME

max_element - determine position of maximum

min_element - determine position of minimum

SYNOPSIS
#include "im_proto.h"

int max_element(IMAGE *in, VAR_OBJECT *result, int whole, int
dimension)

int min_element(IMAGE *in, VAR_OBJECT *result, int whole, int
dimension)

DESCRIPTION
Determine the position of the pixel with minimum/maximum value in image "in" and
store the result in the var_object "result". If "whole" is set (=1) then the position of the
minimum/maximum of the entire image will be determined. If "whole" is not
specified (=0) then the position of the minimum/maximum of each line is determined.
In that case the following has to taken into account: If "dimension" is 1 then the
minimum/maximum each x-line is determined. (2: each y-line, 3: each z-line if a 3d-
image).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
pix_minval pix_maxval pix_average_val

SCIL_Image 1.4 – Reference Manual

316

maxelm
NAME

maxelm

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See max_element

maximum_cost_path
NAME

maximum_cost_path - find an optimal path in a cost matrix

SYNOPSIS
#include "grey_2dp.h"

int maximum_cost_path(IMAGE *input, VAR_OBJECT *output, int markov,
int circular)

DESCRIPTION
Using a dynamic programming technique, find an 8-connected path connecting the
top and bottom boundaries of the image "input". Of all possible paths, the path is
chosen with the maximum sum over its pixels. "markov" (default 0) is added to the
pixels in the current search direction, a value assigned to it decreases the probability
that the path becomes overly curved.

The algorithm is such that each horizontal line of the image "input" contains precisely
one pixel on the found path. These horizontal positions are stored in the
1-dimensional array "output". Pixels in "input" with a negative value are forbidden
points; the algorithm will find a path without using these points.

If the "circular" is Yes (1), "input" is treated "circularly", i.e. the pixels in the last row
of "input" are assumed to be the upper neighbors of the pixels in the first row.
Specifying this restricts the algorithm to solutions with 8-connectivity between the
path’s points in the first and the last row of the image "input".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_trace resample_perp back_project drawcurve

SCIL_Image 1.4 – Reference Manual

317

maximum_im
NAME

maximum_im - element wise maximum

SYNOPSIS
#include "im_proto.h"

int maximum_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Compare each element of "in1" with the corresponding element of "in2", take the
maximum value of the two and store this value in the corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
minimum_im

SCIL_Image 1.4 – Reference Manual

318

maximum_trace
NAME

maximum_trace - find a path tracing maximum value

SYNOPSIS
#include "grey_2dp.h"

int maximum_trace(IMAGE *input, IMAGE *output, int startx, int
starty, int dir, int avglen, int length, int minedge, double minval,
VAR_OBJECT *table)

DESCRIPTION
Starting at position ("startx", "starty") in the image "input", the command searches for
the direction in which the mean grey-value is maximum. The initial search direction is
specified by the parameter "dir", which may vary from 0 to 7, representing the
following directions:

3 2 1
4 * 0
5 6 7

Given a current pixel (x,y) and a current direction (d), there are three candidate points
for the next pixel, viz. the neighbor points in the directions (d-1), (d) and (d+1)
(modulo 8). To decide which to take, three straight lines are considered, one in the
direction (d), another in between the directions (d) and (d+1) and a third in between
the directions (d) and (d-1). Along each of these lines the mean value is calculated,
over a length of "avglen" pixels. The next pixel is the candidate point that corresponds
with the direction with the maximum average. The process is repeated at the new
pixel, using the found direction as a new value for (d).

The process stops:
- If the distance of the candidate pixel to the image boundaries is less than the
value of "minedge".

- If the maximum of the mean values in the candidate directions is less than
the specified value "minval".

- If a pixel is obtained that is set in the binary image "output
- If the number of pixels found becomes equal to the value "length".

The coordinates x and y of the i-th pixel obtained are stored into the locations (0,i)
and (1,i) of the var_object "table" of type SHORT_T. The table "table" is optional; it
should be specified if the found path is to be used by command resample_perp(). The
pixels found are set in the binary image "output". Except for offering a way to stop
the search as mentioned above, this image is only for inspection. For further
processing of the path, operand "table" should be used.

If the VAR_OBJECT "table" is specified, the number of points obtained in the trace is
equal to the length of the VAR_OBJECT "table" (1st dimension) after the operation;
"table" is adjusted to the correct length.

RETURN VALUES

SCIL_Image 1.4 – Reference Manual

319

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_cost_path resample_perp back_project drawcurve

maxval
NAME

maxval

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_maxval

SCIL_Image 1.4 – Reference Manual

320

measure
NAME

measure - high level object measurements

SYNOPSIS
#include "im_aio.h"

LIST *measure(IMAGE *grey, IMAGE *binary, int garb, int inter,
unsigned long shape, unsigned long dens, int print_it, char *file)

DESCRIPTION
grey - Grey value image containing original object
binary - Binary image containing mask of the objects
garb - Object garbage level
inter - Interactive mode (disabled)
print_it - Print results
shape, dens - Bitmaps with feature specification
file - Store results in file

measure() is the highest level measurement routine of the AIO package.

The function list_label() is used to label the objects in the binary image using 8
connectivity and a garbage level "garb". Then the functions object_shape_meas() and
object_dens_meas() are used to measure the shape and densitometry features specfied
in the "shape" and "dens" bitmaps. The results of the measurements are shown on your
terminal/worksheet if "print_it" is 1. If a filename other than "-" is given in "file" the
results are also stored in that file.

NOTE
As of version 2.0 of the Image library, the interaction switch "inter" has been disabled.
The routine only performs automatic measurement of the all objects in the binary
image. In SCIL_Image, a new interactive function Imeasure() has been introduced to
perform the interactive measurement of objects.

RETURN VALUES
A list with object information is returned on success
NULL on failure.

SEE ALSO
object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

321

memchr

memcmp

memcpy

memmove

memset
NAME

memchr, memcmp, memcpy, memmove, memset - memory operations

SYNOPSIS
#include <string.h>

void *memchr(void *s, int c, int n)

int memcmp(void *s, void *t, int n)

void *memcpy(void *s, void *t, int n)

void *memmove(void *s, void *t, int n)

void *memset(void *s, int c, int n)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

memchr() returns a pointer to the first occurrence if character "c" in memory area "s"
or NULL if "c" is not present among the first "n" characters.

memcmp() compares the first "n" characters of memory area "s" with memory area
"t"; it returns <0 if "s" < "t"; 0 if "s" == "t", or >0 if "s" > "t".

memcpy() copies "n" characters from memory area "t" to memory area "s", and returns
"s"

memmove() copies "n" characters from memory area "t" to memory area "s", Copying
between areas that overlap is handled correctly. memmove() returns "s"

memset() places character "c" into the first "n" characters of memory area "s", it
returns "s"

RETURN VALUES
see the description of each of the functions

SEE ALSO
strchr strcmp strcpy

SCIL_Image 1.4 – Reference Manual

322

merge
NAME

merge - image merge

SYNOPSIS
#include "im_proto.h"

int merge(IMAGE *in, IMAGE *out, int direct, int iter)

DESCRIPTION
Merge two halves of image "in" storing the lines of one half into even positions and
the other half into odd positions of the image "out". The command is executed on a
per row or per column basis as specified by "direct", "direct" = 0 means merging
horizontal lines, "direct" = 1 means merging vertical lines and "direct" = 3 means
merging Z-slices (if "in" is a 3D image). The command is repeated "iter" times.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
merge_horizontal merge_vertical split

merge_horizontal
NAME

merge_horizontal - merge in horizontal direction

SYNOPSIS
#include "im_proto.h"

int merge_horizontal(IMAGE *in, IMAGE *out, int iter)

DESCRIPTION
Same as merge() with "direct" = 0.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
merge_vertical merge split

SCIL_Image 1.4 – Reference Manual

323

merge_vertical
NAME

merge_vertical - merge in vertical direction

SYNOPSIS
#include "im_proto.h"

int merge_vertical(IMAGE *in, IMAGE *out, int iter)

DESCRIPTION
Same as merge() with "direct" = 1.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
merge_horizontal merge split

mergh
NAME

mergh

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See merge_horizontal

mergv
NAME

mergv

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See merge_vertical

SCIL_Image 1.4 – Reference Manual

324

message_line_info
NAME

message_line_info - show textual info to the user

SYNOPSIS
#include "md_gen.h"

int message_line_info(int code, char *buf)

DESCRIPTION
message_line_info() create a window that can be used to show textual messages to the
user. The message can be transferred in lines to the window module with the
message_line_info(). The total message for the window can contain a maximum of
10,000 bytes. If the window is too small to show the whole text the user can scroll the
text up and down.

The "code" argument can be used to define a block-structure in the text, however
nothing is yet done with the block information, but may be done with it in the future.
It must however be used to indicate the end of the text (code = -2).

"code" indicates :
 0: Start of possible more than one block; "text" is ignored.
 1: Start of text-block.
 2: .. further lines of the text-block.
-1: End of text-block
-2: End of all text-blocks, show message window; "text" is ignored.

The programmer is responsible for the placing the newlines in the text. The routines
does not place any newlines in the text.

EXAMPLE
/* example to show text information to the user */
message_line_info(0,"This text is ignored");
message_line_info(1,"Textual information for the user:\n\n");
message_line_info(2,"This is the info you wanted to pass\n");
message_line_info(2,"Rest of the textbody..\n");
message_line_info(2,"Even more lines\n");
message_line_info(-1,"Last text line.\n");
message_line_info(-2,"This text is also ignored");

RETURN VALUES
OK (1) on success
NOT_OK (0) when the maximum number of characters has been passed

SCIL_Image 1.4 – Reference Manual

325

minelm
NAME

minelm

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See min_element

minimum_im
NAME

minimum_im - element wise minimum

SYNOPSIS
#include "im_proto.h"

int minimum_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Compare each element of "in1" with the corresponding element of "in2", take the
minimum value of the two and store this value in the corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_im

minval
NAME

minval

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_minval

SCIL_Image 1.4 – Reference Manual

326

mirrh
NAME

mirrh

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See mirror_horizontal

mirror
NAME

mirror - mirror image

SYNOPSIS
#include "im_proto.h"

int mirror(IMAGE *in, IMAGE *out, int direct)

DESCRIPTION
Mirror image "in" relative to a central axis and store the result in "out". The direction
of the axis may be horizontal or vertical as specified by "direct". The command is
executed on a per row or per column basis as specified by "direct", "direct" = 0 means
a horizontal mirror is used (top-line becomes bottom line), "direct" = 1 means a
vertical mirror and "direct" = 3 means a Z-mirror is used (if "in" is a 3D image).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
mirror_horizontal mirror_vertical rotate

SCIL_Image 1.4 – Reference Manual

327

mirror_horizontal
NAME

mirror_horizontal - mirror in horizontal direction

SYNOPSIS
#include "im_proto.h"

int mirror_horizontal(IMAGE *in, IMAGE *out)

DESCRIPTION
Same as mirror() with "direct" is 0.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
mirror_vertical mirror rotate

mirror_vertical
NAME

mirror_vertical - mirror in vertical direction

SYNOPSIS
#include "im_proto.h"

int mirror_vertical(IMAGE *in, IMAGE *out)

DESCRIPTION
Same as mirror() with "direct" is 1.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
mirror_horizontal mirror rotate

SCIL_Image 1.4 – Reference Manual

328

mirrv
NAME

mirrv

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See mirror_vertical

mix
NAME

mix - pixel wise compare and select new pixel value

SYNOPSIS
#include "im_proto.h"

int mix(IMAGE *in, IMAGE *out, long thres, long val1, long val2, long
val3)

DESCRIPTION
Compare each pixel in the image "in" with a test-value "thres" and select a new pixel
out of a choice of three, following the rules:

- if the input pixel is less than the "thres", the new pixel value will be "val1"

- if the input pixel is equal to the "thres", the new pixel value will be "val2"

- if the input pixel is greater than the "thres", the new pixel value will be "val3"

The resulting pixels are stored into the image "out".

The values "thres", "val1", "val2" and "val3" can either be scalars or images, in any
combination. If the value is a scalar the value is of course a constant value. If the
value is an image then the value of the pixel that corresponds with the pixel in the
input image is taken.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
tri_state_threshold clip threshold contrast_stretch equalize lookup

SCIL_Image 1.4 – Reference Manual

329

mix_filter
NAME

mix_filter - get sum and difference of two filters

SYNOPSIS
#include "im_proto.h"

int mix_filter(IMAGE *in1, IMAGE *in2, IMAGE *sum, IMAGE *diff, IMAGE
*alpha)

DESCRIPTION
Stores the weighted sum and difference filters of "in1" and "in2" according to:

sum = alpha*in1 + (1.-alpha)*in2;
diff = alpha*in1 - (1.-alpha)*in2;

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
random_filter

SCIL_Image 1.4 – Reference Manual

330

mmops3x3
NAME

mmops3x3 - mathemaical morphological operators

SYNOPSIS
#include "im_proto.h"

unsigned long mmops3x3(IMAGE *X, IMAGE *Y, IMAGE *M, int S, int T,
int opcode, int edge)

DESCRIPTION
The function mmops3x3() basically performs the hit-or-miss transform (HOM) on the
images "X" and "Y" using structuring elements "S" and "T" restricted to a 3x3
neighborhood. The result is stored in the image "Y". The result of the HOM may be
combined with a mask image "M". The operation performed depends on the the
parameter "opcode". The "edge" parameter specifies whether to set (1) or clear (0) the
border around the image before the operation.

Notation (Morphology for programmers)

X ¬ [S,T] : Hit-or-miss transform using structuring
 elements S (object) and T (background).

Xc : Complement of X
X ∩ Y : Intersection (AND) of X and Y
X ∪ Y : Union (OR) of X and Y
X \ Y : Difference (X \ Y = X ∩ Yc)

Opcode Operation
(symbolic) (numeric)

HOM 1 Y = X ¬ [S,T]
THINN 2 Y = X Ï [S,T] == X \ (X ¬ [S,T])
THICK 3 Y = X ì [S,T] == X ∪ (X ¬ [S,T])
C_HOM 4 Y = M ∩ (X ¬ [S,T])
C_THINN 5 Y = M ∩ (X Ï [S,T])
C_THICK 6 Y = M ∩ (X ì [S,T])
C_NOTHOM 7 Y = M ∩ (X ¬ [S,T])c

NOT_CHOM 8 Y = (M ∩ (X ¬ [S,T])c

NOTC_HOM 9 Y = Mc ∩ (X ¬ [S,T])
NOT_HOM 10 Y = (X ¬ [S,T])c

NOTC_NOTHOM 11 Y = M c ∩ (X ¬ [S,T])c

Structuring Element:

The structuring elements S and T (both restricted to the 3x3 square) are coded with a
decimal number with 3 digits. Each digit encodes one of the three rows:

SCIL_Image 1.4 – Reference Manual

331

4 2 1

x x x 4+2+1 = 7
. x . 2 = 2
. . . = 0 coded as 720

Second example:

4 2 1

. . . = 0

. . . = 0
x x x 4+2+1 = 7 coded as 7

Don’t type in leading zeros in the encoding of a structuring element as in C this means
an otcal number. This will lead to unexpected results (but not what you wanted).

A short introduction

The simplest morphological operations are the erosion and dilation. The erosion of a
binary image X with a structuring element S is denoted as

X � S

and it selects from the input image all those pixels where the structuring element S fits
within the object X. That is, at each position in the image we check whether all
neighbours as defined with the set S are object pixels in the original (i.e. have binary
value 1). If so then that pixel is part of the eroded set. If not then the pixel is a
background pixel.

The hit-or-miss transform is the intersection (AND) of two erosions. The object set
(the original image) is eroded with structuring element S and the background set (the
inverted original image) is eroded with background set T. The intersection of these
two erosions results is the hit-or-miss transform (opcode HOM):

X ¬ [S,T] = X � S ∩ Xc � T

This means that a pixel at position (i,j) in an image is an object pixel (binary value 1)
in the hit-or-miss result in case

all neighbour pixels indicated with the object set S are object pixels in the
original image

AND

all neighbour pixels indicated with the background set T are background pixels
in the the original image

Please note that this implies that the structuring sets S and T should have no pixels in
common (unless you want to clear an image...).

SCIL_Image 1.4 – Reference Manual

332

As an example consider the hit-or-miss transform using the following structuring sets:

 . . . x x x
S = . x . T = x . x
 . . . x x x

Note that the dots are placeholders. They are not part of the set, they are indicated just
to "see" the entire 3x3 neighbourhood. An other way of looking at this is to say that
they are "don’t care" pixels. Note that because S and T should have no pixels in
common we denote this as

 o o o
 [S,T] = o x o
 o o o

where elements of S are denoted with "x" and elements of T with "o". The hit-or-miss
transform of an image with this mask [S,T] will detect all isolated pixels in the
original image. The isolated pixels in a binary image can be removed by taking the
difference of the above hit-or-miss transform with the original image:

X Ï [S,T] = X \ X ¬ [S,T]

this operation is called "thinning" and its opcode is THINN.

The "dual" operator of thinning is thickening (opcode THICK). Now we don’t remove
the pixels found by the hit-or-miss transform but instead we "add" them to the image:

X ì [S,T] = X ∪ X ¬ [S,T]

The results of hit-or-miss transforms, thinnings and thickenings can be combined with
a mask image M leading to the opcodes C_HOM (conditional HOM), C_THINN etc.
This can be useful in several algorithms.

EXAMPLE
1) Finding the object contour

The (8 connected) object contour is found by taking the difference of the original set
and the eroded set (erosion using the 4 connected neighbourhood as structuring
element):

 . x .
S = x x x
 . x .

X \ X � S

Although the erosion is not directly available in mmops3x3 we can easily implement
the above by taking

 . . .
T = . . . (no pixels at all)

SCIL_Image 1.4 – Reference Manual

333

 . . .

and then

X \ X � S = X \ X ¬ [S,T]

so the command to perform this operation is:

mmops3x3 in out out 272 0 THINN 0

2) Connectivity preserving thinning

A skeleton operation can be interpreted as connectivity preserving thinning: as long as
the connectivity is not broken, pixels from the contour of a set are removed. This is
the essence of the skeleton algorithms based on thinning (as opposed to skeletons
based on maximal disks). A very simple implementation of this idea is the following
piece of C-code that indeed implements something of a skeleton (but the "built-in"
skeletons are much better!):

#include "image.h"

thinskelet(in, out)
IMAGE *in, *out;
{

IMAGE *tmp;
int n;

tmp = make_image "tmp";
copy_im in out;

do {
copy_im out tmp;

n = mmops3x3 tmp out out 720 7 THINN;
n = mmops3x3 out out out 660 13 THINN;
n = mmops3x3 out out out 464 111 THINN;
n = mmops3x3 out out out 66 310 THINN;
n = mmops3x3 out out out 27 700 THINN;
n = mmops3x3 out out out 33 640 THINN;
n = mmops3x3 out out out 131 444 THINN;
n = mmops3x3 out out out 330 46 THINN;

} while(!equal_images(tmp, out));

destroy_image tmp;
}

RETURN VALUES
The function returns the number of pixels in the resultant image:
retval = N(X¬(S,T)) on success
IE_NOT_OK (0) on failure

SCIL_Image 1.4 – Reference Manual

334

modal_input
NAME

modal_input - modal text input window

PLATFORM
Unix

SYNOPSIS
#include "md_gen.h"

int modal_input(char *buf0, …)

DESCRIPTION
modal_input() is a means to prompt the user for input, and waits until that input is
given. Both textual input a well as a choice from a number of buttons (max. 8) is
possible.

A window is popped up in which the specified strings are displayed and at the bottom
one up to eight button are visible.

The text, the buttons and the input field are all specified as strings (char pointers), but
they must comply with the following rules:

1) A button string must be present in which the buttons are defined between
square brackets ([buttontext]). The maximum number of buttons is eight. Only
one button string is allowed.

2) A maximum of 16 strings is possible of which the last must be the button
string. In a string the newline character (’\n’) may be used to accommodate
more lines.

3) The input field buffers must be specified after the button strings, the maximum
number of input fields is eight. An input field is specified by the keyword
"INPUT" in the text strings, no other text may be present in that string. Each
input field must be a existing character buffer of sufficient length.

Below are a few examples to illustrate their use.

EXAMPLE
/* example 1; without text input */
int choice;

choice = modal_input("SCIL_Image is beautiful\n", "[Yes][No]");
if (choice == 1) printf("We think so too !\n");
if (choice == 2) printf("But we think it is !\n");
/* end of example 1 */

/* example 2; with text input */
int choice;
char buf[100];

sprintf(buf, "this is the default text");
choice = modal_input("What do you think of SCIL_Image ?",

SCIL_Image 1.4 – Reference Manual

335

 "INPUT",
 "(type your answer above\nit will appear also in image
A)",
 "[OK]", buf);
printf(" Your answer was --%s--\n",buf);
disp_text(a,0,100,buf);
/* end of example 2 */

RETURN VALUES
The number of the button pressed

modulo_im
NAME

modulo_im - modulo (remainder of integer division)

SYNOPSIS
#include "im_proto.h"

int modulo_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Divide each element of "in1" by the corresponding element of "in2" and store the
remainder of the division in the corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
div_im

SCIL_Image 1.4 – Reference Manual

336

MouseMove
NAME

MouseMove - test whether the mouse moved with a button down

SYNOPSIS
#include "disp_p.h"

int MouseMove(IM_EVENT mouse_event)

DESCRIPTION
MouseMove() can be used to find out whether the mouse moved with one or more
buttons down. The function returns either TRUE or FALSE. MouseMove() can only
be used after a call to the "point_im()" routine which returns a mouse-event as one of
its arguments.

EXAMPLE
#include "disp_p.h"
#include "image.h"

IMAGE *ip;
int x, y;
IM_EVENT event;

while (point_im(&ip, &x, &y, &event) != ’q’) {
if (MousePress(event))

printf("Don’t move.\n");
else if(MouseMove(event))

printf("I said, don’t move\n");
}

RETURN VALUES
TRUE (non zero) if moved
FALSE (zero) otherwise

SEE ALSO
point_im MousePress MouseRelease IsMouseDown EventType KeyPressed

SCIL_Image 1.4 – Reference Manual

337

MousePress
NAME

MousePress - test whether a button has been pressed

SYNOPSIS
#include "disp_p.h"

int MousePress(IM_EVENT mouse_event)

DESCRIPTION
MousePress() can be used to find out whether a mouse button has been pressed.
Depending on the button pressed the function returns one of the symbolic values
LEFT, MIDDLE, RIGHT defined in imwindow.h. MousePress() can only be used
after a call to the "point_im" routine which returns a "mouse-event" as one of its
arguments.

EXAMPLE
#include "disp_p.h"
#include "image.h"

IMAGE *ip;
int x, y;
IM_EVENT event;

while (point_im(&ip, &x, &y, &event) != ’q’)
if (MousePress(event) == LEFT)

disp_vector(ip, 0, 0, x, y);

RETURN VALUES
MIDDLE, LEFT, RIGHT if a button was pressed
0 if no button was pressed

SEE ALSO
point_im MouseRelease MouseMove IsMouseDown EventType KeyPressed

SCIL_Image 1.4 – Reference Manual

338

MouseRelease
NAME

MouseRelease - test whether a button has been released

SYNOPSIS
#include "disp_p.h"

int MouseRelease(IM_EVENT mouse_event)

DESCRIPTION
MouseRelease() can be used to find out whether a mouse button has been released.
Depending on the button released the function returns one of the symbolic values
LEFT, MIDDLE, RIGHT defined in imwindow.h. MouseRelease() can only be used
after a call to the "point_im" routine which returns a "mouse-event" as one of its
arguments.

EXAMPLE
#include "disp_p.h"
#include "image.h"

IMAGE *ip;
int ox, oy;
int x, y;
IM_EVENT event;

disp_draw_mode;
while (point_im(&ip, &x, &y, &event) != ’q’) {

if (MousePress(event) == LEFT){
ox = x; oy = y;
disp_rect(ip, ox, oy, 20, 20);

}
else if(!MouseRelease(event) == LEFT){

disp_rect(ip,ox,oy,20,20);
disp_rect(ip,x,y,20,20);
ox = x; oy = y;

}
}

RETURN VALUES
MIDDLE, LEFT, RIGHT if a button was released
0 if no button was released

SEE ALSO
point_im MousePress MouseMove IsMouseDown EventType KeyPressed

SCIL_Image 1.4 – Reference Manual

339

muj
NAME

muj

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See conjugate_mul_im

natural_window_size
NAME

natural_window_size - give an image a window of its own size

SYNOPSIS
#include "disp_p.h"

int natural_window_size(IMAGE *im)

DESCRIPTION
This function adjusts the size of the window of an image to the size of the image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_window_size set_window_pos set_start_pos

SCIL_Image 1.4 – Reference Manual

340

nearest_int
NAME

nearest_int - truncate pixel values to nearest integer value

SYNOPSIS
#include "im_proto.h"

int nearest_int(IMAGE *in, IMAGE *out)

DESCRIPTION
Convert each element of image "in" to an integer value by means of rounding and
store the result into the corresponding elements of image "out". The effect is that the
integer value most close to the original value is taken. If the fractional part is exactly
0.5, for positive values the integer value just greater than the original value is taken
and for negative values the integer value just less than the original value is taken.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fraction_im truncate_im lowest_int

negation_im
NAME

negation_im - negation

SYNOPSIS
#include "im_proto.h"

int negation_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Negate each element of "in" and store the result in the corresponding element if "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
sign_im eval

SCIL_Image 1.4 – Reference Manual

341

next_plane
NAME

next_plane - display next plane or slice of an image

SYNOPSIS
#include "disp_p.h"

int next_plane(IMAGE *im, int num)

DESCRIPTION
Display the next or previous slice or plane of an image. "num" == "-1" takes the
previous slice, "0" takes the current slice and "1" takes the next slice. See also
"auto_plane".

RETURN VALUES
None

SEE ALSO
display_image set_display_slice auto_plane

object_contour
NAME

object_contour - transform object contour into freeman chain code

SYNOPSIS
#include "im_aio.h"

LIST *object_contour(IMAGE *mask, LIST *link)

DESCRIPTION
mask - Image containing labeled objects
link - Link pointing to object information

AIO primitive to obtain the freeman code representation of an objects contour.

NOTE
object_contour() is part of the AIO package, and is meant to be only visible at the
programming level.

RETURN VALUES
A list with the freeman code
NULL on failure

SEE ALSO
object_shape_meas

SCIL_Image 1.4 – Reference Manual

342

object_dens_meas
NAME

object_dens_meas - densitometry measurements on a labeled object

SYNOPSIS
#include "im_aio.h"

int object_dens_meas(IMAGE *grey, IMAGE *mask, LIST *link, unsigned
long bitmap)

DESCRIPTION
grey - Image containing original grey value information
mask - Image containing labeled objects.
link - Link pointing to object information
bitmap - Bitmap with feature specification

object_dens_meas() is the function to measure any densitometry features of an object.
(Also used by the higher level measure() routine)

In the bitmap GREYVAL, TRANSMIS and OD can be specified or a (logical OR)
combination off these values.

The features measured are:
mean value
integrated sum
standard deviation

The results are stored together with the other object information. Results can be
obtained through functions:

grey_mean(object)
trans_mean(object)
od_mean(object)
grey_sum(object)
trans_sum(object)
od_sum(object)
grey_stdev(object)
trans_stdev(object)
od_stdev(object)

EXAMPLE
To measure the optical density parameters of all the objects in a
list:

#include "image.h"
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b, c, 8, 0);
FORALL(o,l){

SCIL_Image 1.4 – Reference Manual

343

object_dens_meas(a, c, o, OD);
printf("Mean %f Sum %f Stdev %f\n", od_mean(o), od_sum(o),
od_stdev(o));

}

NOTE
object_dens_meas() is part of the AIO package

RETURN VALUES
IE_OK (1) if measurement was successful
Negative error status on failure (see im_error.h)

SEE ALSO
measure object_shape_meas grey_mean trans_mean od_mean
grey_sum trans_sum od_sum grey_stdev trans_stdev od_stdev

SCIL_Image 1.4 – Reference Manual

344

object_freeman_meas
NAME

object_freeman_meas - object measurement of features based on freeman chain of
contour

SYNOPSIS
#include "im_aio.h"

int object_freeman_meas(IMAGE *mask, LIST *link, unsigned long
bitmap)

DESCRIPTION
mask - Image containing labeled objects.
link - Link pointing to object information
bitmap - Bitmap with feature specification

AIO primitive to measure shape features based on freeman chaincode of the contour
of objects. Used by the higher level object_shape_meas() routine. In the bitmap the
following features or a combination (logical OR) of them can be specified:

PERI
CR
BEND

The results are stored together with the other object information. Results can be
obtained through functions as in:

peri(object)
cr(object)
bend(object)

NOTE
object_freeman_meas() is part of the AIO package, and is meant to be only visible at
the programming level.

RETURN VALUES
IE_OK (1) if measurement was successful
Negative error status on failure (see im_error.h)

SEE ALSO
measure object_shape_meas object_dens_meas peri cr bend

SCIL_Image 1.4 – Reference Manual

345

object_moment_meas
NAME

object_moment_meas - object measurement of features based on moments

SYNOPSIS
#include "im_aio.h"

int object_moment_meas(IMAGE *mask, LIST *link, unsigned long bitmap)

DESCRIPTION
mask - Image containing labeled objects.
link - Link pointing to object information
bitmap - Bitmap with feature specification

AIO primitive to measure shape features based on moments. Used by the higher level
object_shape_meas() routine. In the bitmap the following features or a combination
(logical OR) of them can be specified:

GRAVX
GRAVY
ANGLE
ECCENTR
LAXIS
SAXIS

The results are stored together with the other object information. Results can be
obtained through functions as in:

gravx(object)
gravy(object)
angle(object)
eccentr(object)
laxis(object)
saxis(object)

NOTE
object_moment_meas() is part of the AIO package, and is meant to be only visible at
the programming level.

RETURN VALUES
IE_OK (1) if measurement was successful
Negative error status on failure (see im_error.h)

SEE ALSO
measure object_shape_meas object_dens_meas
angle eccentr gravx gravy laxis saxis

SCIL_Image 1.4 – Reference Manual

346

object_rect_to_silo
NAME

object_rect_to_silo - add object from image to an image-silo

SYNOPSIS
#include "image.h"
#include "silo.h"

int object_rect_to_silo(SILOPTR siloptr, int silo_key, IMAGE
*srcimage, LIST *link)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in the image-silo.
srcimage - Source image.
link - Link pointing to object

Copies the rectangle enclosing the object pointed to by "link" from the image
"srcimage" to the silo "siloptr" at the position "silo_key".

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

347

object_shape_meas
NAME

object_shape_meas - shape measurements on a labeled object

SYNOPSIS
#include "im_aio.h"

int object_shape_meas(IMAGE *mask, LIST *link, unsigned long bitmap)

DESCRIPTION
mask - Image containing labeled objects.
link - Link pointing to object information
bitmap - Bitmap with feature specification

object_shape_meas() is the function to measure any shape feature of an object. (Also
used by the higher level measure() routine) The results are stored together with the
other object information.

Currently implemented: Results can be obtained through functions as in:
AREA area(object)
PERI peri(object)
CR cr(object)
BEND bend(object)
GRAVX gravx(object)
GRAVY gravy(object)
ANGLE angle(object)
XMIN xmin(object)
XMAX xmax(object)
YMIN ymin(object)
YMAX ymax(object)
WIDTH width(object)
HEIGHT height(object)
LAXIS laxis(object)
SAXIS saxis(object)
ECCENTR eccentr(object)

EXAMPLE
To measure the area, perimeter, center of gravity and contour ratio
of all the objects in a list:

#include "image.h "
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b, c, 8, 0);
FORALL(o,l){

object_shape_meas(c, o, AREA|PERI|GRAVX|GRAVY|CR);
printf("Area %d Perimeter %f\n", area(o), peri(o));
printf("Center of gravity (%d,%d), Contour Ratio %f\n",

gravx(o), gravy(o), cr(o));

SCIL_Image 1.4 – Reference Manual

348

}

NOTE
object_shape_meas() is part of the AIO package

RETURN VALUES
IE_OK (1) if measurement was successful
Negative error status on failure (see im_error.h)

SEE ALSO
measure object_dens_meas
area peri cr bend gravx gravy angle xmin xmax ymin ymax
width height laxis saxis eccentr

objectsize
NAME

objectsize - object size estimation

SYNOPSIS
#include "im_proto.h"

int objectsize(IMAGE *in, IMAGE *out)

DESCRIPTION
Calculate for each object in the labeled image "in" the object size by counting the
number of pixels, assign to all pixels of the object the calculated size and store the
result in image "out". So for each object the label number is replaced by the object
size.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hull label rhull small_object_removal

SCIL_Image 1.4 – Reference Manual

349

odd_fsizes_ok
NAME

odd_fsizes_ok - check if filter sizes are odd and in the range

SYNOPSIS
#include "im_infra.h"

int odd_fsizes_ok(int fx, int fy, int fmax)

DESCRIPTION
The functions checks if the arguments "fx" and "fy" are odd values and in the range
from one to "fmax". The range is checked by the function range_ok() and the check if
the values are odd by the function odd_ok(). If one of the values is outside the range
an error is generated and the following message is added to the error-stack:

Filter Width [<fx>] out of range (1..<fmax>)

or

Filter Height [<fy>] out of range (1..<fmax>)

When one of the values is not an odd value then the message will be:

Filter Width [<fx>] should be odd

or

Filter Height [<fy>] should be odd

RETURN VALUES
IE_OK (1) if the values "fx" and "fy" are O.K.
IE_NOT_OK (0) if either of the values is even or out of the range.

SEE ALSO
range_ok odd_ok

SCIL_Image 1.4 – Reference Manual

350

odd_ok
NAME

odd_ok - check if a value is a odd integer value

SYNOPSIS
#include "im_infra.h"

int odd_ok(int value, char *text)

DESCRIPTION
The parameter "value" is checked to see if it is an odd value. If it is not an odd value
an error is generated and the following message is added to the error-stack:

<text> [<value>] should be odd

RETURN VALUES
IE_OK (1) if the value is odd
IE_NOT_OK (0) if the value is even

SEE ALSO
even_ok odd_fsizes_ok

SCIL_Image 1.4 – Reference Manual

351

open
NAME

open - open for reading or writing

SYNOPSIS
int open(char *name, int mode)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

open() opens the file "name" for reading (if "mode" is 0), writing (if "mode" is 1) or
for both reading and writing (if "mode" is 2). "name" is the address of a string of
ASCII characters representing a pathname, terminated by a null character.

The file is positioned at the beginning (byte 0). The returned file descriptor must be
used for subsequent calls for other input-output functions on the file.

RETURN VALUES
The value -1 is returned if the file does not exist, if one of the necessary directories
does not exist or is unreadable, if the file is not readable (resp. writable), or if too
many files are open.

SEE ALSO
creat read write close

open_silo
NAME

open_silo - open an existing image-silo

SYNOPSIS
#include "silo.h"

SILOPTR open_silo(char *siloname)

DESCRIPTION
siloname - filename of the image-silo.

Opens a silo by the name "siloname". Reads in all the entries to make an internal entry
list. Returns a handle to this silo which must be handed to all silo-I/O functions.

RETURN VALUES
A pointer to the silo structure
NULL if an error occurred.

SCIL_Image 1.4 – Reference Manual

352

opening3x3
NAME

opening3x3 - open

SYNOPSIS
#include "im_proto.h"

int opening3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)

DESCRIPTION
Performs an opening from "in" to "out", which is performed by "iter" erosions from
"in" to "out" followed by "iter" dilations from "out" to "out". The operation deletes
objects having a width less than two times the specified number of cycles. "bound"
specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
closing3x3 erosion3x3 dilation3x3

or_im
NAME

or_im - bitwise or of images

SYNOPSIS
#include "im_proto.h"

int or_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Perform a bitwise OR operation of each element of "in1" with the corresponding
element of "in2" and store the result in "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
and_im xor_im invert_im shift_im

SCIL_Image 1.4 – Reference Manual

353

overload_func

overloadable_func

type_overload_func

type_overloadable_func
NAME

overload_func - get overloaded function pointer

overloadable_func - check if a function is overloadable

type_overload_func - get overloaded function pointer for a specified image type

type_overloadable_func - check if a function is overloadable for a specified image
type

SYNOPSIS
#include "im_infra.h"

FPI overload_func(char *name, IMAGE *im)

FPI type_overload_func(char *name, int type)

FPI overloadable_func(char *name, IMAGE *im)

FPI type_overloadable_func(char *name, int type)

DESCRIPTION
overload_func() and type_overload_func() check if the generic function "name" is
overloadable for the specific image "im" or image-type "type". If it is, they return the
C-function pointer to the overloaded function. If it is not overloadable, they generate
an error and return a NULL pointer.

type_overloadable_func() and overloadable_func() perform the same functionality but
do NOT generate an error if the function is not overloadable.

RETURN VALUES
A pointer to the function
NULL if not overloadable.

SEE ALSO
init_func_overload show_func_overload

SCIL_Image 1.4 – Reference Manual

354

palette2color
NAME

palette2color - convert a palette image into a RGB color-image

SYNOPSIS
#include "im_proto.h"

int palette2color(IMAGE *in, IMAGE *out)

DESCRIPTION
palette2color() converts the palette-image "in" into a full-color RGB image in image
"out" A palette-image is a grey-value image with a color-lookup-table attached in
which a limited numbers of colors is present with which each of the grey-value values
is displayed. Because the grey-values serve only as an index in the lookup-table, no
sensible image-processing can be done on the image. Converting the image to a full-
color RGB image, makes image-processing possible again.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_clut

SCIL_Image 1.4 – Reference Manual

355

parabolic_dilation

parabolic_erosion

parabolic_opening

parabolic_closing
NAME

parabolic_dilation - grey value dilation using a parabolic structuring function

parabolic_erosion - grey value erosion using a parabolic structuring function

parabolic_opening - grey value closing using a parabolic structuring function

parabolic_closing - grey value opening using a parabolic structuring function

SYNOPSIS
#include "im_proto.h"

int parabolic_dilation(IMAGE *in, IMAGE *out, double rho)

int parabolic_erosion(IMAGE *in, IMAGE *out, double rho)

int parabolic_closing(IMAGE *in, IMAGE *out, double rho)

int parabolic_opening(IMAGE *in, IMAGE *out, double rho)

DESCRIPTION
These functions perform the morphological dilation, erosion, closing and opening on
the grey value image "in" using a parabolic structuring function

q(x,y) = 1/(4 rho) (x^2 + y^2)

and stores the result in "out". The "width" of the parabola is given by the "rho"
parameter. The larger "rho" the wider the parabola becomes and the larges the
effective neighborhood size is.

EXAMPLE
1) Background correction

The following code fragment performs a closing on the "schema" image to wipe out
the black drawing. The result of the closing is an approximation of the white paper.
Taking the difference between closing and original (black tophat) gives the drawing in
white on a black background.

int i;
readf schema
parabolic_clos a b 2
grey_morph_round a c 23 Yes CLOSE
i=90;profile(a,i);profile(b,i);profile(c,i);

SCIL_Image 1.4 – Reference Manual

356

Note that both closings do the job. Both are isotropic (rotational symmetric structuring
functions). The parabolic closing is faster though and the resulting function is
smoother.

2) Euclidean distance transform

The parabolic erosion can be used to calculate the Euclidean distance transform of a
binary image. This is illustrated with the following code fragment:

set_display_mode c LIN_STRETCH YES Yes;
set_display_mode d LIN_STRETCH YES Yes;

eval a=(xx==128&&yy==128)?255:0;
parabolic_dila a b 5;
thres b b 1;

distance b c 5 7 12;
/* note that this is 5 times the distance */

binary_to_grey b d 10000;
parabolic_erosion d d 0.25;
/* note that 4*0.25 = 1 ==> erosion with ’unit’ parabola */

eval d=irint(5*sqrt(d));

Note that in the Chamfer distance transform (in image "C") the octagonal shape of the
distance cone can be readily seen. If one is interested in the differential geometrical
structure of the distance transform then the Euclidean one should be prefered.
However in case one is interested in the constrained distance transform, the Chamfer
distance is the best solution.

LITERATURE
R.v.d.Boomgaard, L.Dorst, S. Makram-Ebeid, J. Schavemaker, "Quadratic structuring
functions in mathematical morphology", in "Mathematical morphology and its
applications to image and signal processing", (eds. P.Maragos, R.W. Schafer and
M.A. Butt), Kluwer Adademic Publishers, 1996, pp. 147---154.

RETURN VALUES
IE_OK(1) on success
IE_NOT_OK (0) on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

357

part_from_silo
NAME

part_from_silo - transfer an image from silo to part of an image.

SYNOPSIS
#include "image.h"
#include "silo.h"

int part_from_silo(SILOPTR siloptr, int silo_key, IMAGE *dstimage,
int left, int top)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry silo_key.
dstimage - Numerical image in which the part must fit.
left - Start x-coordinate of the part-image.
top - Start y-coordinate of the part-image.

Copies the "silo_key" image from the image-silo "siloptr" and places this in image
"dstimage" at coordinate "left", "top".

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

part_image_display
NAME

part_image_display - display part of an image

SYNOPSIS
#include "im2scil.h"

int part_image_display(IMAGE *im, int sx, int sy, int sz, int width,
int height, int depth)

DESCRIPTION
part_image_display() displays the part of image "im" with dimensions
"width"*"height"*"depth" located at position ("sx","sy","sz").

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
display_image

SCIL_Image 1.4 – Reference Manual

358

part_to_silo
NAME

part_to_silo - add part of image to an image-silo

SYNOPSIS
#include "image.h"
#include "silo.h"

int part_to_silo(SILOPTR siloptr, int silo_key, IMAGE *srcimage, int
left, int top, int sizex, int sizey)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in the image-silo.
srcimage - Source image.
left - Start x-coordinate of the part-image.
top - Start y-coordinate of the part-image.
sizex - Width of the part-image.
sizey - Height of the part-image.

Copies the part with sizes "sizex" * "sizey" at the position ("left", "top") from the image
"srcimage" to the silo "siloptr" at the position "silo_key" in the silo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

percentile
NAME

percentile - percentile filtering

SYNOPSIS
#include "im_proto.h"

int percentile(IMAGE *in, IMAGE *out, int fx, int fy, int num)

DESCRIPTION
Perform a percentile filter, a generalization of the median filter. Image "in" is scanned
with a moving window with dimensions "fx" * "fy". The pixel values within this
window are sorted. The pixel which has (after sorting) sequence number "num"
(starting from "1") is taken as the output pixel value and is stored in the pixel in image
"out" that corresponds with the central pixel of the window.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

359

peri
NAME

peri - obtain perimeter of an object

SYNOPSIS
#include "im_aio.h"

double peri(LIST *link)

DESCRIPTION
link - Link pointing to object

AIO primitive to obtain value of an object feature

peri() returns the perimeter of the object pointed to by "link" if this has previously
been measured.

RETURN VALUES
perimeter of object on success
0.0 if link is not an object or if angle has not been measured.

SEE ALSO
measure object_shape_meas object_dens_meas

SCIL_Image 1.4 – Reference Manual

360

perror

errno
NAME

perror, errno - system error messages

SYNOPSIS
void perror(char *s)

int sys_nerr;

char *sys_errlist[];

int errno;

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

perror() produces a short error message on the standard error describing the last error
encountered during a call to a system or library function. If "s" is not a NULL pointer
and does not point to an empty string, the string it points to is printed, followed by a
colon, followed by a space, followed by the message and a NEWLINE. If "s" is a
NULL pointer or points to an empty string, just the message is printed, followed by a
NEWLINE. To be of most use, the argument string should include the name of the
program that incurred the error. The error number is taken from the external variable
errno (see intro(2)), which is set when errors occur but not cleared when non-
erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings "sys_errlist"
is provided; "errno" can be used as an index in this table to get the message string
without the newline. "sys_nerr" is the number of messages provided for in the table; it
should be checked because new error codes may be added to the system before they
are added to the table.

SCIL_Image 1.4 – Reference Manual

361

phase_im
NAME

phase_im - find phase of every complex image element

SYNOPSIS
#include "im_proto.h"

int phase_im(IMAGE *in, IMAGE *out)

DESCRIPTION
For each complex element a + bi of "in" the phase atan2(b,a) is returned in the range [-
pi,pi] and stored in the image "out". If "out" is a complex image then the result will be
stored in the real part of each element of "out" and the imaginary part will be cleared,
otherwise the image "out" will be a float image.

RETURN VALUES
Number of domain conflicts (number of would be atan2(0,0)) so 0 is OK.
Negative error status (see im_error.h).

pix_abs_sum
NAME

pix_abs_sum - returns absolute sum of pixels

SYNOPSIS
#include "im_proto.h"

double pix_abs_sum(IMAGE *in)

DESCRIPTION
Add all absolute values of the elements of image "in" and returns the result.

RETURN VALUES
The absolute sum.

SEE ALSO
abs_im pix_sum

SCIL_Image 1.4 – Reference Manual

362

pix_average_val
NAME

pix_average_val - calculate the average value of all pixels

SYNOPSIS
#include "im_proto.h"

int pix_average_val(IMAGE *in, VAR_OBJECT *result, int whole, int
dimension)

DESCRIPTION
Calculate the average pixel value of the image "in" and store the result in the object
"result". If "whole" is set (=1) the average value of the entire image will be calculated.
If "whole" is not set (=0) then the average value is calculated on a line-by-line basis.
In that case the following has to be taken into account: If "dimension" is 1 then the
average of each x-line is calculated. (2: each y-line, 3: each z-line if a 3D-image). The
object "result" will be automatically adjusted so that all data will fit. If the object
"result" is DONT_STORE (a NULL pointer) then the result will be printed on the
terminal(this is only possible when "whole" is set).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
pix_minval pix_maxval max_element min_element

pix_count
NAME

pix_count - count pixels with a certain value

SYNOPSIS
#include "im_proto.h"

long pix_count(IMAGE *in, int val)

DESCRIPTION
Count the number of pixels in image "in" that have value "val".

RETURN VALUES
The number of pixels or
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

363

pix_minval

pix_maxval
NAME

pix_minval - calculate minimum pixel value

pix_maxval - calculate maximum pixel value

SYNOPSIS
int pix_minval(IMAGE *in, VAR_OBJECT *result, int whole, int
dimension)

int pix_maxval(IMAGE *in, VAR_OBJECT *result, int whole, int
dimension)

DESCRIPTION
Calculate the minimum/maximum value of the image "in" and store the result in the
object "result". If whole is specified (=1) the minimum/maximum value of the entire
image will be calculated. If whole is not specified (=0) then the minimum/maximum
value is calculated on a line-by-line basis. In that case the following has to be taken
into account: If "dimension" is 1 then the minimum/maximum of all x-lines is
calculated. (2: all y-lines, 3: all z-lines if a 3d-image). The object "result" will be
automatically adjusted so that all data will fit in. If the object "result" is
DONT_STORE (a NULL pointer) then the result will be printed on the terminal(this
is only possible when "whole" is specified).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
min_element max_element pix_average_val

SCIL_Image 1.4 – Reference Manual

364

pix_sum
NAME

pix_sum - calculate the sum of the pixel values

SYNOPSIS
#include "im_proto.h"

int pix_sum(IMAGE *in, VAR_OBJECT *sum)

DESCRIPTION
Calculate the sum of all pixel values within the image "in", and store that sum in the
var_object "sum" if an object is specified. In case of a NULL pointer
(DONT_STORE) the result will be printed on the terminal.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

pix_value_str
NAME

pix_value_str - get the value of a "pixel" in a string

SYNOPSIS
#include "im_proto.h"

char *pix_value_str(IMAGE *im, int x, int y, int z)

DESCRIPTION
pix_value_str() returns the value of the pixel located at ("x","y","z") in the image "im"
in string format. The buffer in which the string is stored is a global char buffer of
length 100.

RETURN VALUES
Pointer to the global buffer in which the string is stored.

SCIL_Image 1.4 – Reference Manual

365

pixval
NAME

pixval - pixel value of an object

SYNOPSIS
#include "im_aio.h"

PIXEL pixval(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitive to obtain value of an object feature

pixval() returns the pixel value (label) of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The pixel value (label) of the object on success
0 if link is not an object

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

366

pl_io_ok
NAME

pl_io_ok - check if the specified bitplanes are in the correct range

SYNOPSIS
#include "im_infra.h"

int pl_io_ok(int in, int out)

DESCRIPTION
This function is meant to check if the values "in" and "out" are valid bitplanes of grey
valued images. The function performs a call to range_ok() for each of the two values.
The valid range for the bitplanes is specified by the defines "MIN_PLANE" (1) and
"MAX_PLANE" (16) from the include file "image.h ". If "in" or "out" is out of range
an error is generated and one of the following messages is added to the error-stack:

Input bitplane [<in>] out of range (1..16). (for the "in"
parameter)

Output bitplane [<out>] out of range (1..16). (for the "out"
parameter)

RETURN VALUES
IE_OK (1) if the value are in the range
IE_NOT_OK (0) if either of the values is outside the range

SEE ALSO
plane_ok range_ok

SCIL_Image 1.4 – Reference Manual

367

plane_ok
NAME

plane_ok - check if the plane is in the correct range.

SYNOPSIS
#include "im_infra.h"

int plane_ok(int plane)

DESCRIPTION
The bitplane "plane" is checked if it is in the range of valid bitplane of the grey-valued
images. This range is determined by the defines "MIN_PLANE" (1) and
"MAX_PLANE" (16) in the file "image.h ". The function calls range_ok() to check
the range. If "plane" is outside the correct range an error is generated and the
following message is added to the error-stack:

Bitplane [<plane>] out of range (1..16)

RETURN VALUES
IE_OK (1) if the plane is in the correct range.
IE_NOT_OK (0) if it is not

SEE ALSO
pl_io_ok range_ok

plane_to_binary
NAME

plane_to_binary - convert a grey value image bitplane to a binary image

SYNOPSIS
#include "bin_2dp.h"

int plane_to_binary(IMAGE *in, int plane, IMAGE *out)

DESCRIPTION
The specified plane "plane" of the grey_2d image "in" is converted to a binary image
"out"

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
binary_to_plane binary_to_grey set_im_type

SCIL_Image 1.4 – Reference Manual

368

planecopy
NAME

planecopy - copy a bitplane between grey valued images

SYNOPSIS
#include "im_proto.h"

int planecopy(IMAGE *in, int inplane, IMAGE *out, int outplane)

DESCRIPTION
Copy bitplane "inplane" from image "in", to bitplane "outplane" in image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_im plane_to_binary binary_to_plane

plot_histogram
NAME

plot_histogram - plot histogram on the controlling terminal

PLATFORM
UNIX.

SYNOPSIS
#include "im2scil.h"

int plot_histogram(IMAGE *in, int action, int clip)

DESCRIPTION
Calculates the grey level histogram of image "in" and plot the resulting histogram on
the controlling terminal. The grey level range of image "in" is subdivided into 64
classes or bins. "action" can be one of normal (0), cumulative (1), trunc_peak (2) or
trunc_at_clip. "clip" is used for clipping.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
histogram histdata hist2d

SCIL_Image 1.4 – Reference Manual

369

point_im
NAME

point_im - get information of mouse pointer in image

SYNOPSIS
#include "disp_p.h"

int point_im(IMAGE **imptr, int *xptr, int *yptr, int *butptr)

DESCRIPTION
point_im() returns either on a keyboard hit or when a button is pressed inside a display
window of an image.

The x and y-coordinates are passed through "xptr", "yptr". Button information is
passed through "butptr". The image in which the pointing event took place is passed
through "imptr".

If a key was received first then all other information is not valid.

RETURN VALUES
ASCII code of the key pressed
0 if an event happened inside the display window before keypress

SEE ALSO
MousePress MouseRelease MouseMove IsMouseDown EventType KeyPressed
poll_mouse

SCIL_Image 1.4 – Reference Manual

370

point_im_display_buf
NAME

point_im_display_buf - text buffer to be displayed in pop-up window

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int point_im_display_buf(char *buf, int follow)

DESCRIPTION
This function can be used to specify the string of text "buf" that can be displayed in a
pop-up window in one of the images. If the "pim" is activated by "handle_pim", the
pop-up window will pop up below the cursor (if "follow" is set to 1) or in the top of
the image pointed at.

EXAMPLE
See the demo "my_point.c" in the standard demo directory.

RETURN VALUES
None

SEE ALSO
handle_pim point_im

SCIL_Image 1.4 – Reference Manual

371

point_object
NAME

point_object - interactive object selection

SYNOPSIS
#include "im_aio.h"

LIST *point_object(IMAGE *image, LIST *list)

DESCRIPTION
image - Image with labeled objects
list - List with all the objects

AIO primitive to select an object inside a labeled image from a list interactively by
pointing with the mouse at the object of choice.

The routine can also be stopped, returning NULL if the return key is hit.

EXAMPLE
To interactively point at an object and copy this object to another
image the following could be typed:

#include "image.h "
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b, c, 8, 0);

set_im_type(d, LABEL_2D);
while(o = point_object(c, l)){

copy_object(c, d, o);
display_image(d);

}
l = rm_list(l);

RETURN VALUES
The link of the pointed object.
NULL if the routine was stopped by hitting return.

SCIL_Image 1.4 – Reference Manual

372

poll_mouse
NAME

poll_mouse - poll the mouse position and button state

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int poll_mouse(IMAGE *image, int *im_x, int *im_y, int *win_x, int
*win_y)

DESCRIPTION
This function returns the position of the mouse pointer in the display window of the
image "image" and the state of the buttons of the mouse. The position of the mouse is
returned in both image- and window-coordinates.

The image-coordinates are returned through the parameters "im_x" and "im_y", which
must be pointers. The window-coordinates are returned through "win_x" and "win_y",
also pointers. The state of the mouse button(s) is returned through the return value of
the function. The button state is the bitwise or-value of LEFT, MIDDLE and RIGHT
(from include file "imwindow.h"). So if no button was pressed when the mouse was
polled the return value would be 0.

NOTE: poll_mouse() is a polling function which means that the position and button
state are returned immediately. point_im() however does not return until a mouse
button or a key is pressed.

RETURN VALUES
The button state

SEE ALSO
point_im MousePress MouseMove MouseRelease

SCIL_Image 1.4 – Reference Manual

373

positive_ok
NAME

positive_ok - check if a value is positive

SYNOPSIS
#include "im_infra.h"

int positive_ok(int value, char *text)

DESCRIPTION
The integer "value" is checked to see if it is positive or not. If the value is negative an
error is generated and the following message is added to the error-stack:

<text> [<value>] must be positive

Zero is considered to be positive as well in this function, if a check must be performed
on a value that may not be zero then the function greater0_ok() can be used.

NOTE
This function can only handle integer values, to check on floating point values, use the
function fpositive_ok().

RETURN VALUES
IE_OK (1) if the value is positive (zero included)
IE_NOT_OK (0) if the value is negative

SEE ALSO
greater0_ok fpositive_ok

SCIL_Image 1.4 – Reference Manual

374

post_op
NAME

post_op - perform image housekeeping after an operation

SYNOPSIS
#include "im_infra.h"

int post_op(IMAGE *out)

DESCRIPTION
post_op() performs some image infrastructure housekeeping on image "out", keeping
the integrity of the image data-structure, and displaying the output image if the display
mode is on.

post_op() should be called at the end of an image processing in which the pre_op()
routine (with mode ADJUST(_NIP)) has been used on the image "out".

RETURN VALUES
IE_OK (1) if successful
IE_NOT_OK (0) if failed

SEE ALSO
pre_op

power_im
NAME

power_im - power raising

SYNOPSIS
#include "im_proto.h"

int power_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Raise each element of "in1" to the power given by the corresponding element of "in2"
and store the result in the corresponding element of "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

375

power_of_2_ok
NAME

power_of_2_ok - check if a value is a power of 2

SYNOPSIS
#include "im_infra.h"

int power_of_2_ok(int value, char *text)

DESCRIPTION
The function checks to see if "value" is power of 2. If it is not an error is generated
and the following message is added to the error-stack:

<text> [<value>] must be a power of 2

RETURN VALUES
IE_OK (1) if the value is a power of 2
IE_NOT_OK (0) if it is not

SCIL_Image 1.4 – Reference Manual

376

pre_op

set_cross_dim
NAME

pre_op - function called before each image processing operation

set_cross_dim - set special sizes for the pre_op command

SYNOPSIS
#include "im_infra.h"

int pre_op(IMAGE *first, IMAGE *second, int mode, int first_spec,
unsigned long sec_type)

void set_cross_dim(int cross_x, int cross_y, int cross_z)

DESCRIPTION
The pre_op() function is part of the image infrastructure. Depending upon the "mode"
argument, pre_op() either checks input images ("mode" = COMPARE), or adjusts the
output image(s) ("mode" is ADJUST or ADJUST_NIP). set_cross_dim() is used to
specify special dimensions for the pre_op() function if it is to adjust the output image.

The pre_op() function must be called just before the low-level image processing
function is called. Furthermore pre_op must always be used in combination with the
post_op() routine.

In SCIL_Image images are arranged in a flat class hierarchy. In this hierarchy there
can be 32 different virtual image main-classes, and an unlimited number of image
sub-classes. Each type of image is a unique sub-class instance. The data layout of any
sub-class image must physically match with its main-class image. The sub-class
image, however, can define its own extra information elements and its own class
specific operations. The main-class of the "first" image is specified through the so-
called main class specifier "first_spec". The type or sub-class of the second image is
specified through the "sec_type" argument.

The meaning of the main-class "first_spec" argument, and the "sec_type" argument
depends upon the value of the mode argument.

MODES:

COMPARE pre_op() is called with the COMPARE mode when two input
images must be checked to be of (a) certain main-class(es) in order
for the low-level image processing function to operate properly.

The "first_spec" argument is used to specify what kind of image
main-classes are allowed for the first image argument. All legal
class specifiers should be or’ed.

SCIL_Image 1.4 – Reference Manual

377

The "sec_type" argument is used to specify that the main class of
the "second" image must be the same as the main class of the given
"sec_type" type.

A special case here is the constant "OUT_AS_IN" meaning that the
second image must have the same main-class as the first image.

ADJUST pre_op() is called with the ADJUST mode when the output image
must be set to the proper type and dimensions.

The "first_spec" argument is used to specify what kind of image
main-classes are allowed for the first image in order for the low-
level image processing function to operate properly.

The "sec_type" argument is used to specify the type the second
image should be adjusted to. When adjusting the "second" image
the dimensions of the first image are taken, unless a special flag
"cross_dimensions" is set. If the cross_dimensions flag is set than
the global variables "cross_x", "cross_y", and "cross_z" will be
used. These can be set using the set_cross_dim() function.

A special case is when the "sec_type" argument is set to
"OUT_AS_IN". In this case the "second" image is adjusted to the
same type and dimensions as the "first" image.

ADJUST_NIP This mode shows equal behavior to ADJUST mode, except that if
"first" and "second" are the same image, always a new piece of
memory will be allocated for the output. This option is meant for
operations that cannot be performed in place like neighborhood
operations. With this option the input and output image for such
operations may be the same.

EXAMPLE
Below some typical examples, and special cases are given.

* One input, one output.

- Input and output must be grey_2d.

uniform(in, out)
IMAGE *in, *out;
{

if (!pre_op(in, out, ADJUST, G_2D_SPEC, OUT_AS_IN))
return(FALSE)

low_uniform(.....);
post_op(out);

}

- Input must be grey_2d output must be binary_2d.

threshold(in, out)
IMAGE *in, *out;
{

SCIL_Image 1.4 – Reference Manual

378

if (!pre_op(in, out, ADJUST, G_2D_SPEC, BINARY_2D))
return(FALSE);

low_threshold(.....);
post_op(out);

}

* Two inputs, one output.

- Inputs and output must be grey 2d/3d, output becomes the same as
the inputs.

add(in1, in2, out)
IMAGE *in1,*in2,*out;
{

if (!pre_op(in1, in2, COMPARE, G_2D_SPEC | G_3D_SPEC,
 OUT_AS_IN))

return(FALSE);
if (!pre_op(in1, out, ADJUST, ImageTypeSpec(in1),

OUT_AS_IN))
return(FALSE);

low_add(....);
post_op(out);

}

- First input must be grey_2d, second input must be binary_2d, output
must become binary_3d.

strange_func(in1, in2, out)
IMAGE *in1,*in2,*out;
{

if (!pre_op(in1, in2, COMPARE, G_2D_SPEC, BINARY_2D))
return(FALSE);

if (!pre_op(in1, out, ADJUST, G_2D_SPEC, BINARY_3D))
return(FALSE);

low_strange_func(.......)
post_op(out);

}

* Special output adjustment.

- No output dimension adjustment. To avoid adjustment of the
dimensions but allow type adjustment, for example to the type of the
input image, the following can be done:

blow(in, out)
IMAGE *in, *out;
{

if (!pre_op(in, in, COMPARE, G_2D_SPEC, OUT_AS_IN))
return(FALSE);

if (!pre_op(out, out, ADJUST, ImageTypeSpec(out),
 ImageTypeIdent(in)))

return(FALSE);
low_blow(....);
post_op(out);

}

- Output dimensions specifically set.

strange_func(in, out)
IMAGE *in, *out;
{

set_cross_dim(50, 31, 1);

SCIL_Image 1.4 – Reference Manual

379

if (!pre_op(in, out, ADJUST, G_2D_SPEC, BINARY_2D))
return(FALSE);

strange_func(....);
post_op(out);

}

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) on failure (images do not match, image could not be converted etc.)

SEE ALSO
post_op

prewd
NAME

prewd

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See prewitt_diff

SCIL_Image 1.4 – Reference Manual

380

prewitt_diff
NAME

prewitt_diff - Prewitt differential type edge detector

SYNOPSIS
#include "im_proto.h"

int prewitt_diff(IMAGE *in, IMAGE *out, int mode)

DESCRIPTION
Differential edge detection based upon the Prewitt operator. Within the moving
window in image "in", with dimensions 3*3, the horizontal and vertical differential
values are calculated by a convolution with the masks (horizontal respectively
vertical):

1 1 1 -1 0 1
0 0 0 -1 0 1

-1 -1 -1 -1 0 1

The output value is calculated from these convolutions, depending on the "mode"
specified:
sqrt (1) the output value is the square root of the sum of the quadratic

convolution results.
sum (0) the output value is the sum of the absolute values of the convolution

results

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
roberts_diff sobel_diff laplace prewitt_temp kirsch_temp robinson_temp

SCIL_Image 1.4 – Reference Manual

381

prewitt_temp
NAME

prewitt_temp - edge detection filter

SYNOPSIS
#include "im_proto.h"

int prewitt_temp(IMAGE *in, IMAGE *out, IMAGE *direction, int flag)

DESCRIPTION
Template type edge detection based upon the Prewitt operator. Within the moving
window in the image "in", with dimensions 3 * 3, eight convolutions with the
following masks are calculated:

(0) (1) (2) (3)
-1 1 1 1 1 1 1 1 1 1 1 1
-1 -2 1 -1 -2 1 1 -2 1 1 -2 -1
-1 1 1 -1 -1 1 -1 -1 -1 1 -1 -1

(4) (5) (6) (7)
1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1
1 -2 -1 1 -2 -1 1 -2 1 -1 -2 1
1 1 -1 1 1 1 1 1 1 1 1 1

The output value is the maximum of the results of all these convolutions. It is stored
into "out", in the pixel corresponding with the central pixel of the window. The
sequence number of the convolution mask with the maximum result is an estimate of
the direction of the first derivative and it is stored in the image "direction", if this is
specified ("flag" = 1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
laplace kirsch_temp robinson_temp prewitt_diff roberts_diff sobel_diff

SCIL_Image 1.4 – Reference Manual

382

prewt
NAME

prewt

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See prewitt_temp

SCIL_Image 1.4 – Reference Manual

383

printf

fprintf

sprintf
NAME

printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(char *format, ...)

int fprintf(FILE *stream, char *format, ...)

int sprintf(char *s, char *format, ...)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

printf() places output on the standard output stream stdout. fprintf() places output on
the named output stream. sprintf() places "output" in the string "s", followed by the
character ’\0’.

Each of these functions converts, formats, and prints its arguments after the first under
control of the first argument. The first argument is a character string which contains
two types of objects: plain characters, which are simply copied to the output stream,
and conversion specifications, each of which causes conversion and printing of the
next successive arg printf.

Each conversion specification is introduced by the character %. Following the %,
there may be:

- an optional minus sign "-" which specifies left adjustment of the converted value in
the indicated field;

- an optional digit string specifying a field width; if the converted value has fewer
characters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width; if the field width
begins with a zero, zero-padding will be done instead of blank-padding;

- an optional period "." which serves to separate the field width from the next digit
string;

- an optional digit string specifying a precision which specifies the number of digits to
appear after the decimal point, for e- and f-conversion, or the maximum number of
characters to be printed from a string;

SCIL_Image 1.4 – Reference Manual

384

- the character l specifying that a following d, o, x, or u corresponds to a long integer
arg. (A capitalized conversion code accomplishes the same thing.)

- a character which indicates the type of conversion to be applied.

A field width or precision may be "*" instead of a digit string. In this case an integer
arg supplies the field width or precision.

The conversion characters and their meanings are:

d o x The integer arg is converted to decimal, octal, or hexa-decimal notation
respectively.

f The float or double arg is converted to decimal notation in the style
"[-]ddd.ddd" where the number of d’s after the decimal point is equal to the
precision specification for the argument. If the precision is missing, 6 digits are
given; if the precision is explicitly 0, no digits and no decimal point are
printed.

e The float or double arg is converted in the style "[-]d.ddde+_dd" where there is
one digit before the decimal point and the number after is equal to the
precision specification for the argument; when the precision is missing, 6
digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, whichever
gives full precision in minimum space.

c The character arg is printed. Null characters are ignored.

s Arg is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the
precision specification is reached; however if the precision is 0 or missing all
characters up to a null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be
in the range 0 to 2**32-1

% Print a ’%’; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding
takes place only if the specified field width exceeds the actual width. Characters
generated by printf are printed by putc.

EXAMPLE
To print a date and time in the form "Sunday, July 3, 10:02", where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

SCIL_Image 1.4 – Reference Manual

385

To print pi to 5 decimals:

printf("pi = %.5f", 4*atan(1.0));

SEE ALSO
putc scanf ecvt

propagation
NAME

propagation - propagation

SYNOPSIS
#include "im_proto.h"

int propagation(IMAGE *in, IMAGE *mask, IMAGE *out, int iter, int
conn, int edge)

DESCRIPTION
Performs propagation ("masked expansion") on objects in image "in", masked by the
image "mask" and stores the result in image "out". The objects in "in" are interpreted
as the kernels of larger objects ("mask objects"). These mask objects are specified by
"mask". The algorithm is executed by a repeated expansion of the kernel objects with
the condition that the resulting pixels stay within the borders of the mask objects.

The expansion may be executed only "iter" times, "iter" is 0 specifies that the process
must be repeated until all kernels in the input image have fully expanded within the
mask objects in the mask image.

"conn" specifies the connectivity of the propagation and can be either 4 or 8. "edge"
specifies if the pixels outside the image are to be seen as object pixels ("edge" = 1) or
as background pixels ("edge" = 0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

386

ps_head

ps_image

ps_tail
NAME

ps_head - open a file for (encapsulated) postscript output

ps_image - put an image in a postscript file

ps_tail - close a postscript output file

SYNOPSIS
#include "im_proto.h"

int ps_head(char *filename, int papersize)

int ps_image(IMAGE *image, int orient, int unit, double xpos, double
ypos, double xsiz, double ysiz, int border, char *comment, int
textsize)

int ps_tail(void)

DESCRIPTION
These functions can be used to create a (Encapsulated) Postscript file that contains
one or more images.

First ps_head() must be used to open the postscript-file.

Secondly, use ps_image() one or more times to put one or more images in the
postscript file.

Finally, use ps_tail() to close the Postscript file. Now the file can be send to a
PostScript printer (e.g. using the UNIX "lpr" command) or used in a text as
encapsulated postscript.

ps_head() creates a file with the name "filename" and puts in some Postscript header
information. "papersize" specifies the size of paper by one of these values:

1 = A4
2 = US_LETTER
3 = A3
4 = A5

ps_image() dumps the data of "image" in the postscript file previously opened with
ps_head(). "orient" determines the orientation of the image, either portrait (=0) or
landscape (=1). "unit" specifies the unit of measurement for the parameters "xpos",
"ypos", "xsiz" and "ysiz", values are:

1 = inches
2 = points
3 = centimeters

SCIL_Image 1.4 – Reference Manual

387

4 = millimeters

"xpos" and "ypos" determine the position of the image on paper relative to the top-left
corner. "xsiz" and "ysiz" specify the size of the image on paper.

When "border" is set to 1, a box is drawn around the image, 0 is no box. "comment" is
an optional text-string that can be put under the image as a caption. "textsize" is the
pointsize of the caption, the font is Times-Roman.

ps_tail() cleans up after ps_image() and closes the postscript file. If this function is not
called, the Postscript file is incomplete and will produce unpredictable result when
sent to a printer or used in text as a Encapsulated Postscript file.

EXAMPLE
ps_head("example.eps", 1) /* open A4 postscript file */

/*
 * put image A in Landscape, at position 5.5, 6.7 (cm) of top right
 * corner, the sizes are 10.0 by 10.0 (cm) and draw a box around
 * it. Also print "Image A" under the image, using 10 points font
 */
ps_image(A, 1, 3, 5.5, 6.7, 10.0, 10.0, 1, "Image A", 10);

/* ps_image() may be called again to put more images in the file */

ps_tail() /* close file "example.eps" , MUST BE USED */

SEE ALSO
im1ps im2ps im3ps im4ps

SCIL_Image 1.4 – Reference Manual

388

pseudo
NAME

pseudo - pseudo grey value graphics

SYNOPSIS
#include "im_proto.h"

int pseudo(IMAGE *in, IMAGE *out)

DESCRIPTION
Create a binary image with a pseudo-grey value impression of the grey value image
"in" and store the result into the bitplane image "out". Each pixel of image "in" is
replaced by a 6 x 6 binary mask, in which the ratio between the number of black and
white pixels is proportional to the original grey-value.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
dither greduce

psremoval
NAME

psremoval - pepper and salt removal

SYNOPSIS
#include "im_proto.h"

int psremoval(IMAGE *in, IMAGE *out, int bound)

DESCRIPTION
Performs the "pepper and salt removal" operation on image "in" and stores the result
in image "out". The image is scanned by a moving window with dimensions 3*3. If
the central pixel within the window is the only object pixel within the window, it
becomes a background pixel (value 0). If the central pixel is the only background
pixel within the window, it becomes an object pixel (value 1). This operation deletes
singular pixels (either fore- or background). "bound" specifies that the edge around
the image must be set to foreground (1) or to background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

389

put
NAME

put

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See tri_state_threshold

put_xy_into_image
NAME

put_xy_into_image - set pixels, given their coordinates

SYNOPSIS
#include "grey_2dp.h"

int put_xy_into_image(VAR_OBJECT *input, IMAGE *output, int value)

DESCRIPTION
A 2-dimensional VAR_OBJECT "input" of type SHORT_T with size 2 or 3 as its first
dimension, is used to set pixels in the image "output". Per row of the array, one pixel
is set in the output image.

If "input" has a row-length (first dimension) of 2, the pixels found in "input" are set to
"value" (the two elements of the row are taken as the x- and y-coordinates of the
pixels). If "input" has a row-length of 3, the three elements of the row are taken as the
x- and y-coordinates and the grey-value of the pixel to be put into "output".

All pixels with coordinates not found in "input" are left unchanged. If a pair of
coordinates is found more than once the average of the input grey-values is taken for
this pixel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
chaincode_to_xy image_to_chaincode chaincode_to_image

SCIL_Image 1.4 – Reference Manual

390

putc

putchar

fputc

putw
NAME

putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc(int c, FILE *stream)

int putchar(int c)

int fputc(int c, FILE *stream)

int putw(int w, FILE *stream)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

putc() appends the character "c" to the named output "stream". It returns the character
written.

putchar(c) is defined as putc(c, stdout).

fputc() behaves like putc(), but is a genuine function rather than a macro.

putw() appends word "w" to the output "stream". It returns the word written. putw()
neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the output does not refer
to a terminal; this default may be changed by setbuf. The standard stream stderr is by
default unbuffered unconditionally, but use of freopen() (see fopen()) will cause it to
become buffered; setbuf(), again, will set the state to whatever is desired. When an
output stream is unbuffered information appears on the destination file or terminal as
soon as written; when it is buffered many characters are saved up and written as a
block. fflush() (see fclose()) may be used to force the block out early.

BUGS
Because it is implemented as a macro, putc treats a stream argument with side effects
improperly. In particular "putc(c, *f++);" doesn’t work sensibly.

Errors can occur long after the call to putc.

RETURN VALUES

SCIL_Image 1.4 – Reference Manual

391

These functions return the constant EOF upon error. Since this is a good integer,
ferror should be used to detect putw errors.

SEE ALSO
fopen fclose getc puts printf fread

puts

fputs
NAME

puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts(char *s)

int fputs(char *s, FILE *stream)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

puts() copies the null-terminated string "s" to the standard output stream stdout and
appends a newline character.

fputs() copies the null-terminated string "s" to the named output "stream".

Neither routine copies the terminal null character.

SEE ALSO
fopen gets putc printf ferror fread

SCIL_Image 1.4 – Reference Manual

392

qpix
NAME

qpix - plot binary image on laser printer

PLATFORM
UNIX.

SYNOPSIS
#include "im_proto.h"

int qpix(IMAGE *in, char *fname, int zoom, int append)

DESCRIPTION
Create a file "fname" to represent a hard-copy of the binary image "in" on a laser
printer of Digital’s LN03 type. The plot file is an ASCII file containing the plot
information represented in the LN03 pixel format. The magnification factor of the plot
is specified by the factor "zoom".
The parameter "append" specifies if the plot file is to be appended to an existing plot
file or text file (1= append, 0= not append). Appending the plot to a text file enables
the possibility of merging text and figures. If appending is not specified and the file
"fname" already exists, the existing plot file will be overwritten.

NOTE
The default value of "zoom" is 1 which gives 28.4 pixels per millimeter.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

quit
NAME

quit - quit SCIL_Image session gracefully

SYNOPSIS
void quit(void)

DESCRIPTION
quit() exits SCIL_Image gracefully, flushing all the buffers and closing all open files.
It is synonymous to "exit(1)"

RETURN VALUES
None

SEE ALSO
exit

SCIL_Image 1.4 – Reference Manual

393

raise_window

lower_window

iconify_window

deiconify_window
NAME

raise_window - pop an image-window to the foreground

lower_window - push an image-window to the background

iconify_window - iconify an image-window

deiconify_window - deiconify an image-window

PLATFORM
UNIX, Macintosh

SYNOPSIS
#include "disp_p.h"

int raise_window(IMAGE *im)

int lower_window(IMAGE *im)

int iconify_window(IMAGE *im)

int deiconify_window(IMAGE *im)

DESCRIPTION
raise_window(), lower_window(), iconify_window() and deiconify_window() perform
window manipulation on the display window of an image. For images without a
display window, like ROIs and images created with create_image() NO error is
generated.

raise_window() pops the display window of image "im" to the foreground.

lower_window() pushes the display window of image "im" to the background.

iconify_window() iconifies the display window of image "im"

deiconify_window() deiconifies the display window of image "im"

RETURN VALUES
IE_OK (1)

SCIL_Image 1.4 – Reference Manual

394

rand

srand
NAME

rand, srand - random number generator

SYNOPSIS
void srand(unsigned int seed)

int rand(void)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

rand() uses a multiplicative congruential random number generator with period 2**32
to return successive pseudo-random numbers in the range from 0 to 2**31-1.

The generator is reinitialized by calling srand() with 1 as argument. It can be set to a
random starting point by calling srand() with whatever you like as argument.

random_filter
NAME

random_filter - make random filter image

SYNOPSIS
#include "im_proto.h"

int random_filter(IMAGE *out, double mean, double max, int symmetric)

DESCRIPTION
Creates a random filter with mean given by "mean" and maximum element given by
"max". If symmetric is true (set to 1), the filter will be constrained by f(x,y) = f(-x,y).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
random_im

SCIL_Image 1.4 – Reference Manual

395

random_im

srandom_im
NAME

random_im - fill an image with random values

srandom_im - set seed for random_im random generator

SYNOPSIS
#include "im_proto.h"

int random_im(IMAGE *im, int alt)

void srandom_im(long seed)

DESCRIPTION
random_im() fills the image "im" with random values. Two random generators are
available. The "Normal" ("alt" = 0) can be influenced by a seed that can be set by
srandom_im(). The "Alternate" ("alt" = 1) random generator cannot be externally
influenced.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
eval

SCIL_Image 1.4 – Reference Manual

396

range_ok
NAME

range_ok - check is a value is in the specified range

SYNOPSIS
#include "im_infra.h"

int range_ok(int value, int vmin, int vmax, char *text)

DESCRIPTION
range_ok() checks to see if "value" is in the range specified by "vmin" and "vmax"
(borders included). If it is, a true status is returned. If "value" is outside the range then
an error is generated and the following message is added to the error-stack:

<text> [<value>] out of range (<vmin>..<vmax>)

A lot of the checking routines use this function to do the actual checking and supply a
default message for that specific check.

EXAMPLE
if range_ok() is called as "range_ok(18, 1, 9, "Number below 10");"
then the on the error-stack will be:

Number below 10 [18] out of range (1..9)

NOTE
This function has the same functionality as frange_ok(). range_ok() can handle only
integer values and frange_ok() can handle only floating point values.

RETURN VALUES
IE_OK (1) if the value is inside the range (borders included).
NOT_OK (0) if the value is outside the range.

SEE ALSO
frange_ok

SCIL_Image 1.4 – Reference Manual

397

raster
NAME

raster - rasterization of an image

SYNOPSIS
#include "im_proto.h"

int raster(IMAGE *in, IMAGE *out, int factor, int ratio)

DESCRIPTION
Rasterise an image as follows: replace each pixel in the image "in" by a block of
"factor" * "factor" pixels, the upper left "ratio" * "ratio" pixels having the original
pixel value, and the remaining pixels having the background value 0. The result is
stored into the image "out", which should at least be "factor" times bigger in both the
x- and y-direction.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

398

read
NAME

read - read from file

SYNOPSIS
int read(int fildes, char *buffer, int nbytes)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

A file descriptor is a word returned from a successful open(), creat(), dup(), or pipe()
call. "buffer" is the location of "nbytes" contiguous bytes into which the input will be
placed. It is not guaranteed that all "nbytes" bytes will be read; for example if the file
refers to a typewriter at most one line will be returned. In any event the number of
characters read is returned.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUES
As mentioned, 0 is returned when the end of the file has been reached. If the read was
otherwise unsuccessful the return value is -1. Many conditions can generate an error:
physical I/O errors, bad buffer address, preposterous nbytes, file descriptor not that of
an input file.

SEE ALSO
open creat

SCIL_Image 1.4 – Reference Manual

399

read_var_object
NAME

read_var_object - reads a var_object from a file

SYNOPSIS
#include "objectsp.h"

int read_var_object(char *filename, VAR_OBJECT *object)

DESCRIPTION
"read_var_object" reads the var_object specified by the pointer "object" from a file.
When executed, this function looks for two files on disk. A file with the name
"filename".voh and a file the name "filename".vod.
The file with the extension ".voh" is an ASCII header file which describes the
var_object. In the file with the extension ".vod" the actual data resides.
If the pointer "object" is a NULL-pointer then a var_object is created with the name
that is present in the header-file. This is the name of the var_object when it was
written to disk. When the object already exists then the contents of the old var_object
will be lost.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object write_var_object

SCIL_Image 1.4 – Reference Manual

400

readfile
NAME

readfile - read an image from file

SYNOPSIS
#include "im_proto.h"

IMAGE *readfile(char *filename, IMAGE *image, int xpos, int ypos)

DESCRIPTION
Read the image stored in file "filename" and put it in image "image". If
"USE_NAME" (a NULL pointer) is specified as the image, a new image is created at
position "xpos", "ypos", with the same name as the file. If an image is already present
with that name, that image will be used. Several file formats are supported (see
below), each of which have an obligatory extension. If a filename is supplied with no
extension the function will append the obligatory extensions one at the time to find
the file.

ICS format Two files per image are present, the data-file with the extension ".ids"
and the header-file with the extension ".ics"

TIFF format The read function is capable of reading TIFF-files according to the
TIFF 6.0 specifications.The file must have an extension that starts with
".tif". The extensions used for finding a TIFF file are ".tif" and ".tiff".

JPEG format The file must have the ".jpg" or ".jpeg" extension.

TCL format The file must have the ".dat" extension.

AIM format The data-files of the AIM format must have the ".im" extension. Data-
files for which no header file with the extension ".hd" is present, are
assumed to contain a 256 * 256 grey value image.

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL pointer on failure

SEE ALSO
ics_readfile tiff_readfile tcl_readfile aim_readfile jpeg_readfile writefile

SCIL_Image 1.4 – Reference Manual

401

real_im
NAME

real_im - get the real part of a complex image

SYNOPSIS
#include "im_proto.h"

int real_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Take the real part of each element of the image "in" (a complex image) and store the
results in the image "out". If "out" is a complex image then the result will be stored in
the real part of each element of "out" and the imaginary part will be cleared. If "out" is
not a complex image the result will be a float image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
imaginary_im complex_im

real_time_recognizer
NAME

real_time_recognizer - real time recognizer

SYNOPSIS
#include "im_proto.h"

int real_time_recognizer(IMAGE *in, IMAGE *out, IMAGE *se, int thr,
int bound)

DESCRIPTION
The real time recognizer is a special implementation of t_morphology() for weighted
structuring functions whose weights are restricted to -1, 0 and +1. For a description of
how to use threshold morphology we refer to the documentation of t_morphology().

Please note that the name is a bit misleading. DO NOT EXPECT REAL TIME
PERFORMANCE.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_erosion arbit_dilation hit_or_miss t_morphology

SCIL_Image 1.4 – Reference Manual

402

reduce
NAME

reduce - image reduce

SYNOPSIS
#include "im_proto.h"

int reduce(IMAGE *in, IMAGE *out, int hfact, int vfact, int dfact,
int adjust)

DESCRIPTION
Reduce image "in" with a horizontal factor "hfact", a vertical factor "vfact" and a
depth factor "dfact" (3d only) by resampling pixels and store the result in image "out".
If "adjust" is true (not zero) then the sizes of the image "out" will be set to fit the
result. The dimensions of the output image are not adjusted by default due to various
reasons.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
blow fblow

SCIL_Image 1.4 – Reference Manual

403

remark
NAME

remark - on-line remark facility for the user

PLATFORM
UNIX.

SYNOPSIS
void remark()

DESCRIPTION
If during a session of the package a bug or another problem occurs, the command
remark can be issued to generate on-line a performance report. The command remark
will prompt with a > sign. Following this prompt a line of text can be entered,
terminated with a <newline> character. The command will prompt for more lines until
an empty line is entered (only a <newline> character), which terminates a remark
session. When the remark session is terminated the command will prompt for your
name. The report will be stored into the remark file in the application standard
directory. This file is maintained by the manager of the package, who can take action
to solve the problem.

Restriction(s):
The text lines to be entered with this command should not exceed 80
characters (including the <newline> character).

NOTE
The SCIL remarkfile is located at the position indicated by the system environment
variable SCIL_REMARKS, this position is determined at the start of the package.
This file has to be writable for every user.

SCIL_Image 1.4 – Reference Manual

404

remove

rename
NAME

remove - remove a file

rename - rename a file

SYNOPSIS
int remove(char *filename)

int rename(char *oldname, char *newname)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

remove() removes the named file, so that a subsequent attempt to open it will fail.

rename() changes the name of a file from "oldname" to "newname".

RETURN VALUES
non-zero if the attempt on the file fails

remove_holes
NAME

remove_holes - remove small holes in image

SYNOPSIS
#include "im_proto.h"

int remove_holes(IMAGE *in, IMAGE *out)

DESCRIPTION
Removes single background pixels and sets of pixels which are not 4-connected to
other background pixels within foreground objects in the image "in" and stores the
result in the image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

405

resample_perp
NAME

resample_perp - resample perpendicular to curve

SYNOPSIS
#include "grey_2dp.h"

int resample_perp(IMAGE *input, VAR_OBJECT *xy, IMAGE *out, int
width, int fitlength, VAR_OBJECT *data, int threshold)

DESCRIPTION
Resample the image "input" perpendicular to the curve specified by the coordinate
list "xy". For all N coordinate pairs in "xy" ("xy" should be a 2-dimensional
VAR_OBJECT of type SHORT_T, with size 2 as the first dimension and size N as
the second), a straight line is fitted through "fitlength" points, "fitlength"/2 points
forward and "fitlength"/2 points backward in the list. The input image "input" is
resampled on a line perpendicular to the fitted line segment and passing through its
center of gravity. The resampling is done symmetrically with respect to the center
point. The sample interval is one pixel. The new pixel values are calculated by linear
interpolation between the nearest pixels in the original image.

The number of samples on the line is specified by "width", to which the width (first
dimension) of the image "out" will be adjusted. For each sampling line, the data are
stored into one row of "out".

Three parameters defining the sampling line segment are stored into the
corresponding row of the floating point VAR_OBJECT "data", if this is specified,
viz.: the x-coordinate of the center point into element 0 of the row, the Y coordinate
into element 1 and the direction of the line (in radians) into element 2.

If the sampling exceeds the image boundaries, the corresponding entries in "out" are
set to -1.

With the parameter "threshold" it is possible to specify the area which cannot be used
for the computations. Pixels with a value less than or equal to this parameter are
considered as prohibited.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_trace maximum_cost_path back_project drawcurve

SCIL_Image 1.4 – Reference Manual

406

retrieve_object_list
NAME

retrieve_object_list - retrieve last labeled object list

SYNOPSIS
#include "im_aio.h"

LIST *retrieve_object_list(void)

DESCRIPTION
Retrieves a pointer to the most recently labeled object list. Since it is the users
responsibility to free object lists it is important to retrieve a pointer to the most
recently labeled list. If the user forgets to save the list returned by list_label(),
retrieve_object_list() can give some relief.

NOTE
retrieve_object_list() is part of the AIO package

RETURN VALUES
A pointer to the list with the last labeled objects

SEE ALSO
measure

RGB_gamma_correction
NAME

RGB_gamma_correction - gamma correction on a RGB color-image

SYNOPSIS
#include "color2dp.h"

int RGB_gamma_correction(IMAGE *in, IMAGE *out, double r_gamma,
double g_gamma, double b_gamma)

DESCRIPTION
RGB_gamma_correction() performs a gamma correction on the R-, G- and B-channel
of the RGB color-image "in" and store the result in the image "out". The gamma-value
for each of the channels can be specified separately by the parameters "r_gamma" for
the R-channel, "g_gamma", for the G-channel and "b_gamma" for the B-channel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

407

rhull
NAME

rhull - restricted convex hull detection

SYNOPSIS
#include "im_proto.h"

int rhull(IMAGE *in, IMAGE *out, int dist)

DESCRIPTION
Calculate a restricted convex hull of each object in the labeled image "in" and store
the result in image "out". For each object in "in", all combinations of two contour
points with Euclidean distance less than or equal to "dist", are connected by a straight
line. If a background pixel is found on such a line, it is added to the original object.
This operation closes all holes in an object which are less than "dist" wide. The
contour of an object is also smoothed, gaps with a length less than "dist" are
completely filled.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hull label objectsize small_object_removal

rm_list
NAME

rm_list - remove list with objects

SYNOPSIS
#include "im_aio.h"

LIST *rm_list(LIST *list)

DESCRIPTION
list - List with objects

rm_list() removes the list with objects pointed to by "list" and returns allocated space
to the system.

RETURN VALUES
NULL

SEE ALSO
list_label measure retrieve_object_list

SCIL_Image 1.4 – Reference Manual

408

rm_object
NAME

rm_object - mark object to be removed from the list

SYNOPSIS
#include "im_aio.h"

void rm_object(LIST *link)

DESCRIPTION
link - Link pointing to object

rm_object() marks the object pointed to by "link", to be removed from the list on the
next call to the update() function.

NOTE
The object is not removed from the image. You need to call hide_object() to remove
an object from an image.

EXAMPLE
To remove objects touching the edge of an image:

#include "image.h"
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b,c,8,0);
FORALL(o,l) if(edge_object(c,o)) rm_object(o);
l = update(l);
/*
* Now to prove that the objects are no longer in the list
*/
FORALL(o,l) copy_object(c,d,o);
l = rm_list(l);

RETURN VALUES
None

SEE ALSO
hide_object update

SCIL_Image 1.4 – Reference Manual

409

rm_silo
NAME

rm_silo - destroys an image-silo

SYNOPSIS
#include "silo.h"

int rm_silo(SILOPTR siloptr)

DESCRIPTION
siloptr - Pointer to the image-silo.

A routine to remove a silo from the filing system. Returns all allocated space to the
system.

NOTE
It is also legal to remove the file. This routine is meant to be used inside a program.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

rm_silo_object
NAME

rm_silo_object - remove an image from image-silo

SYNOPSIS
#include "silo.h"

int rm_silo_object(SILOPTR siloptr, int silo_key)

DESCRIPTION
siloptr - Pointer to the image silo
silo_key - Key entry of the image in the silo

Empties the entry at position "silo_key" in the silo "siloptr". It also adjusts the internal
entry list.

RETURN VALUES
Always IE_OK (1)

SCIL_Image 1.4 – Reference Manual

410

rmvar
NAME

rmvar - clear interpreter

SYNOPSIS
rmvar

DESCRIPTION
Clears the interpreter hereby removing old programs, variables, structure descriptions
typedefs and preprocessor defines.

roberts_diff
NAME

roberts_diff - Roberts gradient edge operator

SYNOPSIS
#include "im_proto.h"

int roberts_diff(IMAGE *in, IMAGE *out, int fsize, int mode)

DESCRIPTION
Differential edge detection based upon the Roberts gradient, an estimation of the local
gradient. Within the moving window in image "in", with dimensions "fsize" * "fsize"
the differences between the pixel values at the end points of the diagonals of the
window are calculated. The output value, which is stored into image "out", is
calculated from these differences according the "mode" specified:

sqrt (1) the output value is the square root of the sum of the quadratic
differences

sum (0) the output value is the sum of the absolute values of the differences

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
prewitt_diff sobel_diff laplace prewitt_temp kirsch_temp robinson_temp

SCIL_Image 1.4 – Reference Manual

411

robg
NAME

robg

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See roberts_diff

SCIL_Image 1.4 – Reference Manual

412

robinson_temp
NAME

robinson_temp - edge detection filter

SYNOPSIS
#include "im_proto.h"

int robinson_temp(IMAGE *in, IMAGE *out, IMAGE *direction, int flag)

DESCRIPTION
Template type edge detection based upon the Robinson operator. Within the moving
window in the image "in", with dimensions 3 * 3, eight convolutions with the
following masks are calculated:

(0) (1) (2) (3)
-1 0 1 0 1 2 1 2 1 2 1 0
-2 0 2 -1 0 1 0 0 0 1 0 -1
-1 0 1 -2 -1 0 -1 -2 -1 0 -1 -2

(4) (5) (6) (7)
1 0 -1 0 -1 -2 -1 -2 -1 -2 -1 0
2 0 -2 1 0 -1 0 0 0 -1 0 1
1 0 -1 2 1 0 1 2 1 0 1 2

The output value is the maximum of the results of all these convolutions. It is stored
into "out", in the pixel corresponding with the central pixel of the window. The
sequence number of the convolution mask with the maximum result is an estimate of
the direction of the first derivative and it is stored in the image "direction", if this is
specified ("flag"=1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
laplace prewitt_temp kirsch_temp prewitt_diff roberts_diff sobel_diff

SCIL_Image 1.4 – Reference Manual

413

roi_define
NAME

roi_define - define a region of interest

SYNOPSIS
#include "im_infra.h"

IMAGE *roi_define(char *name, IMAGE *parent, int sx, int sy, int sz,
int width, int height, int depth, BOOL_MASK *mask)

DESCRIPTION
roi_define() creates a region of interest with name "name" in the parent image
"parent" at ("sx","sy","sz") with dimensions "width"*"height"*"depth". The last
parameter is an optional Boolean mask (can also be NULL) which allows for a roi
definition with an arbitrary shape. A roi has the same status as any other image except
for the fact that a roi can not be defined inside another roi.

Not only rectangular shaped regions of interest are possible in SCIL_Image, but also
arbitrary shaped ones. To create one, a binary image has to be converted into a
Boolean mask by use of the function get_bool_mask(). The pointer to this Boolean
mask must then be specified as the last parameter of roi_define().

NOTE
The normal behavior of output images in Image is that they automatically are adjusted
to the correct size and type suited for the result of the operation. ROIs however only
allow type changes but have fixed dimensions. The only way to change the
dimensions of a roi is to use change_image_size.

RETURN VALUES
A pointer to the roi on success.
NULL pointer on failure to create the roi.

SEE ALSO
destroy_image get_bool_mask change_image_size

SCIL_Image 1.4 – Reference Manual

414

rotate
NAME

rotate - image rotation

SYNOPSIS
#include "im_proto.h"

int rotate(IMAGE *in, IMAGE *out, int iter)

DESCRIPTION
Rotate image "in" over "iter"*90 degrees and store the result in image "out". If "iter" is
positive the operation is performed clockwise, if "iter" is negative counterclockwise.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
mirror

NAME
run - execute the program in the program buffer

SYNOPSIS
run

DESCRIPTION
The run command is used to execute a previously loaded file. All old variables are
deleted.

SCIL_Image 1.4 – Reference Manual

415

S_Append

S_BreakList

S_CloseList

S_CopyList

S_Delete

S_FindItem

S_FreeList

S_Insert

S_Length

S_Prefix

S_SortList
NAME

S_Append, S_BreakList, S_CloseList, S_CopyList, S_Delete, S_FindItem, S_FreeList,
S_Insert, S_Length, S_Prefix, S_SortList - linked list functions

SYNOPSIS
#include "linklist.h"

LIST *S_Append(INFO *item, LIST *list)

LIST *S_Insert(INFO *item, LIST *list)

LIST *S_Prefix(INFO *item, LIST *list)

LIST *S_Delete(LIST *item, FREEFUNC FreeInfo)

int S_FreeList(LIST *list, FREEFUNC FreeInfo)

int S_Length(LIST *list)

LIST *S_FindItem(INFO *item, LIST *list)

LIST *S_SortList(LIST *list, COMPAREFUNC compare)

LIST *S_BreakList(LIST *list)

LIST *S_CloseList(LIST *list)

LIST *S_CopyList(LIST *list)

DESCRIPTION
These functions are used for generic linked list creation and maintenance. A linked list is
build using the following structure:

SCIL_Image 1.4 – Reference Manual

416

typedef struct List {
struct List *next;
struct List *prev;
INFO *info;

} LIST;

A linked list is a number of LIST structures linked together by their "next" and "prev"
fields to form a double linked list. Any information can be stored in the list as long as a
pointer to the data is available. The pointer is stored in the "info" field (as a void poin-
ter). The number of lists and the number of elements in each list is not limited by these
functions in any way.

S_Append(), S_Insert() and S_Prefix() are used to build a list. They allocate a new LIST
structure, store the "item" pointer in the info field and insert the LIST structure at the
correct position in the list "list" taking care that the "next" and "prev" fields of their
neighbors (if present) are updated correctly. S_Append() appends the new element to the
end of linked list "list". S_Prefix() inserts the new element at the start of list "list".
S_Insert() inserts the new element just before the element pointed to by "list". If "list" is
NULL a new linked list is started and the returned LIST pointer should be stored for
future reference of the list.

S_Delete() and S_FreeList() are used to remove certain elements from the list or the
entire list respectively. S_Delete() deletes element from linked list. The function
"freefunc" is used to destroy the element attached to the list. When the element was
allocated using malloc(), the function free() can be used. Complicated elements e.g.
structures with pointere to other structures should be destroyed by dedicated
destroy-functions. NULL is allowed if the element is not to be destroyed.

S_Length() returns the length of the list i.e. the number of elements in the list.

S_FindItem() searches in the list "list" for the element "item" and returns a pointer to the
LIST structure that contains the element. If it cannot find "item", NULL is returned

S_CloseList() and S_BreakList() convert a NULL terminated list in a circular list and
vice versa. When building a linked list, the "prev" field the first item and the "next"
field of the last element are NULL terminated. S_CloseList() connects these those
elements creating a circular list. S_BreakList() breaks the circular open again at the
LIST structure pointed to by "list" making it the new start of the list.

S_SortList() sorts the list according to the supplied comparison function "compare".
The list is sorted using the qsort() function.

S_CopyList() make a copy of a list. This second list contains physically the same
elements as the first list i.e. the elements in the list are not duplicated. Removing an
element from one list will leave a pointer dangling it the other list.

RETURN VALUES

SCIL_Image 1.4 – Reference Manual

417

S_Append(), S_Prefix(), S_Insert() and S_CopyList() all return NULL if there is not
enough memory to create the new LIST structure(s). If successful, S_Append() and
S_Prefix() return a pointer to the start of the (changed) list, S_Insert() returns a pointer
to the new member of the list. S_CopyList() returns a pointer to the start of the new list.

S_Delete() returns a pointer to the "next" member of the list, if the deleted member was
the last of the list, a pointer to the previous member is return. In case the list contained
only one member, or "list" was NULL, NULL is returned. S_FreeList() returns FALSE
(0) is list was NULL, otherwise it returns TRUE (1).

S_Length() returns the length of the list. S_FindItem() returns a pointer to a LIST struct
or NULL if not found. S_BreakList() and S_CloseList() return their argument.
S_SortList() returns a LIST pointer to the sorted list or NULL if the list was empty or if
it cannot allocate memory to store the sorted list.

saxis
NAME

saxis - obtain short axis of the fitted ellipse of an object

SYNOPSIS
#include "im_aio.h"

double saxis(LIST *link)

DESCRIPTION
link - Link pointing to object

AIO primitive to obtain value of an object feature

saxis() returns the length of the short axis of the fitted ellipse of the object pointed to
by "link" if this has previously been measured.

RETURN VALUES
length of the short axis of the fitted ellipse of object
0.0 if link is not an object or if short axis has not been measured

SEE ALSO
measure object_shape_meas object_dens_meas laxis

SCIL_Image 1.4 – Reference Manual

418

scanf

fscanf

sscanf
NAME

scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

int scanf(char *format, ...)

int fscanf(FILE *stream, char *format, ...)

int sscanf(char *s, char *format, ...)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

scanf() reads from the standard input stream stdin. fscanf() reads from the named
input "stream". sscanf() reads from the character string "s". Each function reads
characters, interprets them according to a format, and stores the results in its
arguments. Each expects as arguments a control string "format", described below, and
a set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

- Blanks, tabs or newlines, which match optional white space in the input.

- An ordinary character (not %) which must match the next character of the input
stream.

- Conversion specifications, consisting of the character %, an optional assignment
suppressing character *, an optional numerical maximum field width, and a
conversion character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, unless assignment
suppression was indicated by *. An input field is defined as a string of non-space
characters; it extends to the next inappropriate character or until the field width, if
specified, is exhausted.

The conversion character indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. The following
conversion characters are legal:

% a single ’%’ is expected in the input at this point; no assignment is done.

SCIL_Image 1.4 – Reference Manual

419

d a decimal integer is expected; the corresponding argument should be an integer
pointer.

o an octal integer is expected; the corresponding argument should be a integer
pointer.

x a hexadecimal integer is expected; the corresponding argument should be an
integer pointer.

s a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept the
string and a terminating ’\0’, which will be added. The input field is terminated
by a space character or a newline.

c a character is expected; the corresponding argument should be a character
pointer. The normal skip over space characters is suppressed in this case; to
read the next non-space character, try "%1s". If a field width is given, the
corresponding argument should refer to a character array, and the indicated
number of characters is read.

f a floating point number is expected; the next field is converted accordingly and
stored through the corresponding argument, which should be a pointer to a
float. The input format for floating point numbers is an optionally signed string
of digits possibly containing a decimal point, followed by an optional exponent
field consisting of an E or e followed by an optionally signed integer.

[indicates a string not to be delimited by space characters. The left bracket is
followed by a set of characters and a right bracket; the characters between the
brackets define a set of characters making up the string. If the first character is
not circumflex (^), the input field is all characters until the first character not in
the set between the brackets; if the first character after the left bracket is ^, the
input field is all characters until the first character which is in the remaining set
of characters between the brackets. The corresponding argument must point to
a character array.

The conversion characters d, o and x may be capitalized or preceded by l to indicate
that a pointer to long rather than to int is in the argument list. Similarly, the
conversion characters e or f may be capitalized or preceded by l to indicate a pointer
to double rather than to float. The

conversion characters d, o and x may be preceded by h to indicate a pointer to short
rather than to int.

The scanf functions return the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. The constant
EOF is returned upon end of input; note that this is different from 0, which means that
no conversion was done; if conversion was intended, it was frustrated by an
inappropriate character in the input.

SCIL_Image 1.4 – Reference Manual

420

EXAMPLE
For example, the call

int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

with the input line

25 54.32E-1 thompson

will assign to i the value 25, x the value 5.432, and name will contain "thompson\0".

Or,

int i; float x; char name[50];
scanf("%2d%f%*d%[1234567890]", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip "0123", and place the string "56\0" in name. The
next call to getchar will return ’a’.

RETURN VALUES
The scanf functions return EOF on end of input, and a short count for missing or
illegal data items.

SEE ALSO
atof getc printf

SCIL_Image 1.4 – Reference Manual

421

searchfile

rel_searchfile
NAME

searchfile, rel_searchfile - find and open a file

SYNOPSIS
#include "support.h"

FILE *searchfile(char *name, char *envvar, char *pathret)

FILE *rel_searchfile(char *name, char *envvar, char *pathret)

DESCRIPTION
searchfile(), searches for the file whose name is given in "name". If it can not open the
file using "name", it will remove any directory names from "name" and will try to open
the file in the current directory. If still unsuccessful, it will search for the file in all the
directories that are listed in the environment variable specified in "envvar". When the
file is found, it is opened using fopen() with read-only permission ("r"). The entire path-
name of the file is stored in the supplied buffer "pathret", that is assumed to be at least
256 bytes long. The FILE pointer to the still open file is returned.

rel_searchfile() searches and opens files in almost the identical way as searchfile(). The
only difference is that any preceding directory names are not stripped from "name". It
appends the entire path-name in "name" to the directory names in "envvar".

The various directories specified in the environment variable "envvar" must be separated
by a separator. On UNIX systems, this is a ":" (colon), on Ms-Windows and Macintosh
systems it is the ";" (semicolon). Additionally it is allowed on MS-Windows systems to
use the "/" (forward slash) as a directory separator in path-names, this to reduce the
chance of errors when using the "\" (backslash) which in C-strings must be escaped with
another backslash.

NOTE
 (rel_)searchfile() uses fopen() with type "r" to open the files. This means that when
using searchfile() to open files that contain binary data (non-text files) on some platform
translation of carriage-return characters will occur. For binary files on MS-Windows
and Macintosh this means that you must close the file using fclose() and reopen it with
fopen(pathret, "rb"). Remember to use the path-name from "pathret" to reopen the file,
the correct path-name for the file you just closed is in that buffer.

RETURN VALUES
searchfile() and rel_searchfile() return the FILE pointer of the opened file which was
searched for or NULL if the file cannot be found.

SCIL_Image 1.4 – Reference Manual

422

set_aio_disp
NAME

set_aio_disp - enable/disable immediate display of AIO objects

SYNOPSIS
int set_aio_disp(int mode)

DESCRIPTION
When "mode" is 1 then the objects in labeled images are displayed at once when they
are copied or hidden using the functions hide_object(), copy_object(), g_copy_object()
and g_copy_object_to(). The objects will be displayed without having to display the
entire image.

When "mode" is 0, changes will only become visible when the image is (re)displayed.
This is useful when copying or hiding a number of objects.

RETURN VALUES
status of the AIO display mode (value of "mode" on the last call to set_aio_disp())

SEE ALSO
hide_object copy_object g_copy_object g_copy_object_to

set_border
NAME

set_border - set the border of an image

SYNOPSIS
#include "im_proto.h"

int set_border(IMAGE *out, double value, int top, int right, int bot,
int left, int z_min, int z_max)

DESCRIPTION
The border of image "out" is given a value "value". The size (=thickness) of the
border for each side of the image is given by "up", "right", "bot", "left", "z_min",
"z_max"

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

NOTE
The parameters "z_min" and "z_max" are ignored for 2D images.

SEE ALSO
set_int

SCIL_Image 1.4 – Reference Manual

423

set_clut
NAME

set_clut - attach a color lookup table to an image

SYNOPSIS
#include "im_infra.h"

int set_clut(IMAGE *image, CLUT *clut, int disp)

DESCRIPTION
Attaches the color lookup table "clut" to "image". If the flag "disp" is set (=1) then the
image will be (re)displayed to show the effect.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create_clut

set_color
NAME

set_color - set pixel value of color image

SYNOPSIS
#include "color2dp.h"

int set_color(IMAGE *image, int red_val, int green_val, int blue_val)

DESCRIPTION
set_color() sets all pixels of "image" to the RGB value given by "red_val",
"green_val", blue_val".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clear_im make_color_im

SCIL_Image 1.4 – Reference Manual

424

set_common_line
NAME

set_common_line - fill the common_line structure in one pass

SYNOPSIS
#include "im_infra.h"

void set_common_line(COMMON_LINE *com_line, int type, void *data, int
x, int y, int z, int t, int chan, double h_min, double h_max)

DESCRIPTION
This function fills the COMMON_LINE structure "com_line" in one pass with the
values specified as the arguments. It is used in the low-level routines of the convert()
operation. The function is meant for programmers convenience.

"com_line" is pointer to the COMMON_LINE structure that must be filled.

"type" specifies which type of data is used, COM_LONG or COM_DOUBLE.

"data" is a pointer to the allocated memory to store the data of one image line.

"x", "y", "z", "t" and "chan" are the sizes and the position of the image line in the
memory pointed at by "data"

"h_min" and "h_max" are the minimum and maximum value of the data in the entire
source image of the convert operation.

RETURN VALUES
None

SEE ALSO
convert

SCIL_Image 1.4 – Reference Manual

425

set_comp_margin
NAME

set_comp_margin - set space between images in composite photo

SYNOPSIS
#include "silo.h"

void set_comp_margin(int size)

DESCRIPTION
size - Size of margin

Function to define the space between sub-images in a composite photo.

RETURN VALUES
None

SEE ALSO
start_comp silo_to_comp

set_complex
NAME

set_complex - set pixel value of image

SYNOPSIS
#include "im_proto.h"

int set_complex(IMAGE *im, double real_part, double imaginary_part)

DESCRIPTION
Set all pixels in image "im" to the complex value given by "real_part" and
"imaginary_part".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clear_im

SCIL_Image 1.4 – Reference Manual

426

set_dialog_pos
NAME

set_dialog_pos - set the position of the dialog box

PLATFORM
Unix, Macintosh.

SYNOPSIS
#include "md_gen.h"

int set_dialog_pos(int x, int y)

DESCRIPTION
set_dialog_pos() sets the position of the dialog box to ("x","y").

RETURN VALUES
None

SEE ALSO
set_menu_pos

SCIL_Image 1.4 – Reference Manual

427

set_display_mode
NAME

set_display_mode - set the display mode for an image

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"
#include "dmodes.h"

int set_display_mode(IMAGE *image, int mode, int global, int
direct_display)

DESCRIPTION
set_display_mode() sets the scaling mode used for displaying the image "image". The
"mode" must be set for each image separately. Only one mode can be set
simultaneously for an image. When specifying more than one mode, only one mode is
set, which one is not defined. The currently implemented modes are defined in the
include file "dmodes.h", they are:

DM_NORMAL Normal display.
DM_LIN_STRETCH Linear stretched display.
DM_LOG_STRETCH Logarithmic stretched display.
DM_LIN_ERROR Linear stretched error display.
DM_LOG_ERROR Logarithmic stretched error display.
DM_SIGMOID Sigmoidal stretched display.

In an image with display mode DM_LIN_ERROR or DM_LOG_ERROR the value 0 is
displayed as greyvalue 127. Positive errors are displayed between 127 and 255. Negative
errors are displayed between 0 and 127.

"global" is in effect only for 3D images:

global = No (0): The minimum and maximum value used for stretching are
determined only from the current slice.

global = Yes (1): The min an max value used for stretching are determined
from the entire image

"direct_display" indicates if the image should be (re)displayed directly Yes(1) or not
No(0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_sigmoid_shape set_dither_mode get_display_mode show_dmode_flags

SCIL_Image 1.4 – Reference Manual

428

set_display_slice
NAME

set_display_slice - display a slice of a image

SYNOPSIS
#include "disp_p.h"

int set_display_slice(IMAGE *image, int slice)

DESCRIPTION
Displays slice number "slice" of image "image". The slice number that is being
displayed at the moment is the field "slice" of the IMAGE structure.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
display_image next_plane

SCIL_Image 1.4 – Reference Manual

429

set_dither_mode
NAME

set_dither_mode - perfect display of images

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int set_dither_mode(IMAGE *image, int mode, int direct_display)

DESCRIPTION
Images that have a color lookup-table attached are normally displayed by mapping the
entries of the table the color the is the nearest in the SCIL_Image color-lookup table.
Due to the limited number of colors that will fit in a color-table at one time the effect
can be very poor. By turning on color-dithering (for each image separately) the display
routine will show the image in "true color" (a near perfect approximation).

set_dither_mode() turns on the color-dithering for the image "image" when "mode" is
set to 1. It is turned off when "mode" is set to 0. "direct_display" indicates that the
image should be (re)displayed directly Yes(1) or not No(0).

NOTE
Turning this option on shows a significant performance penalty for the display update
times

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_display_mode

SCIL_Image 1.4 – Reference Manual

430

set_float
NAME

set_float - set pixel value of an image

SYNOPSIS
#include "im_proto.h"

int set_float(IMAGE *im, double constant)

DESCRIPTION
Set all pixels in image "im" to the floating point value "constant".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clear_im eval

set_im_type
NAME

set_im_type - change the type of an image

SYNOPSIS
#include "im_infra.h"

int set_im_type(IMAGE *im, int type)

DESCRIPTION
The type of image "im" is changed to "type". The data of the image is lost.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

431

set_image_flag

clear_image_flag
NAME

set_image_flag, clear_image_flag - set/clear the image flags.

SYNOPSIS
#include "im_proto.h"

void set_image_flag(IMAGE *im, int flag)

void clear_image_flag(IMAGE *im, int flag)

DESCRIPTION
An image contains several flags that can be used to indicate special treatment of such
an image flag. These flags can be set with set_image_flag() and cleared with
clear_image_flag(). After a flag has been set/cleared, the image publishes a
SPB_NEWSTATE message. Currently the following flags are defined:

READ_ONLY (bit 0, integer value 1), image is read-only, the
infrastructure does not allow you to use the image as an
output image. The image size and/or type cannot be
altered.

NOT_IN_DIALOG (bit 1, integer value 2), signals to the GUI that the image
should not be shown in dialog boxes.

NO_AUTO_POINT (bit 2, integer value 4), signals to the GUI that when
pointing in the image viewer with the mouse, the pixel
information should not be shown.

NO_AUTO_DISPLAY (bit 3, integer value 8), signals to the GUI that the image
should not automatically be displayed on changes to the
image.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

432

set_image_interaction

handle_events
NAME

set_image_interaction - disable SCIL_Image event loop

handle_events - call the SCIL_Image event loop once

SYNOPSIS
#include "im2scil.h"

int set_image_interaction(int mode)

void handle_events(void)

DESCRIPTION
When running an interpreted program, the event loop of SCIL_Image is called after
each statement. This can cause event driven programs to miss out on events.
set_image_interaction(), when called with "mode" = On (1), prevents the interpreter
from calling the event loop after each statement.

When set_image_interaction() has been called with "mode" = On from within an
interpreted program, handle_events() should be called in its event loop to allow
SCIL_Image to update images, operate the menu etc.

A program that uses set_image_interaction should also call it with "mode" is Off (0)
when it exits, to restore the interpreter to its prior state.

RETURN VALUES
None

SEE ALSO
handle_events poll_mouse point_im im_input_func del_im_input_func
im_exposure_func del_im_exposure_func

SCIL_Image 1.4 – Reference Manual

433

set_int
NAME

set_int - set pixel value of an image

SYNOPSIS
#include "im_proto.h"

int set_int(IMAGE *im, int constant)

DESCRIPTION
Set all pixels in the image "im" to the integer value "constant"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clear_im eval

SCIL_Image 1.4 – Reference Manual

434

set_line_editor
NAME

set_line_editor - switch the line editor mode

PLATFORM
UNIX.

SYNOPSIS
void set_line_editor(int mode)

DESCRIPTION
This function can be used to change the operation mode of the command line editor.
By default the command line editor emulates the "vi" editor. The "vi" mode can also
be set by using "mode" = Vi (1). The "vi" mode is described in the main manual of
SCIL_Image. The other operating mode of the command line editor is controlled by
the cursor keys and some other <Control> keys as described below. This mode is
enabled by specifying "mode" = Cursor (0). The keys used in that mode are the
following:

^L Print the history list.

^A,^P,Up Walk back through the history

^N,Down Walk forward through the history

^F,Right Jump to the next character in the current line.

^B,Left Jump to the previous character in the current line.

^R Reprint the current line.

^E Jump to the end of the current line.

^K Clear the rest of the current input line.

^X,^U Discard the complete current line.

^H,DEL Delete the character before the current cursor position.

^D (EOF) Discard the complete current line. If EOF is typed twice the line
"exit(0);" will be passed to the command decoder.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

435

set_menu_pos
NAME

set_menu_pos - set the position of the menu panel

PLATFORM
Unix.

SYNOPSIS
#include "md_gen.h"

int set_menu_pos(int x, int y)

DESCRIPTION
set_menu_pos() sets the position of the control_panel to ("x","y").

RETURN VALUES
None

SEE ALSO
set_dialog_pos

set_rgb_bits
NAME

set_rgb_bits - set the bitplane colors for MULTI_LUT_T lookup table

SYNOPSIS
#include "im_infra.h"

int set_rgb_bits(int r_bit, int g_bit, int b_bit)

DESCRIPTION
With this function the bitplanes that will be displayed in color when using a
MULTI_LUT_T lookup table can be specified. Bitplane "r_bit" will be displayed in
red, "g_bit" in green and "b_bit" in blue.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create_clut

SCIL_Image 1.4 – Reference Manual

436

set_RGB2XYZ_matrix

set_RGB2XYZ_mvalues

print_RGB_matrices
NAME

set_RGB2XYZ_matrix - set the RGB to XYZ conversion matrix

set_RGB2XYZ_mvalues - set the RGB to XYZ conversion matrix values

print_RGB_matrices - display the RGB to XYZ conversion matrix values

SYNOPSIS
#include "color2dp.h"

void set_RGB2XYZ_matrix(int matrix_type)

void set_RGB2XYZ_mvalues(double m11, double m12, double m13, double
m21, double m22, double m23, double m31, double m32, double m33)

void print_RGB_matrices(void)

DESCRIPTION
Conversion between the RGB and XYZ color-model is done by a matrix
multiplication:

X		m11 m12 m13		R
Y	=	m21 m22 m23		G
Z		m31 m32 m33		B

The correct conversion matrix depends on many factors such as input device, display
monitor etc. To influence the conversion, the conversion matrix can be changed.
set_RGB2XYZ_matrix() sets the matrix to a small number of predefined values via
"matrix_type" (listed below). set_RGB2XYZ_mvalues() can be used to set the matrix
to any desired value via its parameters "m11" … "m33".

Matrix type id

NTSC_T 1
PAL_T 2
CIE_T 3
smpte_T 4
Rec709_T 5

After the values have been set, immediately the inverse matrix is calculated which
performs the XYZ to RGB conversion.

print_RGB_matrices() displays the values of both the conversion matrices, the RGB
to XYZ matrix and the XYZ to RGB matrix.

RETURN VALUES

SCIL_Image 1.4 – Reference Manual

437

None

SEE ALSO
convert_cmodel

set_roi_clean_display
NAME

set_roi_clean_display - redisplay parent of a ROI when displaying a ROI

SYNOPSIS
#include "im_infra.h"

void set_roi_clean_display(int mode)

DESCRIPTION
When a region of interest is the output for an operation its parent image will also be
redisplayed depending upon the "mode" flag. This flag can be set using
set_roi_clean_display().

Only when the image type of the ROI has changed as a result of the operation, the
influence of the flag will become visible. In that case the parent image has become
empty except for the ROI as result of the change of image type. When the flag is "1"
the parent image will be displayed again and only the ROI can be seen. If the flag has
been set to "0" only the ROI will be displayed, leaving the rest of the parent image
visible on the screen. The parent image has become empty however. The flag can be
set using "set_roi_clean_display". Its initial value is "1".

The example below shows that the ROI has become of another type and therefore the
type of the parent image changed as well. The data of the image however is still
visible but no longer present as can be seen when the image is copied to another
image.

EXAMPLE
readfile("trui", A, 0, 0);
roi_define("roi1", A, 64, 64, 0, 128, 128, 1, 0);
set_roi_clean_display(0);
threshold(roi1, roi1, 128);
copy_im(A, B);

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

438

set_roi_pos

set_roi_mask

set_roi_parent
NAME

set_roi_pos, set_roi_mask, set_roi_parent - roi manipulation functions

SYNOPSIS
#include "im_infra.h"

int set_roi_pos(IMAGE *roi_im, int sx, int sy, int sz)

int set_roi_mask(IMAGE *roi_im, BOOL_MASK *mask)

int set_roi_parent(IMAGE *roi_im, IMAGE *parent)

DESCRIPTION
These functions manipulate ROI-images created with roi_define(), their functionality
can also be achieved by calling roi_define() with new parameters.

set_roi_pos() moves the origin of the ROI "roi_im" in the parent image to
("sx","sy","sz") without changing the sizes of the ROI. The ROI is only moved if it
remains totally within the parent image.

set_roi_mask() gives the ROI "roi_im" a new Boolean "mask". Like with roi_define()
the BOOL_MASK has to be created first using the function get_bool_mask().

set_roi_parent() changes the parent image of the ROI "roi_im" to "parent". As soon as
the "roi_im" is used for input, its type will be changed to that of the new parent. If the
RIO does not fit in the new parent image, the parent of the ROI is not changed.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
roi_define get_bool_mask

SCIL_Image 1.4 – Reference Manual

439

set_screen_gamma
NAME

set_screen_gamma - specify the gamma correction for your screen

PLATFORM
UNIX, MS-Windows.

SYNOPSIS
#include "disp_p.h"

int set_screen_gamma(double gamma)

DESCRIPTION
Gamma correction is used to correct for nonlinear responses on display devices
(monitors). The value "gamma" is used to calculate a curve that describes the response
of the device. This curve is used to correct for the nonlinear response.

If used, this function must be called prior to the call to initimage() or init_scil_image()
in the scilinit file, if not called, a default of 1.0 will be assumed (no correction).
Calling this function AFTER the display is initialized has no effect on the display of
images.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

440

set_sigmoid_shape
NAME

set_sigmoid_shape - determine the sigmoid shape used for the sigmoid display mode

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

set_sigmoid_shape(float slope, float bending_point)

DESCRIPTION
This routine sets two global variables that describe a sigmoid used for creating an
alternative lookup table for the display of images. "slope" determines the rate of
ascent of the sigmoid. "bending point" determines the position of the bending point of
the sigmoid.

RETURN VALUES
None.

SEE ALSO
set_display_mode set_dither_mode

SCIL_Image 1.4 – Reference Manual

441

set_start_pos

set_start_sizes
NAME

set_start_pos - set the initial position of the four windows

set_start_sizes - set the initial size of the four windows

SYNOPSIS
#include "im2scil.h"

void set_start_pos(int x1, int y1, int x2, int y2, int x3, int y3,
int x4, int y4)

void set_start_sizes(int w1, int h1, int w2, int h2, int w3, int h3,
int w4, int h4)

DESCRIPTION
With set_start_pos() the initial position of the display windows of the images created
by default_images() is set. This function must be called before default_images(). The
first display window that default_images() creates gets position ("x1","y1"). The
second is put at ("x2","y2"), etc.

set_start_sizes() sets the initial sizes of the display windows of the images created by
default_images(). This especially useful on small displays. This function must be
called before default_images. The first window that initimage puts on the display then
gets sizes ("w1","h1"). The second is gets size ("w2","h2"), etc.

RETURN VALUES
None

SEE ALSO
default_images set_window_pos set_window_size natural_window_size

SCIL_Image 1.4 – Reference Manual

442

set_tiff_compression
NAME

set_tiff_compression - enable compression of TIFF data

SYNOPSIS
#include "im_proto.h"

void set_tiff_compression(int enable)

DESCRIPTION
The data in a TIFF file can either be compressed or uncompressed. When writing
TIFF files, this function can be used to specify that the data should be compressed or
not. If "enable" is 1, all subsequent writing to TIFF files will be compressed. To
disable compression of the data, specify "enable" as 0.

Default is no compression.

RETURN VALUES
None

SEE ALSO
tiff_writefile

set_tiff_image_number
NAME

set_tiff_image_number - specify the image to be read from a TIFF file

SYNOPSIS
#include "im_proto.h"

void set_tiff_image_number(int number)

DESCRIPTION
To read a sub-image that can be present in a TIFF file, set the number to the required
image in the file. 1 is the first image in a TIFF file (and the default). If a number is
specified that is not present in a TIFF file, the first image from that TIFF file will be
taken.

RETURN VALUES
None

SEE ALSO
tiff_readfile

SCIL_Image 1.4 – Reference Manual

443

set_var_object_class
NAME

set_var_object_class - change the class of an var_object

SYNOPSIS
#include "objectsp.h"

int set_var_object_class(VAR_OBJECT *obj, char *class)

DESCRIPTION
Changes the class of the object "obj" to "class". This allows you to maintain different
groups of objects since is possible in the command description file of SCIL_Image to
specify which class you want to show in the dialog-box. The selection is made by
comparing the specified class with the field "class" in the var_object structure. Only
the objects with a matching class name are shown.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object destroy_var_object show_var_object_info list_var_objects

set_var_object_comment
NAME

set_var_object_comment - add a comment string to the var_object

SYNOPSIS
#include "objectsp.h"

int set_var_object_comment(VAR_OBJECT *obj, char *comment)

DESCRIPTION
Add a (null-terminated) string "comment" to the structure of the var_object "object".
The string may be of any length as long as it is null-terminated. The function itself
allocates memory for the string, so if adding comment to a var_object while not using
this function, be sure that the memory was allocated with malloc() because other
functions rely on it (they use free()). When the var_object is saved, the comment
string will be saved in the header-file.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object destroy_var_object show_var_object_info

SCIL_Image 1.4 – Reference Manual

444

set_var_object_data
NAME

set_var_object_data - set the data of a var_object to type and sizes

SYNOPSIS
#include "objectsp.h"

int set_var_object_data(VAR_OBJECT *obj, int type, int nr_channels,
int nr_dim, int dim1, int dim2, int dim3, int dim4, int dim5)

DESCRIPTION
Set the data of a var_object to the desired type and sizes. This function does the same
as set_var_object_type() and set_var_object_size() together. The var_object is set to
type "type" and to the dimensions specified by "nr_channels", "nr_dim" and "dim1" ..
"dim5". For a complete description on these parameters see the functions
set_var_object_type() and set_var_object_size().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object set_var_object_type set_var_object_size

SCIL_Image 1.4 – Reference Manual

445

set_var_object_size
NAME

set_var_object_size - change the sizes of a var_object

SYNOPSIS
#include "objectsp.h"

int set_var_object_size(VAR_OBJECT *obj, int nr_channels, int nr_dim,
int dim1, int dim2, int dim3, int dim4, int dim5)

DESCRIPTION
Changes the sizes of the object "obj". "nr_channels" is the number of channels for the
object, "nr_dim" is the desired number of dimensions and "dim1" .. "dim5" specify the
size of each dimension. The maximum number of dimensions is 5. If less than 5
dimensions are required then it is sufficient to specify only "nr_dim" dimensions in
the function-call. The dimensions over "nr_dim" are set to 1, regardless whether they
were supplied or not.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object set_var_object_data set_var_object_type

SCIL_Image 1.4 – Reference Manual

446

set_var_object_type
NAME

set_var_object_type - set the type of the data in a var_object

SYNOPSIS
#include "objectsp.h"

int set_var_object_type(VAR_OBJECT *obj, int type_of_data)

DESCRIPTION
Set the data-type of the var_object "obj" to the type "type_of_data". Only the
following data-types are allowed:

PIXEL_T 1
CHAR_T 2
SHORT_T 4
INT_T 8
LONG_T 16
FLOAT_T 32
DOUBLE_T 64

The dimensions of the var_object remain the same, only the type changes. Because a
new piece of memory is allocated for the changed type, the contents of the var_object
will be lost(except of course if the data-type remains the same).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object set_var_object_data set_var_object_size

SCIL_Image 1.4 – Reference Manual

447

set_window_pos
NAME

set_window_pos - set the position of the display window of an image

SYNOPSIS
#include "disp_p.h"

int set_window_pos(IMAGE *im, int x, int y)

DESCRIPTION
set_window_pos() puts the display window of the image "im" at position ("x","y").

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_start_pos set_window_size natural_window_size

set_window_size
NAME

set_window_size - set the size of a display window

SYNOPSIS
#include "disp_p.h"

int set_window_size(IMAGE *im, int sizex, int sizey)

DESCRIPTION
set_window_size() changes the size of the display window of the image "im" to
"sizex"*"sizey".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
natural_window_size set_window_pos set_start_pos

SCIL_Image 1.4 – Reference Manual

448

setbuf

setbuffer

setlinebuf

setvbuf
NAME

setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf(FILE *stream, char *buf)

void setbuffer(FILE *stream, char *buf, int size)

void setlinebuf(FILE *stream)

int setvbuf(FILE *stream, char *buf, int type, int size)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

The three types of buffering available are unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the destination
file or terminal as soon as written; when it is block buffered many characters are saved
up and written as a block; when it is line buffered characters are saved up until a
NEWLINE is encountered or input is read from stdin. fflush() (see fclose) may be
used to force the block out early. Normally all files are block buffered. A buffer is
obtained from malloc upon the first getc() or putc() on the file. If the standard stream
stdout refers to a terminal it is line buffered. The standard stream stderr is unbuffered
by default.

setbuf() can be used after a stream has been opened but before it is read or written. It
causes the array pointed to by "buf" to be used instead of an automatically allocated
buffer. If buf is the NULL pointer, input/output will be completely unbuffered. A
manifest constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array
is needed:

char buf[BUFSIZ];

setbuffer(), an alternate form of setbuf(), can be used after a stream has been opened
but before it is read or written. It uses the character array buf whose size is determined
by the size argument instead of an automatically allocated buffer. If buf is the NULL
pointer, input/output will be completely unbuffered.

setvbuf() can be used after a stream has been opened but before it is read or written.
type determines how stream will be buffered. Legal values for type (defined in
<stdio.h>) are:

SCIL_Image 1.4 – Reference Manual

449

_IOFBF fully buffers the input/output.

_IOLBF line buffers the output; the buffer will be flushed when a NEWLINE is
written, the buffer is full, or input is requested.

_IONBF completely unbuffers the input/output.

If "buf" is not the NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. "size" specifies the size of the buffer to
be used.

setlinebuf() is used to change the buffering on a stream from block buffered or
unbuffered to line buffered. Unlike setbuf(), setbuffer(), and setvbuf(), it can be used
at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using
freopen() (see fopen). A file can be changed from block buffered or line buffered to
unbuffered by using freopen() followed by setbuf() with a buffer argument of NULL.

RETURN VALUES
If an illegal value for type or size is provided, setvbuf() returns a non-zero value.
Otherwise, the value returned will be zero.

SEE ALSO
fclose fopen fread getc malloc printf putc puts setbuf

SCIL_Image 1.4 – Reference Manual

450

SetMacFileType

SetMacFileCreator
NAME

SetMacFileType, SetMacFileCreator - set Macintosh file type/creator

PLATFORM
Macintosh

SYNOPSIS
#include "support.h"

void SetMacFileType(long type)

void SetMacFileCreator(long creator)

DESCRIPTION
On Macintosh systems, each file is assigned a so-called type and a creator. These
four-characters strings are used by the operating system and application programs to
identify which program created which data-file and classify the data-files into different
categories. E.g. plain text files all have the type ’TEXT’ so editors will only allow you to
open files with type ’TEXT’.

By calling SetMacFileType() and SetMacFileCreator() you will set two global variables
that hold these values to be used in all following calls to creat(), fopen() etc. until you
assign a different value. However when not specifying binary mode when creating a file,
some compilers will overrule the type with ’TEXT’.

NOTE
Please note the special notation for these strings, they are declared to be long int
variables (4 bytes). The string should be specified using single quotes (’) around the text
e.g. ’TEXT’. Although single quotes may only used on single characters in C, Macintosh
C-compilers will allow this notation.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

451

setprompt
NAME

setprompt - Set scil command prompt

PLATFORM
UNIX.

SYNOPSIS
void setprompt(char *prompt)

DESCRIPTION
setprompt changes the scil default prompt "[C2]" to the specified prompt. In the
prompt string an exclamation mark may be used to specify the position of the
command number.

EXAMPLE
To set the scil prompt to "<hello 2>"

setprompt("<hello !>");

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

452

sfp
NAME

sfp - simulated fluorescence process (creates shadow images).

SYNOPSIS
#include "im_proto.h"

int sfp(IMAGE *In, IMAGE *Out, int Orientation, int Background, int
Light, int View, int Excitation, int Emission, int Extra_light)

DESCRIPTION
Creates a 2D image from a 3D image suggesting depth by means of shadows. The
algorithm is based on Simulation of a Fluorescence Process. The object is lit (excited)
by a imaginary source of light and as a result, shadows are projected on an artificial
background. The direction from the exciting light as well as the direction from which
you are viewing the object can be specified independently. A list of the parameters is
given containing the meaning and the valid value intervals:

parameter interval

Orientation [0,1] specifies whether the light and viewing direction is
west-east (0) or north-south (1).

Background [0,65535] sets the value of the color of the background.

Light [-3,3] sets the direction the light is shining. The number is the
angle of the light in voxels per slice.

View [-3,3] specifies the direction of view.

Excitation [0,1.4] specifies the absorption factor of the illuminating light
by the voxels. A value of "1" means that a ray is
attenuated by a factor 1/e if it passes through a voxel
with value 255.

Emission [0.04,1.4] specifies the emission factor for the light that is sent
back to the viewer. Works the same way as
"Excitation".

Extra_light [-4,3] switches on an extra source of light from the specified
direction. The intensity is half of that of the original
source of light. It is used to light the parts of an object
that are in the shadow of another part of the object. A
value of -4 means no extra light source is used.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

453

SCIL_Image 1.4 – Reference Manual

454

shape
NAME

shape - calculate shape parameters of objects

SYNOPSIS
#include "im_proto.h"

int shape(IMAGE *label_im, VAR_OBJECT *label, VAR_OBJECT *xcentre,
VAR_OBJECT *ycentre, VAR_OBJECT *area, VAR_OBJECT *peri, VAR_OBJECT
*p2a, VAR_OBJECT *ccoun, VAR_OBJECT *count, int nosmooth)

DESCRIPTION
Calculate a number of shape parameters of objects. The image "label_im" is scanned
from the upper left corner to the lower right corner. If a non-zero pixel is found within
the image, this indicates the upper left corner of a labeled object. The measured
parameters for each object will be stored into an output array (that is stored in a
var_object). There is an output array for each parameter. The order of parameters in
the arrays corresponds with the order in which the objects are detected. All measures
except "label" and "p2a" are expressed in pixels. The following information will be
stored in the output arrays:

Label number store the label number of the detected object into the element
of the integer array "label" corresponding with the sequence
number of the detected object.

Xcentre store the X coordinate of the object’s center of gravity into
the floating point array "xcentre".

Ycentre store the Y coordinate of the object’s center of gravity into
the floating point array "ycentre".

Area store the area of the detected object into the integer array
"area".

Perimeter store the length of the curve, consisting of the (8-connected)
contour of the object into the floating point array "peri".

P2a store the value of the squared contour length divided by 4*PI
times the area of the detected object, into the floating point
array "p2a". In this measure, a curve following the outer
contour of the object is used for calculation of the contour
length. Note that this is not the same value as "peri", which is
the length of a curve following the centers of the contour
pixels.

Contour count store the number of contour pixels of the detected object into
the integer array "ccoun".

The number of objects found will be stored into the scalar variable "count".

SCIL_Image 1.4 – Reference Manual

455

In general, before measuring the parameters, a local object contour smoothing is done
on the obtained intermediate contour codes. The smoothing is performed by
replacement of chain-code sequences which describe sharp corners or jagged edges by
smoother chain-codes. This local contour smoothing is performed until no more
changes occur. The smoothing may be suppressed by specifying the parameter
"nosmooth" (=1).

The maximum number of values that can be stored in an array is 1024, so no more
than 1024 object are measured in one image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
density calibrated_density label

shift_im
NAME

shift_im - pixel wise shift of image pixels

SYNOPSIS
#include "im_proto.h"

int shift_im(IMAGE *in, IMAGE *out, int nshift)

DESCRIPTION
Shift all pixels of image "in" "nshift" bits and store the result in image "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
and_im or_im xor_im invert_im

SCIL_Image 1.4 – Reference Manual

456

show_cur_dir
NAME

show_cur_dir - Show directory in title bar.

PLATFORM
UNIX.

SYNOPSIS
void show_cur_dir(int flag)

DESCRIPTION
show_cur_dir enables/disables the display of the current working directory in the title
bar of the command window. "flag" = 1 is enable, "flag" = 0 is disable

RETURN VALUES
None

show_dmode_flags
NAME

show_dmode_flags - show the display mode flags of an image

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#include "disp_p.h"

int show_dmode_flags(IMAGE *image)

DESCRIPTION
show_dmode_flags() displays on the terminal window, the value of the display mode
flags of "image". This value includes the modes that can be set with both
set_display_mode() and set_dither_mode(). The corresponding value can be found in
the include file "dmodes". The different modes are all represented by a unique bit in a
long word that is present in the viewport structure attached to the IMAGE structure.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
get_display_mode set_display_mode set_dither_mode

SCIL_Image 1.4 – Reference Manual

457

show_func_overload
NAME

show_func_overload - show (part of) the function overload tables

SYNOPSIS
#include "im_infra.h"

int show_func_overload(char *spec_func, int im_type, char *file_name)

DESCRIPTION
show_func_overload can be used to display (part of) the function overload tables. The
output looks like:

im_type1 im_type2 im_type3
func_name X X

This means that function "func_name" is overloadable for image types "im_type1"
and "im_type3" but not for type "im_type2".

If a "spec_func" is given only that function is taken into account, NULL as a first
argument means all functions are taken into account.

If an "im_type" is given as the second parameter only functions that are overloadable
for that image type are displayed (0 == all types).

If a "file_name" is given as the third argument the output is send to that file, with
NULL the output is send to the controlling terminal.

RETURN VALUES
None

SEE ALSO
init_func_overload overloadable_func

SCIL_Image 1.4 – Reference Manual

458

show_func_stack

show_error_stack

im_clear_func_stack

im_clear_errors

get_im_error_stack

im_get_func_stack_copy
NAME

show_func_stack, show_error_stack, im_clear_func_stack, im_clear_errors,
get_im_error_stack, im_get_func_stack_copy - examination and manipulation of
function and error-stack.

SYNOPSIS
#include "im_error.h "

void show_func_stack(void)

void show_error_stack(void)

void im_clear_func_stack(void)

void im_clear_errors(void)

void *get_im_error_stack(void)

void im_get_func_stack_copy(IM_FUNC_STACK *fstack, int *flevel)

DESCRIPTION
fstack - pointer to local storage for the func-stack
flevel - pointer to local storage for the stack-level

show_func_stack() performs a textual dump of the function stack that is maintained
by the im_begin_func() and im_end_func() functions.

show_error_stack() performs a textual dump of the error-stack.

Both show_func_stack() and show_error_stack() use the image_output() function to
display their information. So it is up to the user interface if and how this information
is shown.

clear_func_stack() and clear_error_stack() erase the contents of the function- and
error-stack. This function should only be used by an interface after an error has
occurred and has been reported to the user.

get_im_error_stack() retrieves the pointer to the global error object "im_error_stack".
This pointer can then be used to subscribe to the error-stack and thus receive
notification if an error occurred in the image-processing.

SCIL_Image 1.4 – Reference Manual

459

im_get_func_stack_copy() copies the global function-stack and the stack-level
counter to local storage.

Every user-interface for Image should take care of reporting errors to the user.

RETURN VALUES
None

SEE ALSO
im_begin_func im_end_func im_report_error image_output

show_image_info
NAME

show_image_info - display information of an image

SYNOPSIS
#include "im_infra.h"

void show_image_info(IMAGE *im)

DESCRIPTION
show_image_info() displays the data of the IMAGE data-structure of the specified
image "im" on the controlling terminal. This function is intended for debug purposes
only.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

460

show_menu_layout
NAME

show_menu_layout - dump the layout of the menu to file

PLATFORM
Unix.

SYNOPSIS
#include "md_gen.h"

int show_menu_layout(char *filename, int show_items)

DESCRIPTION
show_menu_layout() dumps the layout of the menu-system to a file by the name
"filename". The "show_items" flag determines if the menu-item are to be dumped as
well. "show_items" = 1 shows the menu and what is in the menus. "show_items" = 0.
shows only the menus.

The output is formatted with spaces to reflect the menu hierarchy.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

461

show_statistics

perc_to_pixel
NAME

show_statistics - calculates statistic values of an image

perc_to_pixel - converts a percentage to a pixel value.

SYNOPSIS
#include "im_proto.h"

int show_statistics(IMAGE *in, int mode, int slicenr, int lo_limit,
int hi_limit)

int perc_to_pixel(IMAGE *in, int top, int mode, int slicenr, double
perc)

DESCRIPTION
show_statistics() calculates and prints the following values from the total image "in"
or from a Z-slice "slicenr" of the 3D image "in" between the values ["lo_limit",
"hi_limit"] :

Histo size size of internally calculated histogram, this is the same as the
amount of pixel values.

Range the interval that contains the voxel values of the image, can be
influenced by lo_limit and hi_limit.

Range (perc.) the offset percentage of the range, measured from (in percents) the
top and the bottom of the histogram.

Amount the number of voxels between lo_limit and hi_limit.

Mean value the mean value of the histogram. 1/N sum_i (histo[i]*i)

Standard Dev the standard deviation of the histogram.
sqrt(1/N sum_i (histo[i]*i - mean)^2)

Specific Dev the specific deviation. standard dev / modal

Std interval the standard interval.[mean - standard dev, mean + standard dev]

RMS the root mean square. 1/N sum_i (histo[i]*i*i)

Modal the modal value.

left 1/e the point left from modal with the frequency of 1/e*f_modal. This
value can be out of range.

SCIL_Image 1.4 – Reference Manual

462

right 1/e the point right from modal with the frequency of 1/e*f_modal. This
value can be out of range.

Median the 50% point in the histogram
1st quartile the 25% point in the histogram
3rd quartile the 75% point in the histogram
Background the value between the background noise and the object data. This

value is determined by searching the zero point in the 3rd derivation
of the histogram. This will give the value of the lowest point
between the background peak and the object peak.

Object perc the percentage of object-voxels in the whole range.

Percentile points can be calculated with the function perc_to_pixel(), it converts a
percentage to a pixel value, by defining the histogram of the image "in" or slice (only
3D), and calculating the number of pixels from the top or the bottom of the histogram.
"top" is "Top" (0) means calculating the percentage from the top of the histogram,
"Bottom" (1) means from the bottom.

"mode" speci fies whether the entire image "in" is to be used ("Image" (0)) or just a
slice ("Slice" (1)). "slicenr" tells which slice to use in "Slice" mode.

RETURN VALUES
perc_to_pixel() returns the pixel value at the percentage on success.
show_statistics() returns IE_OK (1) on success.
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

463

show_var_object_info
NAME

show_var_object_info - display information on a var_object

SYNOPSIS
#include "objectsp.h"

int show_var_object_info(VAR_OBJECT *obj)

DESCRIPTION
This function displays information on the var_object "obj" on the controlling terminal.
The information displayed concerns the name, class, type and the dimensions of the
object. Also the address of the data is displayed

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
list_var_objects var_object destroy_var_object var_object_by_name

sigma
NAME

sigma - standard deviation filter

SYNOPSIS
#include "im_proto.h"

int sigma(IMAGE *in, IMAGE *out, int fsize)

DESCRIPTION
Standard deviation filter with sizes "fsize" * "fsize" from image "in" to image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

464

sign_im
NAME

sign_im - sign

SYNOPSIS
#include "im_proto.h"

int sign_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Determine the sign of each element of the image "in" and store the result in the
corresponding element of the image "out". If an element of "in" has a positive or zero
value, the result is 1, otherwise the result is -1.

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
negation_im

SCIL_Image 1.4 – Reference Manual

465

silo_list
NAME

silo_list - list contents of the silo entries

SYNOPSIS
#include "silo.h"

void silo_list(SILOPTR siloptr)

DESCRIPTION
siloptr - Pointer to the image-silo.

Prints a list of all occupied entries. The entry information is printed:
entry number (silo_key).
start position in file.
sizex.
sizey.

NOTE
This routine is only used as a debugging tool. The routine will be removed in the future.

RETURN VALUES
None

SCIL_Image 1.4 – Reference Manual

466

silo_to_comp
NAME

silo_to_comp - transform image-silo into composite photo

SYNOPSIS
#include "silo.h"

int silo_to_comp(SILOPTR siloptr, COMPTR comptr, int startlabel, int
endlabel)

DESCRIPTION
siloptr - Pointer to an image-silo.
comptr - Pointer to an composite photo.
startlabel - Silo-entry to start with.
endlabel - Silo-entry to end with.

Transfers a part of an image-silo to a composite photo. If the startlabel is bigger than the
endlabel then the silo is scanned backwards.

NOTE
It does not create a new composite photo but merely adds the silo to an already started
composite photo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

467

sin

cos

tan

asin

acos

atan

atan2

sinh

cosh

tanh
NAME

sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh - trigonometric functions

SYNOPSIS
#include <math.h>

double sin(double x)

double cos(double x)

double asin(double x)

double acos(double x)

double atan(double x)

double atan2(double x, double y)

double sinh(double x)

double cosh(double x)

double tanh(double x)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

sin(), cos() and tan() return trigonometric functions of radian arguments. The
magnitude of the argument should be checked by the caller to make sure the result is
meaningful.

asin() returns the arc sin in the range -pi/2 to pi/2.

SCIL_Image 1.4 – Reference Manual

468

acos() returns the arc cosine in the range 0 to pi.

atan() returns the arc tangent of x in the range -pi/2 to pi/2.

atan2() returns the arc tangent of x/y in the range -pi to pi.

sinh(), cosh(), and tanh() compute the designated hyperbolic functions.

RETURN VALUES
Arguments of magnitude greater than 1 cause asin and acos to return value 0; errno is
set to EDOM. The value of tan at its singular points is a huge number, and errno is set
to ERANGE.

SCIL_Image 1.4 – Reference Manual

469

sin_im

cos_im

tan_im

asin_im

acos_im

atan_im

atan2_im

sinh_im

cosh_im

tanh_im
NAME

sin_im, cos_im, tan_im, asin_im, acos_im, atan_im, atan2_im, sinh_im, cosh_im,
tanh_im - trigonometric functions on images

SYNOPSIS
#include "im_proto.h"

int sin_im(IMAGE *in, IMAGE *out)

int cos_im(IMAGE *in, IMAGE *out)

int tan_im(IMAGE *in, IMAGE *out)

int asin_im(IMAGE *in, IMAGE *out)

int acos_im(IMAGE *in, IMAGE *out)

int atan_im(IMAGE *in, IMAGE *out)

int sinh_im(IMAGE *in, IMAGE *out)

int cosh_im(IMAGE *in, IMAGE *out)

int tanh_im(IMAGE *in, IMAGE *out)

int atan2_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Trigonometric functions to be performed on images. The extension "_im" is added
because the trigonometric functions are predefined in C and therefore they cannot be
used for whole images. If illegal operations are performed on pixels in the image, a
count of the number of illegal operations is printed.

sin_im(), cos_im() and tan_im() return trigonometric functions of radian arguments.

SCIL_Image 1.4 – Reference Manual

470

asin_im() returns the arc sin in the range -pi/2 to pi/2.

acos_im() returns the arc cosine in the range 0 to pi.

atan_im() returns the arc tangent of x in the range -pi/2 to pi/2.

atan2_im() returns the arc tangent of in1/in2 in the range -pi to pi.

sinh_im(), cosh_im() and tanh_im() calculate the hyperbolic function of each element
of the input image. The elements are assumed to be expressed in radians.

RETURN VALUES
asin_im, acos_im, atan2_im returns the number of illegal operations which occurred.
Therefore these functions return 0 on success.

sin_im, cos_im, tan_im, atan_im, sinh_im, cosh_im and tanh_im return IE_OK (1) on
success or negative error status on failure (see im_error.h)

single_pixels
NAME

single_pixels - single point detection

SYNOPSIS
#include "im_proto.h"

int single_pixels(IMAGE *in, IMAGE *out, int bound, int conn, int
obj_bkg, int detect_rem)

DESCRIPTION
Detects single object pixels in image "in" and stores the result in image "out". The
image is scanned by a moving window with dimensions 3*3. If the central pixel
within the window is the only object pixel in the window, it keeps its value and is
detected as a single object pixel. Otherwise the central pixel becomes a background
pixel. "obj_bkg" specifies the kind of point that are searched for, object (1) or
background (0). "detect_rem" specifies whether the points found should be detected
(1) or removed (0). "bound" specifies that the edge around the image must be set to
foreground (1) or to background (0) pixels. "conn" specifies the connectivity and can
either be 4 or 8.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

471

size
NAME

size

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See objectsize

skelpoints
NAME

skelpoints - detect the special skeleton points

SYNOPSIS
#include "im_proto.h"

int skelpoints(IMAGE *in, IMAGE *out, int bound, int opcode, int
type)

DESCRIPTION
Detects special points in a skeleton in image "in" and stores the result in image "out".
The type of points detected depends upon "opcode":

1 end pixels
2 link pixels
3 branch pixels

The image is scanned by a moving window with dimensions 3*3. In each window the
central pixel is checked for being a special point. If so the central pixel remains an
object pixel, otherwise it is deleted as an object pixel.

"type" determines how the skeleton points are defined; according to Hilditch (0) or
according to Preston (1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hild_skelet holt_skelet

SCIL_Image 1.4 – Reference Manual

472

sleep
NAME

sleep - suspend execution for interval

SYNOPSIS
unsigned sleep(unsigned seconds)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

The current process is suspended from execution for the number of seconds specified
by the argument. The actual suspension time may be up to 1 second less than that
requested, because scheduled wakeups occur at fixed 1-second intervals, and an
arbitrary amount longer because of other activity in the system.

The routine is implemented by setting an alarm clock signal and pausing until it
occurs. The previous state of this signal is saved and restored. If the sleep time
exceeds the time to the alarm signal, the process sleeps only until the signal would
have occurred, and the signal is sent 1 second later.

small_object_removal
NAME

small_object_removal - object select on size

SYNOPSIS
#include "im_proto.h"

int small_object_removal(IMAGE *in, IMAGE *out, int size)

DESCRIPTION
Calculate for each object in image "in" the object size by counting the number of
pixels and compare the size with "size". If the size is less than "size", all object pixels
of the object are deleted (replaced by 0). If the size is greater than or equal to size, the
object is unmodified, i.e. it keeps its original label value.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hull label objectsize rhull

SCIL_Image 1.4 – Reference Manual

473

sobel_diff
NAME

sobel_diff - Sobel edge operator

SYNOPSIS
#include "im_proto.h"

int sobel_diff(IMAGE *in, IMAGE *out, int mode)

DESCRIPTION
Differential edge detection based upon the Sobel operator. Within the moving window
in image "in", with dimensions 3*3, the horizontal and vertical differential values are
calculated by a convolution with the masks (horizontal respectively. vertical):

1 2 1 -1 0 1
0 0 0 -2 0 2

-1 -2 -1 -1 0 1

The output value is calculated from these convolutions, depending upon the "mode"
specified:
sqrt (1) the output value is the square root of the sum of the quadratic convolution

results
sum (0) the output value is the sum of the absolute values of the convolution results

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
prewitt_diff roberts_diff laplace prewitt_temp kirsch_temp robinson_temp

sos
NAME

sos

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See small_object_removal

SCIL_Image 1.4 – Reference Manual

474

spb_publish
NAME

spb_publish - publish an event message to an object

SYNOPSIS
#include "spublish.h"

void spb_publish(void *obj, int mess, void *data)

DESCRIPTION
spb_publish() publishes the message "mess" to all subscribers of the object "obj".
"data" is a pointer to object- and message-specific data that accompanies the event
that triggered the publish. The type and contents of this data is determined by the
combination of object-type and message. A description of this data must be retrieved
from the documentation of the publishing object.

NOTE
The same message published by another type of object is very probably accompanied
by other data, both in type and contents.

RETURN VALUES
None

SEE ALSO
spb_subscribe spb_unsubscribe

SCIL_Image 1.4 – Reference Manual

475

spb_subscribe

spb_unsubscribe
NAME

spb_subscribe - subscribe to an publishing object

spb_unsubscribe - unsubscribe from an publishing object

SYNOPSIS
#include "spublish.h"

void spb_subscribe(void *obj, void *id, SPBFUNC subscr, void *cldata)

void spb_unsubscribe(void *obj, void *id, SPBFUNC subscr)

DESCRIPTION
The function spb_subscribe() subscribes an object to another (publishing) object in
order to receive notification of important events of that object by means of messages.
"obj" is the publishing object. "id" is an identifier for the subscriber, typically a
pointer to the subscribing object itself. "subscr" is a pointer to the function the
subscriber uses to process the messages. "cldata" is an (optional) pointer to data the
subscriber wants to receive whenever the publishing object broadcasts a message. The
type and contents of this data is only known to the subscribing object, it is NOT
interpreted by the subscribe-mechanism in any way.

spb_unsubscribe() removes the subscriber "id" from the list of subscriber of object
"obj". "subscr" is a pointer to the function the subscriber used to process the messages.
The function must be specified because a subscribing object can subscribe multiple
functions to a single publishing object.

The message-processing function "subscr" must have the following function header:

void func(void *obj, void *id, int mess, void *data, void *cldata)

"obj" is the publishing object, "id" is the identifier for the subscribing object, "mess"
is the message the publishing object broadcasts. "data" is pointer to the data that
accompanies the message. "cldata" is a pointer to the data the subscribing object
specified when subscribing to the publishing object.

RETURN VALUES
None

SEE ALSO
spb_publish

SCIL_Image 1.4 – Reference Manual

476

spix
NAME

spix - pixel swapping

SYNOPSIS
#include "im_proto.h"

int spix(IMAGE *in, IMAGE *out)

DESCRIPTION
Swap the pixels of image "in" between even and odd columns and store the result into
image "out". The effect of this operation is to mutually swap pairs of pixels that, in
"packed" mode, were stored in one word. (Packed mode storage is usual for some
peripherals and storage devices).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

splih
NAME

splih

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See split_horizontal

SCIL_Image 1.4 – Reference Manual

477

split
NAME

split - image split-up

SYNOPSIS
#include "im_proto.h"

int split(IMAGE *in, IMAGE *out, int direct, int iter)

DESCRIPTION
Split image "in" into two halves, one half containing even lines and one half
containing odd lines of image "in" and store the result in image "out". Depending on
"direct", the command is executed on a per row (0) or per column (1) basis". The
command is repeated "iter" times.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
split_horizontal split_vertical merge

SCIL_Image 1.4 – Reference Manual

478

split_channels

join_channels
NAME

split_channels - split a multi channel image in separate images

join_channels - build a multi channel image from separate images

SYNOPSIS
#include "im_proto.h"

int split_channels(IMAGE *in, IMAGE *out1, IMAGE *out2, IMAGE *out3,
IMAGE *out4)

int join_channels(IMAGE *in1, IMAGE *in2, IMAGE *in3, IMAGE *in4,
IMAGE *out, int im_type, int subtype)

DESCRIPTION
split_channels() takes each of the channels of a multi-channel image (up to 4
channels) and stores these channels in separate images. E.g. a RGB-color image is
split in three images, one containing the red image, one the green image and one the
blue image. Each of the output images "out1" .. "out4" may be a NULL pointer to
retrieve only a subset of all the channels. The type of the output images is not changed
by this function, they remain as they were before the call to split_channels().

join_channels() takes the images "in1" .. "in4" and constructs a multi-channel image
from them. The type of the output image can be specified with the "im_type"
parameter. If the image type has sub-types, e.g. RGB for color images, this can be set
using "subtype". Each of the input images may be a NULL pointer to leave that
channel untouched -if the output image is already a multi-channel image of the
required "im_type" and "subtype"- or empty. In case a multi-channel image is chosen
as an input image, the first channel of that image is taken; regardless of its position on
the parameters list. The images "in1" .. "in4" must all be off the same size.

NOTE
split_channels() does not change the type of the output image in any way; they remain
as they were before the call to the function.

EXAMPLE
uniform filtering a RGB-color image can be done by using a "normal" grey-value
uniform filter on each of the channels.

#include "image.h"

readfile("flamingo, a, 0,0);
split_channels(a, b, c, d, NULL);
uniform(b, b, 5, 5, 1);
uniform(c, c, 5, 5, 1);
uniform(d, d, 5, 5, 1);
join_channels(b, c, d, NULL, b, COLOR_2D, RGB_T);

RETURN VALUES

SCIL_Image 1.4 – Reference Manual

479

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_channel

split_horizontal
NAME

split_horizontal - split in horizontal direction

SYNOPSIS
#include "im_proto.h"

int split_horizontal(IMAGE *in, IMAGE *out, int iter)

DESCRIPTION
Same as split() with "direct" = 0.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
split_vertical split merge

split_vertical
NAME

split_vertical - split in vertical direction

SYNOPSIS
#include "im_proto.h"

int split_vertical(IMAGE *in, IMAGE *out, int iter)

DESCRIPTION
Same as split() with "direct" = 1

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
split_horizontal split merge

SCIL_Image 1.4 – Reference Manual

480

spliv
NAME

spliv

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See split_vertical

sqrt_im
NAME

sqrt_im - square root

SYNOPSIS
#include "im_proto.h"

int sqrt_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Calculate the square root of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
Number of domain conflicts (number of negative pixels in the input image), so 0 is
OK.
Negative error status on failure (see im_error.h).

ssum
NAME

ssum

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_sum

SCIL_Image 1.4 – Reference Manual

481

start_comp
NAME

start_comp - start a composite photo in an image

SYNOPSIS
#include "image.h"
#include "silo.h"

COMPTR start_comp(IMAGE *im)

DESCRIPTION
image - Image pointer.

Function which must be called to start a composite photo in image "im". It returns a
pointer to the composite photo. This pointer must be used in all subsequent composite
photo references.

RETURN VALUES
Pointer to COMPOSIT struct
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

482

stat

fstat
NAME

stat, fstat - get file status

PLATFORM
UNIX

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat(char *name, struct stat *buf)

int fstat(int fildes, struct stat *buf)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

stat() obtains detailed information about a named file. fstat() obtains the same
information about an open file known by the file descriptor from a successful open(),
creat(), dup() or pipe(2) call.

"name" points to a null-terminated string naming a file; "buf" is the address of a buffer
into which information is placed concerning the file. It is unnecessary to have any
permissions at all with respect to the file, but all directories leading to the file must be
readable.

The layout of the structure pointed to by "buf" as defined in <stat.h> is given below.
"st_mode" is encoded according to the "#define" statements.

struct stat {
dev_t st_dev;
ino_t st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid;
short st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

};

#define S_IFMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_ISUID 0004000 /* set user id on execution */
#define S_ISGID 0002000 /* set group id on execution */
#define S_ISVTX 0001000 /* save swapped text even after use */
#define S_IREAD 0000400 /* read permission, owner */

SCIL_Image 1.4 – Reference Manual

483

#define S_IWRITE 0000200 /* write permission, owner */
#define S_IEXEC 0000100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see
chmod(2)). The defined types, ino_t, off_t, time_t, name various width integer values;
dev_t encodes major and minor device numbers; their exact definitions are in the
include file <sys/types.h> (see types(5).

When fildes is associated with a pipe, fstat reports an ordinary file with restricted
permissions. The size is the number of bytes queued in the pipe.

st_atime is the file was last read. For reasons of efficiency, it is not set when a
directory is searched, although this would be more logical. st_mtime is the time the
file was last written or created. It is not set by changes of owner, group, link count, or
mode. st_ctime is set both by writing and changing the i-node.

RETURN VALUES
0 is returned if a status is available;
-1 if the file cannot be found.

SCIL_Image 1.4 – Reference Manual

484

stereo_view
NAME

stereo_view - calculate stereo images

SYNOPSIS
#include "im_proto.h"

int stereo_view(IMAGE *in, int mode, int view, IMAGE *left, IMAGE
*middle, IMAGE *right)

DESCRIPTION
stereo_view() calculates two or three images from which a stereo image can be made.
It can calculate the front view and the views from 45 degrees to the left and 45
degrees to the right. "mode" specifies if the resulting images are kept in one output
image or distributed over two or three image. When "mode" is "Join" (1) all the
resulting images are put in the output image "left". "mode" is "Separate" (0) stores the
results each in an image specified by "left", "middle" and "right". "view" determines
which views are calculated, "LMR" (0) calculates all three views. "LM" (1) means the
left and the middle front view, "MR" (2) the middle and right view and "LR" means
the left and the right view.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
sfp

SCIL_Image 1.4 – Reference Manual

485

strcasecmp

strncasecmp

strsave
NAME

strcasecmp, strncasecmp, strsave - string operations

SYNOPSIS
#include "support.h"

int strcasecmp(const char *str1, const char *str2)

int strncasecmp(const char *str1, const char *str2, size_t num)

char *strsave(const char *str)

DESCRIPTION
strcasecmp() and strncasecmp() compare two strings in a case-insensitive way. Their
behavior is like the ANSI-C strcmp() and strncmp() functions except that differences in
upper and lower case in the strings are ignored. If the strings are equal, strcasecmp()
returns zero. strncasecmp() returns zero if the strings are equal up to "num" characters.

strcasecmp() and strncasecmp() are two defines in the "support.h" that point to the
functions str_casecmp() and strn_casecmp() respectively. This is done to prevent
name-conflicts on platforms that supply strcasecmp() and strncasecmp() in the C-library.

strsave() copies the string "str" to newly allocated memory and returns a pointer to the
new string. If the string is empty or no string is supplied, NULL is returned.

RETURN VALUES
strcasecmp() and strncasecmp() return zero if the strings are equal, a negative value if
"str1" is less than "str2" and a positive value if "str1" is greater than "str2".

strsave() returns a pointer the newly allocated string or NULL if it cannot allocate
enough memory.

SCIL_Image 1.4 – Reference Manual

486

strcat

strncat

strcmp

strncmp

strcpy

strncpy

strlen

strchr

strrchr

index

rindex

strspn

strcspn

strpbrk

strstr

strtok

strerror
NAME

strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, index, rindex,
strspn, strcspn, strpbrk, strstr, strtok, strerror - string operations

SYNOPSIS
char *strcat(char *s1, char *s2)

char *strncat(char *s1, char *s2, int n)

int strcmp(char *s1, char *s2)

int strncmp(char *s1, char *s2, int n)

char *strcpy(char *s1, char *s2)

char *strncpy(char *s1, char *s2, int n)

unsigned int strlen(char *s)

char *strchr(char *s, char c)

SCIL_Image 1.4 – Reference Manual

487

char *strrchr(char *s, char c)

char *index(char *s, char c)

char *rindex(char *s, char c)

size_t strspn(char *s, char *t)

size_t strcspn(char *s, char *t)

char *strpbrk(char *s, char *t)

char *strstr(char *s, char *t)

char *strtok(char *s, char *t)

char *strerror(int errnum)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functions is:

These functions operate on null-terminated strings. They do not check for overflow of
any receiving string.

strcat() appends a copy of string "s2" to the end of string "s1". strncat() copies at most
"n" characters. Both return a pointer to the null-terminated result.

strcmp() compares its arguments and returns an integer greater than, equal to, or less
than 0, according as "s1" is lexicographically greater than, equal to, or less than "s2".
strcmp() uses native character comparison, which is signed. strncmp() makes the same
comparison but looks at most "n" characters.

strcpy() copies string "s2" to "s1", stopping after the null character has been moved.
strncpy() copies exactly "n" characters, truncating or null-padding "s2"; the target may
not be null-terminated if the length of "s2" is "n" or more. Both return "s1".

strlen() returns the number of non-null characters in "s".

strchr() (strrchr()) returns a pointer to the first (last) occurrence of character "c" in
string "s", or zero if "c" does not occur in the string.

strspn() returns the length of the prefix of "s" that consists of characters from "t".

strcspn() returns the length of the prefix of "s" that consists of characters not in "t".

strpbrk() returns a pointer to the first occurrence in string "s" of any characters from
string "t", or NULL if none are present.

strstr() returns a pointer to the first occurrence of string "t" in string "s", or NULL if
not present

SCIL_Image 1.4 – Reference Manual

488

strtok() searches string "s" for tokens delimited by characters from "t", A sequence of
calls of strtok(s,t) splits "s" into tokens, each delimited by a characters from "t". The
first call in a sequence has a non-NULL "s". It finds the first token in"s" consisting of
characters not in "t"; it terminates that by overwriting the next character of "s" with ’\0’
and returns a pointer to the token. Each subsequent call, indicated by a NULL value of
"s", returns the next such token, searching from just past the end of the previous one.
strtok() returns NULL when no further token is found, the string "t" may be different
on each call.

SEE ALSO
memcmp memcpy memchr

swab
NAME

swab - swap bytes

SYNOPSIS
void swab(char *from, char *to, int nbytes)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

swab() copies "nbytes" bytes pointed to by "from" to the position pointed to by "to",
exchanging adjacent even and odd bytes. It is useful for carrying binary data between
to other machines. "nbytes" should be even.

SCIL_Image 1.4 – Reference Manual

489

sync_display
NAME

sync_display - wait for all window-system events to be processed

PLATFORM
UNIX

SYNOPSIS
#include "disp_p.h"

int sync_display(void)

DESCRIPTION
sync_display() causes the X window systems request buffer to be flushed and then
waits for all window-system events to be processed by the X server.

This function is generally only needed for debugging interactive
functions/applications during which you want to be sure that all window-system calls
have been processed.

RETURN VALUES
IE_OK (1)

system
NAME

system - issue a shell command

PLATFORM
UNIX, MS-Windows.

SYNOPSIS
int system(char *string)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

system() causes the string to be given to shell as input as if the string had been typed
as a command at a terminal. The current process waits until the shell has completed,
then returns the exit status of the shell.

RETURN VALUES
Exit status 256 indicates the shell couldn’t be executed.

SCIL_Image 1.4 – Reference Manual

490

t_morphology
NAME

t_morphology - threshold morphology transform

SYNOPSIS
#include "im_proto.h"

int t_morphology(IMAGE *in, IMAGE *out, IMAGE *se, int thr, int
bound)

DESCRIPTION
Threshold transform on the binary image "in" using the weighted structuring element
"se" with the given threshold value "thr" and store the result in the binary image in
"out".

The threshold transform is equivalent with a correlation of the binary image "in"
(valued 1 for object pixels and 0 for background pixels) with the mask given in the
grey value image "se". The result of this correlation (a grey value image) is then
thresholded. If the correlation sum is greater than or equal to "thr" the corresponding
pixel in the output image is an object pixel, else a background pixel. "bound" specifies
if the pixels outside the image should be interpreted as foreground pixels ("bound" =
1) or as background pixels ("bound" = 0).

Threshold morphological transform can be used to detect specific structures in binary
images. All the pixels in the structuring element with positive weight (grey value)
ideally should be object pixels. All pixels with negative weight ideally should be
background pixels. Pixels with weight zero are don’t care pixels.

As an example consider the following weighted structuring element to detect
horizontal lines in an image:

-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
+1 +1 +1 +1 +1 +1 +1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

Correlating this mask with a binary image the resulting value in a pixel is between -42
(the sum of all negative weighted pixels) and +7 (the sum of all positive weighted
pixels). Note that in case the correlation sum equals +7 the structure defined with the
structuring element exactly fits in the image. Thus setting the threshold value equal to
+7 (or in general equal to the sum of all positive values) gives the hit-or-miss
transform. In order to find the structure also when some noise is present we may lower
the threshold to 5.

Because in the above defined structure there are far more background pixels than there
are object pixels, a better choice for the weighted structuring element is:

SCIL_Image 1.4 – Reference Manual

491

-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
+6 +6 +6 +6 +6 +6 +6
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

Note that in this case the correlation value ranges from -42 to +42. In a sense, with our
choice of weights we indicate that an object pixel is 6 times as important as a
background pixel. But also that all background pixels are equally important (as are the
object pixels).

A further refinement is to take into account that pixels further from the center line are
less important than those close to the center line. Thus a new (and better) choice for
the weighted structuring element is:

-1 -1 -1 -1 -1 -1 -1
-2 -2 -2 -2 -2 -2 -2
-4 -4 -4 -4 -4 -4 -4

+14 +14 +14 +14 +14 +14 +14
-4 -4 -4 -4 -4 -4 -4
-2 -2 -2 -2 -2 -2 -2
-1 -1 -1 -1 -1 -1 -1

In this case the correlation value ranges from -98 to +98.

Further refinements are possible. We can take into account that the line thickness may
vary by introducing extra lines in our weighted structuring element with positive
weights. Of course the structures to be detected need not be restricted to horizontal
lines. Any geometrical structure can be used.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_erosion arbit_dilation hit_or_miss real_time_recognizer

SCIL_Image 1.4 – Reference Manual

492

taylor_polynomial

taylor_expansion
NAME

taylor_polynomial, taylor_expansion - create and apply taylor polynomial

SYNOPSIS
#include "im_proto.h"

int taylor_polynomial(VAR_OBJECT *out, int order, double delta_x,
double delta_y, double delta_s)

int taylor_expansion(IMAGE *in, IMAGE *out, double sigma, int order,
double accuracy, double delta_x, double delta_y, double t)

DESCRIPTION
taylor_polynomial() creates the taylor expansion polynomial up to "order" derivatives"
for spatial offset ("delta_x", "delta_y") and scale offset "delta_s". The coefficients in
the output var_object "out" (of type DOUBLE_T) represents the factor which each
derivative should be multiplied before summation. The organization of the output is as
follows:

{L}, {Ly,Lx}, {Lyy, Lyx, Lxx}, …

Each factor belongs to the corresponding derivative in
{f}, {df/dy, df/dx}, {df/dydy, df/dydx, df/dxdx}, ...

The function taylor_expansion() applies the expansion to image "in", by means of
gaussian derivative filters using "order" "sigma" and "accuracy". The scale parameter
is replaced by -t*sqrt("sigma"), resulting in the natural scale for t=0.5.

LITERATURE
L. Florack, The syntactical structure of scalar images, PhD Thesis, University of
Utrecht, The Netherlands, 1991.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
gauss_family fuzzy_derivative

SCIL_Image 1.4 – Reference Manual

493

taylor_segmentation
NAME

taylor_segmentation - segments a textured image by NJet examination

SYNOPSIS
#include "im_proto.h"

int taylor_segmentation(IMAGE *in, IMAGE *out, double dscale, int
order, double smooth)

DESCRIPTION
Performs a segmentation on the textured image "in" by means of differentiation. This
can be interpreted as extracting the Taylor series or local NJet of the input image. The
order of the taylor expansion is given by "order"; the scale for differentiation is
"dscale". After the convolution, local energy is taken with "smooth" determining the
gaussian sigma. A non-linear transform (sqrt_im) is applied and a feature reduction by
means of Karhunen-Loeve Transform. The final result is stored in image "out".

LITERATURE
M. Unser and M. Eden, Nonlinear operators for improving texture segmentation based
on features extracted by spatial filtering, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 20, 1990, 804-815.

J.J. Koenderink and A.J. van Doorn, Receptive field families, Biological Cybernetics,
vol. 63, 1990, 291-297.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
gauss_family mul_im vgauss sqrt_im karhunen_loeve

SCIL_Image 1.4 – Reference Manual

494

tcl_readfile
NAME

tcl_readfile - read an image from a file in TCL format

SYNOPSIS
#include "im_proto.h"

IMAGE *tcl_readfile(char *filename, IMAGE *image, int xpos, int ypos)

DESCRIPTION
Read the image stored in file "filename" and put it in image "image". If
"USE_NAME" (a NULL pointer) is specified as the image, a new image is created at
position "xpos", "ypos", with the same name as the file. If an image is already present
with that name, that image will be used.

The file must have the ".dat" extension.

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL pointer on failure

SEE ALSO
readfile ics_readfile tiff_readfile aim_readfile jpeg_readfile writefile tcl_writefile

SCIL_Image 1.4 – Reference Manual

495

tcl_writefile
NAME

tcl_writefile - write an image to file in TCL format

SYNOPSIS
#include "im_proto.h"

int tcl_writefile(IMAGE *image, char *filename)

DESCRIPTION
Write the image "image" to the file "filename" using the TCL format. If the image
contains only 8 bit data (grey values 0..255), the image will be written in packed
format (8 bit per pixel), otherwise the data will be written using 16 bits per pixel.

The file will have the ".dat" extension.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
writefile ics_writefile tiff_writefile jpeg_writefile readfile tcl_readfile

SCIL_Image 1.4 – Reference Manual

496

threshold

bi_threshold
NAME

threshold - thresholding into binary image

bi_threshold - thresholding with two levels into binary image

SYNOPSIS
#include "im_proto.h"

int threshold(IMAGE *in, IMAGE *out, int level)

int bi_threshold(IMAGE *in, IMAGE *out, int low, int high)

DESCRIPTION
threshold performs a thresholding operation on the grey value image "in" and stores
the result in the binary image "out". If the value of a pixel is greater than or equal to
"level" the corresponding bit in the "out" image is set to "1". Otherwise it is set to "0".

bi_threshold() converts all the pixel in the range from "low" to "high" into "1" pixels
in the output and all pixels that are outside that range to "0" pixels. "low" and "high"
are converted to "1" pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip contrast_stretch equalize tri_state_threshold lookup

SCIL_Image 1.4 – Reference Manual

497

ti_block
NAME

ti_block - generate chess-board test image

SYNOPSIS
#include "im_proto.h"

int ti_block(IMAGE *out, int block_size, int forgr, int backgr)

DESCRIPTION
Generate a chess-board like pattern and store the result in "out". The pattern consists
of alternating foreground and background squares. The size of the squares are given
by "block_size". The pixel values of the fore- and background squares are given by
"forgr" and "backgr".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_circle ti_hlines ti_lines ti_lshading ti_points ti_qshading ti_vlines

ti_circle
NAME

ti_circle - generate test image with concentric circles

SYNOPSIS
#include "im_proto.h"

int ti_circle(IMAGE *out, int dist, int rad, int line_w, int forg,
int back)

DESCRIPTION
Generate a pattern of concentric circles and store the result in "out". The center point
of the circles will be at the center of the image. The distance between the circles is
specified by "dist". The starting point of the innermost circle is specified "rad",
measured from the center point. "line_w" specifies the width of the circles. "forg" and
"back" specify the pixel values of the fore- and background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_hlines ti_lines ti_lshading ti_points ti_qshading ti_vlines

SCIL_Image 1.4 – Reference Manual

498

ti_fractal

ti_ifr
NAME

ti_fractal, ti_ifr - generate fractal images

SYNOPSIS
#include "im_proto.h"

int ti_fractal(IMAGE *out, double dim)

int ti_ifr(IMAGE *out, double slope)

DESCRIPTION
These functions generate fractals. ti_fractal() generates a fractal image with fractal
dimension given by "dim". The function ti_ifr() generates an inverse function
response, with slope "slope". After multiplying with a random image and applying a
hartley or fourier transform, the spatial fractal is obtained. This function can be
interpreted as a "fractal" point spread function.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

499

ti_hlines
NAME

ti_hlines - generate test image with horizontal lines

SYNOPSIS
#include "im_proto.h"

int ti_hlines(IMAGE *out, int dist, int start_p, int line_w, int
forg, int back)

DESCRIPTION
Generate a horizontal line pattern and store the result in image "out". The distance
between the lines is specified by "dist". The starting point of the line pattern is
specified by "start_p", measured from the top side of the image. "line_w" specifies the
width of the lines. "forg" and "back" specify the pixel values of the fore- and
background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_lines ti_lshading ti_points ti_qshading ti_vlines

SCIL_Image 1.4 – Reference Manual

500

ti_lines
NAME

ti_lines - generate test image with crossing lines

SYNOPSIS
#include "im_proto.h"

int ti_lines(IMAGE *out, int dist, int start_p, int line_w, int forg,
int back)

DESCRIPTION
Generate a pattern of crossing lines and store the result in image "out" The distance
between the lines is specified by "dist". The starting point of the line pattern is
specified by "start_p", measured from the top side and from the left side of the image.
"line_w" specifies the width of the lines. "forg" and "back" specify the pixel values of
the fore- and background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lshading ti_points ti_qshading ti_vlines

ti_lshading
NAME

ti_lshading - generate linear shading image

SYNOPSIS
#include "im_proto.h"

int ti_lshading(IMAGE *out, double top_r, double top_l, double bot_l)

DESCRIPTION
Generate a linearly shaded grey value image and store the result in image "out". The
intensity is defined by "top_r", "top_l" and "bot_l". "top_r" specifies the value of the
top right pixel, "top_l" the top left pixel and "bot_l" the bottom left pixel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lines ti_points ti_qshading ti_vlines

SCIL_Image 1.4 – Reference Manual

501

ti_points
NAME

ti_points - generate test image with symmetric points

SYNOPSIS
#include "im_proto.h"

int ti_points(IMAGE *out, int dist, int start_p, int width, int forg,
int back)

DESCRIPTION
Generate a pattern of equidistant square dots and store the result in image "out". The
distance between the dots in horizontal and vertical direction is specified by "dist".
The starting point of the pattern is specified by "start_p", measured from the top side
and from the left side of the image. "width" specifies the dimensions of the dots.
"forg" and "back" specify the pixel values of the fore- and background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lines ti_lshading ti_qshading ti_vlines

ti_qshading
NAME

ti_qshading - generate quadratic shading image

SYNOPSIS
#include "im_proto.h"

int ti_qshading(IMAGE *out, int cval, int top_l)

DESCRIPTION
Generate a quadratically shaded grey value image and store the result in image "out".
The intensity is defined by "cval" and "top_l". "cval" specifies the intensity at the
center point and "top_l" the intensity in the top left pixel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lines ti_lshading ti_points ti_vlines

SCIL_Image 1.4 – Reference Manual

502

ti_vlines
NAME

ti_vlines - generate test image with vertical lines

SYNOPSIS
#include "im_proto.h"

int ti_vlines(IMAGE *out, int dist, int start_p, int line_w, int
forg, int back)

DESCRIPTION
Generate a vertical line pattern and store the result in image "out". The distance
between the lines is specified by "dist". The starting point of the line pattern is
specified by "start_p", measured from the left side of the image. "line_w" specifies the
width of the lines. "fore" and "back" specify the pixel values of the foreground and
background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lines ti_lshading ti_points ti_qshading

ticb
NAME

ticb

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See ti_block

ticc
NAME

ticc

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See ti_circle

SCIL_Image 1.4 – Reference Manual

503

tiff_readfile
NAME

tiff_readfile - read an image from a file in TIFF format

SYNOPSIS
#include "im_proto.h"

IMAGE *tiff_readfile(char *filename, IMAGE *image, int xpos, int
ypos)

DESCRIPTION
Read the image stored in file "filename" and put it in image "image". If
"USE_NAME" (a NULL pointer) is specified as the image, a new image is created at
position "xpos", "ypos", with the same name as the file. If an image is already present
with that name, that image will be used.

The read function is capable of reading TIFF-files according to the TIFF 6.0
specifications. The file must have an extension that starts with ".tif". The extensions
used for finding a TIFF file are ".tif" and ".tiff".

If more than one image is present in a TIFF file, the number of the image to be read
can be set by the function "set_tiff_image_number".

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL pointer on failure

SEE ALSO
set_tiff_image_number readfile ics_readfile tcl_readfile aim_readfile jpeg_readfile
writefile tiff_writefile

SCIL_Image 1.4 – Reference Manual

504

tiff_writefile
NAME

tiff_writefile - write an image to a file in TIFF format

SYNOPSIS
#include "im_proto.h"

int tiff_writefile(IMAGE *image, char *filename)

DESCRIPTION
Write the image "image" to the file "filename" using the TIFF format. The write
function writes TIFF-files according to the TIFF 6.0 specifications.

The file will have the extension ".tif".

By default the data will be written uncompressed. To write the data compressed, use
the function "set_tiff_compression".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_tiff_compression writefile ics_writefile tcl_writefile jpeg_writefile readfile
tiff_readfile

tilh
NAME

tilh

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See ti_hlines

SCIL_Image 1.4 – Reference Manual

505

tiln
NAME

tiln

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See ti_lines

tils
NAME

tils

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See ti_lshading

tilv
NAME

tilv

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See ti_vlines

SCIL_Image 1.4 – Reference Manual

506

time
NAME

time - time a command

SYNOPSIS
time <command>

DESCRIPTION
The command time records system and user time of a specific command. Typically
useful in benchmarking. Anything can be timed.

EXAMPLE
[C1] int i=1000;
[C2] time while(i--);
user time: 0.983 system time: 0.000
[C3]

tipt
NAME

tipt

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See ti_points

tiqs
NAME

tiqs

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See ti_qshading

SCIL_Image 1.4 – Reference Manual

507

tmpfile

tmpnam
NAME

tmpfile, tmpnam - create temporary files

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void)

char *tmpnam(char *s)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

tmpfile() creates a temporary file of mode "wb+" that will be automatically removed
when closed or when the program terminates normally. tmpfile() returns a stream, or
NULL, if it could not create the file.

tmpnam(NULL) creates a string that is not the name of an existing file, and returns a
pointer to an internal static array. tmpnam(s) stores the string in "s" as well as
returning it as the function value. "s" must" have room for at least "L_tmpnam"
characters. tmpnam() generates a different name each time it is called ; at most
TMP_MAX different names are guaranteed during execution of the program. Note
that tmpnam() creates a name, not a file.

RETURN VALUES
See the description of the functions.

SCIL_Image 1.4 – Reference Manual

508

tolower

toupper
NAME

tolower, toupper - change the case of characters

SYNOPSIS
#include <ctype.h>

int tolower(int c)

int toupper(int c)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

If "c" is an uppercase letter, tolower(c) returns the corresponding lowercase letter;
otherwise it returns "c". If "c" is an lowercase letter, toupper(c) returns the
corresponding uppercase letter; otherwise it returns "c".

SEE ALSO
islower isupper

SCIL_Image 1.4 – Reference Manual

509

tri_state_threshold
NAME

tri_state_threshold - 3-state thresholding

SYNOPSIS
#include "im_proto.h"

int tri_state_threshold(IMAGE *in, IMAGE *out, int thresh, int val1,
int fl1, int val2, int fl2, int val3, int fl3)

DESCRIPTION
Depending upon the threshold value "thres", change all pixel values of image "in" into
one of the values "val1", "val2" or "val3", according to the rules:

- if input pixel < "thres": output pixel = "val1"
- if input pixel = "thres": output pixel = "val2"
- if input pixel > "thres": output pixel = "val3"

and store the result in image "out". If "fl1" is 0 and the first rule is applied, then the
value of the output pixel will not be set to "val1" but to the value of the input pixel.
The same applies to "fl2" and "fl3".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip threshold contrast_stretch equalize lookup mix

SCIL_Image 1.4 – Reference Manual

510

truncate_im
NAME

truncate_im - truncate pixel values

SYNOPSIS
#include "im_proto.h"

int truncate_im(IMAGE *in, IMAGE *out)

DESCRIPTION
Convert each element of image "in" into an integer value by means of truncation of
the fractional part and store the result into the corresponding elements of "out". For
positive values the effect is that the integer value just less than or equal to the original
value is taken. For negative values the effect is that the integer value just greater than
or equal to the original value is taken.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fraction_im nearest_int lowest_int

SCIL_Image 1.4 – Reference Manual

511

TWAcquire

TWAcquireArea
NAME

TWAcquire - acquire an image from a Twain device

TWAcquireArea - acquire a region of an image from a Twain device

PLATFORM
MS-Windows.

SYNOPSIS
#include "image.h"

int TWAcquire(IMAGE *image)

int TWAcquireArea(IMAGE *image, double res, double xleft, double
ytop, double xright, ybottom, int type)

DESCRIPTION
TWAcquire() (=TwainAcquire in the menu) retrieves an image from a Twain
compliant device that is attached to the system. The image is stored in "image". If
more that one device is present, the default device is taken. Currently no provisions
are available to select another than the default device.

The device must be attached to and its (driver) software properly installed on the
system as controlling the device is done by the device software itself.

TWAcquireArea() (=TwainScan in the menu) retrieves a region of the image that can
be acquired from an attached device. The size and position of the region to scan is
determined by "xleft", "ytop", "xright" and "ybottom". The scan resolution is given by
"res". The type of the data is specified by "type" and can be one of the following
values:

0 Unknown
1 Binary
2 Grey value
3 Color

RETURN VALUES
1 on success
0 on failure

SCIL_Image 1.4 – Reference Manual

512

txt
NAME

txt

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See image_text

unequal0_ok
NAME

unequal0_ok - check to see if an integer value is unequal to zero

SYNOPSIS
#include "im_infra.h"

int unequal0_ok(int value, char *text)

DESCRIPTION
If the value "value" is not equal to zero, an error is generated and the following
message is added to the error-stack:

<text> [<value>] must be unequal to 0

NOTE
This functions can only check on integer values, to check on floating point values, use
the function funequal0_ok()

RETURN VALUES
IE_OK (1) if "value" is unequal to zero
IE_NOT_OK (0) if it is equal to zero

SEE ALSO
positive_ok greater0_ok funequal0_ok

SCIL_Image 1.4 – Reference Manual

513

ungetc
NAME

ungetc - push character back into input stream

PLATFORM
UNIX.

SYNOPSIS
#include <stdio.h>

int ungetc(char *c, FILE *stream)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

ungetc() pushes the character "c" back on an input stream. That character will be
returned by the next getc() call on that stream. ungetc() returns c.

One character of pushback is guaranteed provided something has been read from the
stream and the stream is actually buffered. Attempts to push EOF are rejected.

fseek() erases all memory of pushed back characters.

RETURN VALUES
ungetc returns EOF if it can’t push a character back.

SEE ALSO
getc setbuf fseek

SCIL_Image 1.4 – Reference Manual

514

uniform
NAME

uniform - uniform linear filtering

SYNOPSIS
#include "im_proto.h"

int uniform(IMAGE *in, IMAGE *out, int filtx, int filty, int filtz)

DESCRIPTION
Image "in" is scanned with a moving window with sizes "filtx" * "filty" ("filtx" *
"filty" * filtz" for 3D images). For each window position the average value of the
pixels within the window is calculated. This average pixel value is stored into the
pixel in image "out" that corresponds with the central pixel in the window.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

uniform_round
NAME

uniform_round - uniform filter using a circular filter window

SYNOPSIS
#include "im_proto.h"

int uniform_round(IMAGE *in, IMAGE *out, int fsize, int norm)

DESCRIPTION
Image "in" is uniform filtered with a circular window and the result is put in image
"out". The diameter of the circular window is "fsize". If "norm" is On (1) the result of
the filter is normalized.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
uniform grey_morph_round

SCIL_Image 1.4 – Reference Manual

515

update
NAME

update - delete marked objects from an object list

SYNOPSIS
#include "im_aio.h"

LIST *update(LIST *list)

DESCRIPTION
list - List with objects

update() removes all marked objects from the object list "list". Objects are marked
from removal with the rm_object() function.

NOTE
The object is not removed from the image. You need to call hide_object() to remove
an object from an image.

EXAMPLE
To remove objects touching the edge of an image:

#include "image.h"
#include "im_aio.h"
LIST *l, *o;

readfile("cermet",a,0,0);
threshold(a,b,128);
invert_im(b,b);
l = list_label(b,c,8,0);
FORALL(o,l) if(edge_object(c,o)) rm_object(o);
l = update(l);
/*
* Now to prove that the objects are no longer in the list
*/
FORALL(o,l) copy_object(c,d,o);
l = rm_list(l);

RETURN VALUES
pointer to the updated list

SEE ALSO
hide_object rm_object

SCIL_Image 1.4 – Reference Manual

516

val_check
NAME

val_check - check if a value is smaller than the image size

SYNOPSIS
#include "im_infra.h"
#include "command.h"

int val_check(IMAGE *image, int axis, int value)

DESCRIPTION
The function checks if "value" is positive and smaller than the size of the dimension
specified by "axis". The values that "axis" can have are defined in the include file
"command.h" and they are:

WIDTH (1) to check if "value" is smaller than the width of the image

HEIGHT (2) to check if "value" is smaller than the height of the image

DEPTH (3) to check if "value" is smaller than the width of the image

A special value for "axis" if END (-1) that just returns the value -1. This is a special
case implemented for the function im_val_ok() which performs a series of calls to
val_check().

If the value is outside the image, for each of the different axis another message is
generated, telling which axis is involved.

RETURN VALUES
END (-1) if "axis" is -1
IE_OK (1) if the value is within the image borders
IE_NOT_OK (0) if the value outside the image

SEE ALSO
im_val_ok range_ok

SCIL_Image 1.4 – Reference Manual

517

var_object
NAME

var_object - create a var_object

SYNOPSIS
#include "objectsp.h"

VAR_OBJECT *var_object(char *name, char *class, int type, int
nr_channels, int nr_dim, int dim1, int dim2, int dim3, int dim4, int
dim5)

DESCRIPTION
"var_object" creates a new object of the desired type and sizes.

"name" is the name of the object.

"class" is the class name of the var_object.

"type" is the type of data stored in the var_object. In principle only the standard C-
types are supported, with one exception, the type "PIXEL" is also supported for it is
the most often used type.

The following types are supported:

PIXEL_T 1
CHAR_T 2
SHORT_T 4
INT_T 8
LONG_T 16
FLOAT_T 32
DOUBLE_T 64

"nr_channels" is the number of channels that each elements consist of. This special
dimension is added because in a number of cases it is more convenient. For example,
complex data is considered as two-channel to show better compatibility with other
data (especially where images are concerned).

"nr_dim" specifies both the number of dimensions of the object, and the number of
parameters (of the range dim1 ... dim5) that are valid. All dimensions over "nr_dim"
are set to 1 so when calling this function it is allowed and taken into account that not
all of the parameter of dim1 .. dim5 are supplied (This is allowed in the C-language).
So for example if you say:

var_object("my_object","array",FLOAT_T,1,1,128);

an object with the name "my_object" and of class "array" is created which is a one-
dimensional array of 128 floats.

Even null-dimensional array’s (which are in fact scalars) are allowed, simply specify
"nr_dim" as 0 and you have a single variable of the desired type.

SCIL_Image 1.4 – Reference Manual

518

The maximum number of dimensions is currently set to 5.

NOTE
When using any of the functions for changing the sizes or data-type of the var_object
and the system is not capable of allocating enough memory for it, then the contents of
the var_object concerned will NOT have been lost. The var_object will be off the
same sizes as before with all its data intact.

RETURN VALUES
A pointer to the newly defined var_object on success.
NULL pointer on failure

SEE ALSO
destroy_var_object var_object_by_name show_var_object_info list_var_objects
write_var_object read_var_object var_object_convert var_object_to_image
image_to_var_object var_object_copy set_var_object_type set_var_object_size
set_var_object_data set_var_object_class set_var_object_comment

var_object_by_name
NAME

var_object_by_name - get pointer of var_object by its name

SYNOPSIS
#include "im_proto.h"

VAR_OBJECT *var_object_by_name(char *name, int case_sensitive)

DESCRIPTION
If the pointer to an var_object is not at hand you obtain that pointer by use of this
function. "name" is the name of the var_object, "case_sensitive" specifies whether a
distinction between lower case and upper case characters should be made. If it is zero
then no distinction is made.

RETURN VALUES
Pointer to the requested var_object on success.
NULL pointer if var_object "name" does not exist.

SEE ALSO
var_object destroy_var_object show_var_object_info

SCIL_Image 1.4 – Reference Manual

519

var_object_convert
NAME

var_object_convert - convert a var_object into another type

SYNOPSIS
#include "objectsp.h"

int var_object_convert(VAR_OBJECT *source, VAR_OBJECT *destination,
int out_type)

DESCRIPTION
Convert a var_object into another data-type. "destination" will become a var_object
that is of equal sizes as "source" but of type "out_type". If "out_type" equals zero then
"out_type" will be equal to the type of "destination", so the data of "source" will be
converted to the type of "destination" and stored in "destination". For a full listing of
all available data-types see var_object()

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object var_object_to_image image_to_var_object

var_object_copy
NAME

var_object_copy - copy the contents of one var_object to another

SYNOPSIS
#include "objectsp.h"

int var_object_copy(VAR_OBJECT *obj1, VAR_OBJECT *obj2)

DESCRIPTION
Copy the contents of the var_object "obj1" to the var_object "obj2". The type and
sizes of the second object are adjusted to match that of the first one.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object

SCIL_Image 1.4 – Reference Manual

520

var_object_ok
NAME

var_object_ok - check if the pointer is a valid var_object pointer

SYNOPSIS
#include "objectsp.h"

int var_object_ok(VAR_OBJECT *var_object)

DESCRIPTION
The pointer "var_object" is checked if it points to a valid var_object. The linked list in
which all the var_objects are present is scanned for the occurrence of "var_object". If
no var_object exist with this pointer, an error is generated and the following message
is added to the error-stack:

Non existing var_object pointer.

The function is_var_object() performs the same check and has the same return values
but does not generate an error (and nothing is added to the error-stack).

RETURN VALUES
IE_OK (1) if the pointer is a valid var_object.
IE_NOT_OK (0) if "var_object" does not point to a var_object.

SEE ALSO
is_var_object

SCIL_Image 1.4 – Reference Manual

521

var_object_to_image
NAME

var_object_to_image - convert a var_object into an image

SYNOPSIS
#include "objectsp.h"

int var_object_to_image(VAR_OBJECT *object, IMAGE *image, int
type_of_image)

DESCRIPTION
Convert the var_object "object" into the image "image". "type_of_image" specifies the
type that the image will become. If "type_of_image" is zero then the type of the image
itself will be taken. Var_objects with more than 3 dimensions cannot be converted
into an image (not counting the nr_channels dimension).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object image_to_var_object

SCIL_Image 1.4 – Reference Manual

522

vi

$

ls

cd

sh

pwd

grep
NAME

vi, $, ls, cd, sh, pwd, grep - execute shell commands

PLATFORM
UNIX.

SYNOPSIS
$<command>

ls <name>

cd <dirname>

sh

pwd

grep <pattern> <filename>

DESCRIPTION
With "$<command>" a single command is executed by the operating system and
control is directly returned to SCIL. For instance "$date" displays current date and
time. Several frequently used operating system commands can be typed directly
which are: "vi", "ls", "sh", "cd", "pwd" and the "grep" command.

EXAMPLE
[C1] vi filename
[C2] ls *.c
[C3] sh
[C4] cd test

The first command will activate the UNIX screen editor concerning the file "filename"
and the second will give a directory list of all files with extension ".c". With the
command "sh" another shell (/bin/sh) will be initiated to give a sequence of operating
system commands before returning control. The "cd" command can be used to change
the current working directory, in this case "test"

SCIL_Image 1.4 – Reference Manual

523

vkuwahara
NAME

vkuwahara - 3D kuwahara filter

SYNOPSIS
#include "im_proto.h"

int vkuwahara(IMAGE *in, IMAGE *out, int fsize, int vari)

DESCRIPTION
The vkuwahara() filter operates on a 3*3*3 window in the 3D image "in" and stores
the result in image "out". The filter size "fsize" can be set to either 27 or 19 (27 is the
entire 3*3*3 window, 19 is the 3*3*3 window without the 8 corner voxels).

The window is divided into 8 octants each containing 8 (27 window) or 7 (19
window) voxels. From each octant the variance or relative variance of the voxels
values is determined. The new voxels value will be the mean value of the octant that
shows the smallest (relative) variance. For computing speed reasons, the difference
between the maximum and the minimum of the voxels in each octant is taken as a
measure for the variance.

The parameter "vari" determines whether the variance of a window is to be weighted
by the mean (1) or not (0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

524

vlaplace
NAME

vlaplace - 3D laplace filter.

SYNOPSIS
#include "im_proto.h"

int vlaplace(IMAGE *in, IMAGE *out)

DESCRIPTION
Differential edge detection based on the Laplacian operator:

 d^2 d^2 d^2
D = ----- + ----- + ----- .
 dx^2 dy^2 dz^2

Image "in" is filtered and the result is stored in image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

vlinear
NAME

vlinear - 3D linear filter

SYNOPSIS
#include "im_proto.h"

int vlinear(IMAGE *in, IMAGE *filter, IMAGE *out)

DESCRIPTION
Perform a linear filter on image "in" and store the result in image "out". The
weigh-factors are determined by the 3*3*3 image "filter". For each voxel of image
"in", the voxels in a 3*3*3 window around this voxel are multiplied by the
corresponding weigh-factor from image "filter". The sum of the multiplications,
divided by the total sum of the weigh-factors is the new value the voxel in image
"out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

525

vmedian
NAME

vmedian - 3D median filter

SYNOPSIS
#include "im_proto.h"

int vmedian(IMAGE *in, IMAGE *out, int fsize)

DESCRIPTION
vmedian() sorts the voxels in the filter window in image "in" on value. The new voxel
value in image "out" will be the median value of the sorted voxels. The size of the
filter window can be set using "fsize". Valid values are 7 (the voxel plus its direct
neighbors on the X-, Y and Z-axis), 19 (a 3*3*3 cube around the voxel without the 8
corner voxels) and 27 (the complete 3*3*3 cube around the voxel). This filter will
remove extreme values in the image due to noise, while preserving edges.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
vpercentile

vpercentile
NAME

vpercentile - 3D percentage filter

SYNOPSIS
#include "im_proto.h"

int vpercentile(IMAGE *in, IMAGE *out, int perc)

DESCRIPTION
vpercentile() takes a 27 voxel window (3*3*3) around each voxel in the image "in",
sorts them on value. The new voxel-value in the image "out" will be the value that is
at the specified position (by "perc") of the sorted row of 27 voxels. So, if 100% is
specified, the maximum voxel value in the window will be taken. 0% means the
minimum value. Finally, 50% is exactly equal to the median filter on 27 voxels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
vmedian

SCIL_Image 1.4 – Reference Manual

526

vsobel
NAME

vsobel - 3D Sobel filter.

SYNOPSIS
#include "im_proto.h"

int vsobel(IMAGE *in, IMAGE *out, int weight_factor)

DESCRIPTION
Differential edge detection based upon the Sobel operator. The image "in" is filtered
and the result is stored in image "out". This filter detects gradients in the image
corresponding to edges of the object(s): sudden jumps in voxel values will be
recognized and the new voxel value is proportional to the size of the jump.
"weight_factor" specifies the distance between two z-slices relatively to the distance
between two voxels in the x and y direction. "weight_factor" is a shift factor in bits
(0=*1; 1=*2; 2=*4 etc.).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

warp_image
NAME

warp_image - adjust one image to the sizes of another

SYNOPSIS
#include "im_proto.h"

int warp_image(IMAGE *in, IMAGE *out)

DESCRIPTION
"copy" image "in" to image "out", even when they do not have the same dimensions.
The function fblow() is used to do the scaling of the image if the sizes of "in" and
"out" are not equal.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_im

SCIL_Image 1.4 – Reference Manual

527

width
NAME

width - width of object

SYNOPSIS
#include "im_aio.h"

int width(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitive to obtain value of an object feature

width() returns the width of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process

RETURN VALUES
The width of the object in pixels on succes
0 if link is not an object

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

528

win_to_comp
NAME

win_to_comp - add rectangular window from image to composite photo

SYNOPSIS
#include "image.h"
#include "silo.h"

int win_to_comp(COMPTR comptr, IMAGE *image, int left, int top, int
sizex, int sizey)

DESCRIPTION
comptr - Pointer to composite photo.
image - Image which contains the part-image.
left - Start x-coordinate of part-image.
top - Start y-coordinate of part-image.
sizex - Part-image width.
sizey - Part-image height.

win_to_comp() copies the part of the image "image" from location ("left","top") and
with sizes "sizex"*"sizey" to the composite photo "comptr"

RETURN VALUES
The position where the part-image went to:
x-start-coordinate - function value modulo 2048.
y-start-coordinate - function value div 2048.

wrap
NAME

wrap - pixel wrap around

SYNOPSIS
#include "im_proto.h"

int wrap(IMAGE *in, IMAGE *out, int hdispl, int vdispl, int zdispl)

DESCRIPTION
Wrap around (scroll) the pixels in image "in" with step size "hdispl" in horizontal
direction, step size "vdispl" in vertical direction and step size "zdispl" in the depth
direction and store the result in image "out". Pixels which are shifted out over the
image boundaries are shifted in again at the opposite side.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SCIL_Image 1.4 – Reference Manual

529

write
NAME

write - write on a file

SYNOPSIS
unsigned int write(int fildes, char *buffer, int nbytes)

DESCRIPTION
This function is an interface to the standard C function as implemented on the current
system. The functionality of this function is:

A file descriptor is a word returned from a successful open(), creat(), dup(), or pipe(2)
call.

write() writes data from memory to a file. "buffer" is the address of "nbytes"
contiguous bytes which are written to the output file. The number of characters
actually written is returned. It should be regarded as an error if this is not the same as
requested.

RETURN VALUES
Returns -1 on error:

bad descriptor,
buffer address,
count;
physical I/O errors.

SEE ALSO
creat open

SCIL_Image 1.4 – Reference Manual

530

write_var_object
NAME

write_var_object - write a var_object to a file

SYNOPSIS
#include "objectsp.h"

int write_var_object(VAR_OBJECT *object, char *filename)

DESCRIPTION
"write_var_object" write the var_object specified by the pointer "object" to a file.
When executed, this function puts two files on disk. A file with the given name and
the extension ".voh" and a file with the same name but with the extension ".vod". The
file with the extension ".voh" is an ASCII header file which describes the var_object.
In the file with the extension ".vod" the actual data resides.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object read_var_object

SCIL_Image 1.4 – Reference Manual

531

writefile
NAME

writefile - write an image to file

SYNOPSIS
#include "im_proto.h"

int writefile(IMAGE *image, char *filename, int fileformat)

DESCRIPTION
Write the image "image" to the file "filename" using the "fileformat" format. The
following formats are supported.

ICS_F (1) ICS format; two files per image are written, the data-file with the
extension ".ids" and the header-file with the extension ".ics"

TIFF_F (2) Tiff format; the write function is capable of writing TIFF-files
according to the TIFF 6.0 specifications. The file will have the
extension ".tif".

JPEG_F (3) JPEG format;the file will have the extension ".jpg".

TCL_F (4) TCL_Image format;the file will have the ".dat" extension.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
readfile ics_writefile tiff_writefile tcl_writefile jpeg_writefile

writf
NAME

writf

DESCRIPTION
This is an old function name, only provided for backward compatibility with
TCL_Image routines.

See writefile

SCIL_Image 1.4 – Reference Manual

532

xmax
NAME

xmax - maximum X coordinate of an object

SYNOPSIS
#include "im_aio.h"

int xmax(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitive to obtain value of an object feature

xmax() returns the maximum X coordinate of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The maximum X coordinate of the object on success
0 if link is not an object

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

533

xmin
NAME

xmin - minimum X coordinate of an object

SYNOPSIS
#include "im_aio.h"

int xmin(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitive to obtain value of an object feature

xmin() returns the minimum X coordinate of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The minimum X coordinate of the object on success
0 if link is not an object

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

534

xor_im
NAME

xor_im - bitwise xor of image pixels

SYNOPSIS
#include "im_proto.h"

int xor_im(IMAGE *in1, IMAGE *in2, IMAGE *out)

DESCRIPTION
Perform a bitwise XOR operation of each element of "in1" with the corresponding
element of "in2" and store the result in "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
and_im or_im invert_im shift_im

SCIL_Image 1.4 – Reference Manual

535

XYZ_ref_white

RGB_ref_white

print_XYZ_ref_white
NAME

XYZ_ref_white - set the reference white in XYZ values

RGB_ref_white - set the reference white in RGB values

print_XYZ_ref_white - print the reference white values in XYZ

SYNOPSIS
#include "color2dp.h"

void XYZ_ref_white(double Xn, double Yn, double Zn)

void RGB_ref_white(int Rn, int Gn, int Bn)

void print_XYZ_ref_white(void)

DESCRIPTION
When converting the XYZ color-model to other color-models like L*a*b* and
L*u*v*
(the latter is currently not implemented in Image), a reference XYZ triplet is needed.
This triplet is commonly named "white point" or "reference white". To set the white-
point, the function XYZ_ref_white() can be used. "Xn", "Yn" and "Zn" begin the X, Y
and Z value of the "white-point". For convenience the same white point can also be set
using the function RGB_ref_white(), specifying the point in RGB values, which are
then immediately converted to XYZ using the current conversion method (see
set_RGB2XYZ_matrix).

print_XYZ_ref_white() displays the current reference white in X, Y, and Z values.

RETURN VALUES
None

SEE ALSO
set_RGB2XYZ_matrix

SCIL_Image 1.4 – Reference Manual

536

ymax
NAME

ymax - maximum Y coordinate of an object

SYNOPSIS
#include "im_aio.h"

int ymax(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitive to obtain value of an object feature

ymax() returns the maximum Y coordinate of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The maximum Y coordinate of the object on success
0 if link is not an object

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

537

ymin
NAME

ymin - minimum Y coordinate of an object

SYNOPSIS
#include "im_aio.h"

int ymin(LIST *link)

DESCRIPTION
link - Link pointing to the object

AIO primitive to obtain value of an object feature

ymin() returns the minimum Y coordinate of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The minimum Y coordinate of the object on success
0 if link is not an object

SEE ALSO
measure object_shape_meas object_dens_meas list_label

SCIL_Image 1.4 – Reference Manual

538

z_planes
NAME

z_planes - view planes of a 3D image in a 2d image

SYNOPSIS
#include "im_proto.h"

int z_planes(IMAGE *in, IMAGE *out, int start, int number, int
border, int value)

DESCRIPTION
z_planes() shows the selected Z planes of the 3D image "in" in the 2D image "out".
Starting at plane number "start", "number" planes are laid out in several rows and
columns. If "border" is true (not 0), lines are drawn in the output image "out" to
separate the different planes. "value" is the grey-value used for drawing the
border-lines.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
sfp dir_maximum

zcross
NAME

zcross - calculate zero crossings

SYNOPSIS
#include "im_proto.h"

int zcross(IMAGE *input, IMAGE *output, double threshold)

DESCRIPTION
Calculate a bit image that contains a skeleton-like picture, containing the positions
where the grey-values cross the value "threshold". If "threshold" is zero, the image
gives the positions where the sign of the image changes.

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) on failure

SEE ALSO
dist_skelet

SCIL_Image 1.4 – Reference Manual

539

NAME
? - show help information

SYNOPSIS
?

PLATFORM
UNIX, Macintosh.

DESCRIPTION
Direct commands available in SCIL:

help <command> describe command
? <pattern> show variable/function information
load <filename> load program text
run interpret program
chain <filename> load and run the named program
list [start],[end] show program text
more [start],[end] same as list but in chunks
time <command> time a command
logon <logfile> connect "logfile" to session
logoff disconnect "logfile"
macro [-i] [-v] <macfile> execute macro file
hist [start],[end] show history
: <pattern> recall command
expand [1/0] enable/disable command expanding
rmvar clear old variables
$ <os_command> issue a shell command
vi <filename> invoke screen editor
ls [options] directory list
sh start a shell
cd change current working directory
pwd print working directory
grep <pattern> <filenames> Start UNIX grep

SCIL_Image 1.4 – Reference Manual

541

Command syntax in alphabetical order

$<command> ..522
:[number]...231
:[pattern]..231
? <pattern> ..228
void _exit(int status)..141
void abort(void)...5
int abs(int i) ...6
int abs_im(IMAGE *in, IMAGE *out)...7
void abs_pathname(char *path)...37
int absd_im(IMAGE *in1, IMAGE *in2, IMAGE *out)..8
double acos(double x) ...467
int acos_im(IMAGE *in, IMAGE *out)...469
void ActivateMenu(ABSTRACT *top) ..311
int add_applic_exposure_func(void (*func)(IMAGE *ip))..9
int add_applic_win_input_func(void (*func)()) ...10
int add_complex(IMAGE *in, double real_part, double imaginary_part, IMAGE *out).........11
int add_float(IMAGE *in, double constant, IMAGE *out)..12
int add_im(IMAGE *in1, IMAGE *in2, IMAGE *out) ...13
int add_int(IMAGE *in, int constant, IMAGE *out)..14
int AddImageInfo(IMAGE *im, char *name, void *info, void (*dfunc)(void *))15
void AddToMenu(char *name, ABSTRACT *menu, ABSTRACT *parentmenu)................311
IMAGE *aim_readfile(char *filename, IMAGE *image, int xpos, int ypos)...........................16
int aio_label(IMAGE *in, IMAGE *out, int connect)..17
void all_im(char *command, int type) ..18
int anchor_skelet(IMAGE *in, IMAGE *mask, IMAGE *out, int iter, int endp, int bound)...19
int and_im(IMAGE *in1, IMAGE *in2, IMAGE *out) ...20
double angle(LIST *link)..20
int angle_detection(IMAGE *in, IMAGE *out, double thres) ...21
int applic_exposure(int send_events, int skip_when_busy)..22
int applic_win_input(int send_events, int skip_when_busy)..23
int apply_frequency_bank(IMAGE *in, IMAGE *bank, IMAGE *out, int begin, int end).....24
int apply_spatial_bank(IMAGE *in, IMAGE *bank, IMAGE *out, int begin, int end)...........24
int arbit_dilation(IMAGE *in, IMAGE *out, IMAGE *se, int bound)....................................25
int arbit_erosion(IMAGE *in, IMAGE *out, IMAGE *se, int bound).....................................26
long area(LIST *link)..26
char *asctime(struct tm *tp) ...27
double asin(double x)..467
int asin_im(IMAGE *in, IMAGE *out)..469
double atan(double x) ...467
int atan_im(IMAGE *in, IMAGE *out) ...469
double atan2(double x, double y)..467
int atan2_im(IMAGE *in1, IMAGE *in2, IMAGE *out) ..469
int atexit(void (*func)(void)) ..29
double atof(char *nptr) ...30
int atoi(char *nptr) ..30

SCIL_Image 1.4 – Reference Manual

542

long atol(char *nptr)... 30
int auto_display(int mode) ... 32
int auto_plane(int flag)... 33
int auto_point(int flag) ... 34
int b_to_comp(COMPTR comptr, int sizex, int sizey, PIXEL *buf)....................................... 35
int back_project(VAR_OBJECT *input, VAR_OBJECT *data, VAR_OBJECT *output, int
width) ... 36
int bank_frequency_response(IMAGE *bank, IMAGE *out, int begin, int end).................... 24
void base_name(char *bname, const char *path)... 37
double bend(LIST *link).. 40
int benke(IMAGE *pat1, IMAGE *pat2, IMAGE *out, int maxiter, double gain, double
convergence, int width, int height, int depth)... 41
int bernsen_threshold(IMAGE *in, IMAGE *out, int filt_x, int filt_y, int max_diff)........... 100
int bi_threshold(IMAGE *in, IMAGE *out, int low, int high).. 496
int bin_disp_colors(int fg, int bg)... 42
int binary_to_grey(IMAGE *in, IMAGE *out, int val)... 43
int binary_to_plane(IMAGE *in, IMAGE *out, int plane).. 43
int bit_ok(int value).. 44
int blow(IMAGE *in, IMAGE *out, int hfact, int vfact, int dfact, int adjust) 45
double box_dimension(IMAGE *input, IMAGE *mask, int fsizemin, int fsizestep, int
fsizemax) .. 46
void *bsearch(void *key, void *base, size_t n, size_t size, int (*cmp)(void *key, void
*datum)) ... 48
int buf_from_silo(SILOPTR siloptr, int silo_key, PIXEL *buf) ... 50
int buf_to_silo(SILOPTR siloptr, int silo_key, PIXEL *buf, int sizex, int sizey)................... 51
double cabs(struct { double x, y;}z)... 241
int calc_greyvalue(IMAGE *image).. 52
int calibrated_density(IMAGE *label_im, IMAGE *grey_im, char *fname, int append,
VAR_OBJECT *table)... 53
void *calloc(unsigned int nelem, unsigned int elsize).. 314
int canny(IMAGE *in, IMAGE *out, IMAGE *Lx, IMAGE *Ly, double sigma, double acc,
int fwidth, int nonmax)... 54
cd <dirname>.. 522
double ceil(double x) ... 146
chain filename .. 55
int chaincode_to_image(VAR_OBJECT *input, IMAGE *image)... 56
int chaincode_to_xy(VAR_OBJECT *input, VAR_OBJECT *output, int offset).................. 57
int change_image_size(IMAGE *im, int width, int height, int depth)..................................... 58
int channel_bi_threshold(IMAGE *in, IMAGE *out, double min1, double max1, double
min2, double max2,double min3, double max3,double min4, double max4).......................... 59
char *sys_errlist[];.. 360
int chdir(char *dirname)... 60
int check_image_integrity(int print)... 61
void check_status(int status, char *str)... 62
int clear_im(IMAGE *out)... 63
void clear_image_flag(IMAGE *im, int flag).. 431
int clear_part_image(IMAGE *im, int sx, int sy, int sz, int width, int height, int depth)........ 63
int clear_var_object(VAR_OBJECT *object) ... 64
void clearerr(FILE *stream) ... 65

SCIL_Image 1.4 – Reference Manual

543

int clip(IMAGE *in, IMAGE *out, int lowest, int highest)..66
long clock(void) ..27
int close(int fildes) ..66
void close_comp(COMPTR comptr) ..67
int close_silo(SILOPTR siloptr) ...67
int closing3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)....................................68
CLUT *clut_by_name(char *name, int case_sensitive)..68
int clut_ok(CLUT *clut) ...69
int cmp_pixels(IMAGE *in1, IMAGE *in2, VAR_OBJECT *first)70
int color_get_model_size(int model) ..71
void com_dialog(char *string) ..72
void compact_silo(SILOPTR siloptr)..73
int complex_im(IMAGE *in1, IMAGE *in2, IMAGE *out) ...73
int compute_clut(CLUT *clut) ...74
int con_ok(int con)..75
int con6_ok(int con)..76
int conjugate_im(IMAGE *in, IMAGE *out)...76
int conjugate_mul_im(IMAGE *in1, IMAGE *in2, IMAGE *out) ...77
int constr_distance(IMAGE *in, IMAGE *constraint, IMAGE *out, int hstep, int dstep, int
kstep, int b)..78
int contour(IMAGE *in, IMAGE *out, int edge, int conn, int obj_bkg)..................................79
int contrast_stretch(IMAGE *in, IMAGE *out, double lperc, double hperc)...........................79
int convert(IMAGE *in, IMAGE *out, int out_type) ...80
int convert_cmodel(IMAGE *in, IMAGE *out, cmodel)...81
int convolution(IMAGE *in, IMAGE *conv, IMAGE *out, int addval, int divval)82
int cooccur(IMAGE *in, IMAGE *out, int xdist, int ydist)..83
int copy_channel(IMAGE *in, IMAGE *out, int inchan, int outchan).....................................83
CLUT *copy_clut(CLUT *source, CLUT *dest, char *name)...84
HISTOGRAM *copy_histogram(HISTOGRAM *srchisto, HISTOGRAM *desthisto)92
int copy_im(IMAGE *in, IMAGE *out) ..84
int copy_object(IMAGE *src_im, IMAGE *dst_im, LIST *link)..85
int copy_part_image(IMAGE *in, BOOL_MASK *mask, IMAGE *out, int sx, int sy, int sz,
int width, int height, int depth, int dx, int dy, int dz, int clear) ...86
int copy_part_image(IMAGE *in, IMAGE *out, int sx, int sy, int sz, int width, int height, int
depth, int dx, int dy, int dz) ...86
double cos(double x)...467
int cos_im(IMAGE *in, IMAGE *out)...469
double cosh(double x)...467
int cosh_im(IMAGE *in, IMAGE *out)...469
double covariance(IMAGE *in1, IMAGE *in2) ..87
int covmatrix(IMAGE *in, VAR_OBJECT *out, int width, int height)87
int covplanematrix(IMAGE *in, VAR_OBJECT *out) ...88
double cr(LIST *link) ...88
int creat(char *name, int mode) ..89
CLUT *create_clut(int type, char *name)...90
void create_diff_window(IMAGE *image) ..95
int create_display(IMAGE *image, int xp, int yp, int xs, int ys)..91
HISTOGRAM *create_histogram(char *name, int chans, int dims, int dim1, int dim2, int
dim3, int dim4, int dim5) ..92

SCIL_Image 1.4 – Reference Manual

544

IMAGE *create_image(char *name, int type, int lenx, int leny, int lenz)............................... 94
void create_live_window(IMAGE *image) ... 95
SILOPTR create_silo(char *siloname).. 95
char *ctime(time_t *tp) ... 27
int cube_view(IMAGE *in, IMAGE *out, int plane, int view, int interaction)....................... 97
int decrement_im(IMAGE *in, IMAGE *out)... 98
void default_images(int number).. 99
int defuz(IMAGE *in, IMAGE *out, int filt_x, int filt_y, double thr)................................... 100
int deiconify_window(IMAGE *im).. 393
int del_im_exposure_func(void (*fp)(IMAGE *)) .. 249
int del_im_input_func(void (*fp)(IMAGE *, int, int, int, IM_EVENT)).............................. 249
int dens_limits(int minimum, int maximum, double max_opt_dens).................................... 102
int density(IMAGE *label_im, IMAGE *grey_im, char *fname, int append)....................... 104
int destroy_clut(CLUT *clut)... 105
int destroy_histogram(HISTOGRAM *histo).. 92
int destroy_image(IMAGE *im).. 105
int destroy_var_object(VAR_OBJECT *obj) .. 106
int dialog_options(int nfew, int nsome, int nmany, int nhuge, int f_feedb, int s_feedb, int
m_feedb, int h_feedb, int g_feedb, int with_arrows, int with_range) 107
int dialog_stay_up(int flag).. 108
int dialog_wm(int number) .. 108
int different_ok(int val1, int val2, char *text) .. 109
double difftime(time_t time2, time_t time1).. 27
int dilation3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound) 110
int dir_maximum(IMAGE *in, IMAGE *out, int dir) ... 111
void dir_name(char *dname, const char *path).. 37
int disp_circle(IMAGE *im, int x, int y, int r) ... 112
int disp_draw_mode(int mode) .. 112
int disp_draw_value(int value)... 112
int disp_oval(IMAGE *im, int x, int y, int xr, int yr)... 112
int disp_rect(IMAGE *im, int x, int y, int xsize, int ysize).. 112
int disp_srect(IMAGE *im, int x, int y, int xsize, int ysize).. 112
int disp_text(IMAGE *im, int x, int y, char *str)... 112
int disp_text_font(char *font) .. 113
int disp_vector(IMAGE *im, int x1, int y1, int x2, int y2).. 113
int display_image(IMAGE *im) .. 114
double dist_average(IMAGE *input, IMAGE *mask, double threshold, int background).... 115
int dist_skelet(IMAGE *in, IMAGE *out, int angle, int hstep, int dstep, int action) 116
int distance(IMAGE *in, IMAGE *out, int hstep, int dstep, int kstep, int edge)................... 117
int dither(IMAGE *in, IMAGE *out) .. 118
int div_complex(IMAGE *in, double real_part, double imaginary_part, IMAGE *out) 11
int div_float(IMAGE *in, double constant, IMAGE *out).. 12
int div_im(IMAGE *in1, IMAGE *in2, IMAGE *out)... 13
int div_int(IMAGE *in, int constant, IMAGE *out).. 14
int do_alert(char *str1, ...).. 119
int doff(void) .. 32
int don(void)... 32
int draw_line(IMAGE *image, int x1, int y1, int x2, int y2, int value) 120
int drawcurve(VAR_OBJECT *input, IMAGE *output, int value, int smooth, int circ) 121

SCIL_Image 1.4 – Reference Manual

545

int dump_histogram(HISTOGRAM *histo, char *file, int num)..235
int dump_var_object(VAR_OBJECT *object, char *filename, int number)..........................122
int dyn_link(char *library, int verbose) ..123
int dyn_unlink(char *library, int verbose) ..123
double eccentr(LIST *link)...124
char *ecvt(double value, int ndigit, int *decpt, int *sign) ..125
double edge_average(IMAGE *input, IMAGE *mask, int filtersize, int usegrad).................126
int edge_object(IMAGE *image, LIST *link)...127
int edge_ok(int bound)..127
int edge_preserve(IMAGE *in1, IMAGE *in2, IMAGE *out, int filtx, int filty)...................128
int eigen_segmentation(IMAGE *in, IMAGE *out, int size, int nr, double scale).................129
int eigenfilters(IMAGE *in, IMAGE *out, int width, int height)...130
int eigenvectors(VAR_OBJECT *obj, VAR_OBJECT *vecs, VAR_OBJECT *vals)131
int entropy_threshold(IMAGE *in, IMAGE *out, double fraction).......................................131
int equal_images(IMAGE *im1, IMAGE *im2)..132
int equalize(IMAGE *in, IMAGE *out)...133
int equivalent_im(IMAGE *in1, IMAGE *in2, IMAGE *out) ..133
int erosion3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)..................................134
void err_report(void) ...135
int eval(char *expression, int border) ...136
int even_ok(int value, char *text) ...139
int EventType(IM_EVENT event)..140
void exit(int status)..141
double exp(double x) ..142
int exp_im(IMAGE *in, IMAGE *out) ..143
int exp10_im(IMAGE *in, IMAGE *out) ..144
expand <mode>...145
double fabs(double x) ...146
int fast_fourier(IMAGE *in, IMAGE *out, int direction) ..147
int fast_hartley(IMAGE *in, IMAGE *out, int norescaling)..148
int fblow(IMAGE *in, IMAGE *out, double hfact, double vfact, double dfact, int adjust)...149
int fclose(FILE *stream)...150
char *fcvt(double value, int ndigit, int *decpt, int *sign) ..125
FILE *fdopen(int fildes, char *type)..181
int feof(FILE *stream) ..65
int ferror(FILE *stream)..65
int fflush(FILE *stream) ...150
int fg_buffers(void)...151
int fg_channels(void) ..152
int fg_close(void) ..153
int fg_depth(void) ...154
int fg_exec(const void *input, int ilength, void *output, int olength)155
int fg_freeze(void) ..161
int fg_gain(int *pgain) ..156
int fg_get_datasize(void) ..157
const char *fg_get_last_error(void) ...158
int fg_get_rgb_order(void)..159
int fg_getdata(int framenumber, void *storage, int offsetx, int offsety, int incrx, int incry, int
countx, int county, int type) ..160

SCIL_Image 1.4 – Reference Manual

546

int fg_grab(int firstchan, int firstbuf, int nchannels) .. 161
int fg_grab_image(IMAGE *out, int chan, int width, int height, int slices, int hstep, int vstep,
int tstep, int offx, int offy) .. 162
int fg_grab_next(void) ... 163
int fg_grab_series(int startchannel, int startbuffer, int nchannels, int nbuffers, int nskip) 164
int fg_height(void) ... 176
int fg_init(const char *initfile) ... 165
int fg_load(const char *dllname) ... 166
int fg_maxdepth(void).. 154
int fg_maxheight(void)... 167
int fg_maxwidth(void) ... 167
int fg_minheight(void) ... 168
int fg_minwidth(void) .. 168
int fg_offset(int *poffset) ... 169
int fg_set_input_lut(const void *ptable, int nelem) ... 170
int fg_setdepth(int depth) ... 171
int fg_setgain(int gain) ... 156
int fg_setoffset(int offset)... 169
int fg_setres(int width, int height).. 172
int fg_setroi(int ox, int oy, int ix, int iy, int cx, int cy)... 173
int fg_settype(int type) ... 174
int fg_type(int *ptype).. 174
int fg_width(void) .. 176
int fgetc(FILE *stream).. 206
int fgetpos(FILE *stream, fpos_t *ptr)... 177
char *fgets(char *s, int n, FILE *stream) .. 209
int WINAPI fgr_buffers(void) ... 151
int WINAPI fgr_channels(void) .. 152
int WINAPI fgr_close(void) .. 153
int WINAPI fgr_depth(void).. 154
int WINAPI fgr_exec(const void *input, int ilength, void *output, int olength)................... 155
int WINAPI fgr_freeze(void)... 161
int WINAPI fgr_gain(int *pgain)... 156
int WINAPI fgr_get_datasize(void)... 157
int WINAPI fgr_get_last_error(char *storage).. 158
int WINAPI fgr_get_rgb_order(void).. 159
int WINAPI fgr_getdata(int framenumber, void *storage, int offsetx, int offsety, int incrx, int
incry, int countx, int county, int type) .. 160
int WINAPI fgr_grab(int firstchan, int firstbuf, int nchannels)... 161
int WINAPI fgr_grab_next(void) .. 163
int WINAPI fgr_grab_series(int startchan, int startbuf, int nchannels, int nbuffers, int nskip)164
int WINAPI fgr_height(void) .. 176
int WINAPI fgr_init(const char *initfile) .. 165
int WINAPI fgr_maxdepth(void)... 154
int WINAPI fgr_maxheight(void).. 167
int WINAPI fgr_maxwidth(void) .. 167
int WINAPI fgr_minheight(void) .. 168
int WINAPI fgr_minwidth(void) ... 168
int WINAPI fgr_offset(int *poffset) .. 169

SCIL_Image 1.4 – Reference Manual

547

int WINAPI fgr_offset(int offset)...169
int WINAPI fgr_set_input_lut(const void *ptable, int nelem) ...170
int WINAPI fgr_setdepth(int depth)...171
int WINAPI fgr_setgain(int gain)...156
int WINAPI fgr_setres(int width, int height)..172
int WINAPI fgr_setroi(int ox, int oy, int ix, int iy, int cx, int cy) ..173
int WINAPI fgr_settype(int type)...174
int WINAPI fgr_type(int *ptype)..174
int WINAPI fgr_width(void) ..176
int fgreater0_ok(double value, chr *text)..178
double filter_energy_ratio(IMAGE *in1, IMAGE *in2, IMAGE *filter)..............................179
int flip(IMAGE *in, IMAGE *out, int axis, int angle) ...179
double floor(double x) ..146
double fmod(double x, double y)..180
FILE *fopen(char *filename, char *type) ..181
int fpositive_ok(double value, char *text) ..182
int fprintf(FILE *stream, char *format, ...)...383
int fputc(int c, FILE *stream)..390
int fputs(char *s, FILE *stream) ...391
int fraction_im(IMAGE *in, IMAGE *out)..183
int frange_ok(double value, double vmin, double vmax, char *text)184
int fread(void *ptr, int size, int nitems, FILE *stream)...185
void free(void *ptr) ...314
FILE *freopen(char *filename, char *type, FILE *stream)...181
double frexp(double x, int *exp)...180
int fscanf(FILE *stream, char *format, ...)..418
int fseek(FILE *stream, long offset, int ptrname)...186
int fsetpos(FILE *stream, fpos_t *ptr)..177
int fstat(int fildes, struct stat *buf)..482
long ftell(FILE *stream) ...186
int funequal0_ok(double value, char *text) ..187
int fuz_width(double sigma, int deri, double acc, int maxlen) ...188
int fuzzy_derivative(IMAGE *in, IMAGE *out, double sigmax, double sigmay, int derix, int
deriy, double accx, double accy, int fwidthx, int fwidthy)..188
int fwrite(void *ptr, int size, int nitems, FILE *stream) ...185
int g_copy_object(IMAGE *grey_src, IMAGE *mask_src, IMAGE *dst, LIST *link).......190
int g_copy_object_to(IMAGE *grey_src, IMAGE *mask_src, IMAGE *dst, LIST *link, int
x, int y) ..191
int gabor_bank(IMAGE *out, double radial_bandw, double angular_bandw, int nr)............309
int gauss(IMAGE *in, IMAGE *out, double sigmax, double sigmay, double accx, double
accy, int fwidthx, int fwidthy)...192
int gauss_deblur(IMAGE *in, IMAGE *out, double sigma, int order, double accuracy, double
factor) ..193
int gauss_family(IMAGE *in, IMAGE *out, double sigma, int order, double accuracy, int
zero, int even)..194
char *gcvt(double value, int ndigit, char *buf) ..125
int geo_affine(IMAGE *in, IMAGE *out, double A0, double A1, double A2, double B1,
double B2, double B3, int method, int adapt, int border)..195
int geo_rotate(IMAGE *in, IMAGE *out, double angle, int method, int adapt, int border) ..195

SCIL_Image 1.4 – Reference Manual

548

int geo_warp(IMAGE *in, IMAGE *out).. 195
BOOL_MASK *get_bool_mask(IMAGE *im).. 197
int get_disp_mode(void) .. 32
int get_display_mode(IMAGE *image)... 198
int get_free_entry(SILOPTR siloptr) ... 198
void *get_im__error_stack(void) ... 458
IMAGE *get_image_by_name(char *name, int case_sensitive) ... 199
int get_image_window_info(IMAGE *im, char *buf)... 199
int get_pixel(IMAGE *im, int x, int y, [int z,] [int/double *val1, ...])................................... 200
int get_pixel_range(IMAGE *image, double minval, double maxval).................................. 202
int get_pixel_size(IMAGE *im) .. 203
int get_sizes(SILOPTR siloptr, int silo_key, int *sizex, int *sizey) 203
int get_slice(IMAGE *im3d, IMAGE *im2d, int orientation, int slice_no).......................... 204
int get_super_clut(void) ... 205
int get_super_histo(void) ... 205
int get_super_im(void)... 205
int getc(FILE *stream) ... 206
int getchar(void)... 206
char *GETENV(const char *name)... 207
void *GetImageInfo(IMAGE *im, char *name)... 15
char *getlogin(void)... 208
char *gets(char *s)... 209
int getw(FILE *stream).. 206
double glc_asymmetry(IMAGE *input, IMAGE *mask, int vectorx, int vectory)................ 210
double glc_contrast(IMAGE *input, IMAGE *mask, int vectorx, int vectory)..................... 210
double glc_entropy(IMAGE *input, IMAGE *mask, int vectorx, int vectory)..................... 210
double gld_asymmetry(IMAGE *input, IMAGE *mask, int vectorx, int vectory)................ 212
double gld_contrast(IMAGE *input, IMAGE *mask, int vectorx, int vectory) 212
double gld_entropy(IMAGE *input, IMAGE *mask, int vectorx, int vectory)..................... 212
double gld_mean(IMAGE *input, IMAGE *mask, int vectorx, int vectory) 212
double glr_greynonuniformity(IMAGE *input, IMAGE *mask).. 214
double glr_longrunemphasis(IMAGE *input, IMAGE *mask)... 214
double glr_nonuniformity(IMAGE *input, IMAGE *mask)... 214
double glr_percentage(IMAGE *input, IMAGE *mask)... 214
double glr_shortrunemphasis(IMAGE *input, IMAGE *mask).. 214
struct tm *gmtime(time_t *tp) ... 27
double gravx(LIST *link)... 215
double gravy(LIST *link)... 216
int greater0_ok(int value, char *text) ... 217
int greduce(IMAGE *in, IMAGE *out, int nlev, int auto_contr)... 218
grep <pattern> <filename>... 522
iut grey_dilation(IMAGE *in, IMAGE *out, int filtx, int filty, int filtz)............................... 218
int grey_erosion(IMAGE *in, IMAGE *out, int filtx, int filty, int filtz) 219
double grey_mean(LIST *link).. 220
int grey_morph_arbit(IMAGE *in, IMAGE *filter, IMAGE *out, int norm, int type)......... 221
int grey_morph_diamond(IMAGE *in, IMAGE *out, int fsize_nw_se, int fsize_ne_sw, int
type).. 221
int grey_morph_ellipse(IMAGE *in, IMAGE *out, int x_axis, int y_axis, double orient, int
norm, int type) .. 221

SCIL_Image 1.4 – Reference Manual

549

int grey_morph_hollow_ellipse(IMAGE *in, IMAGE *out, int x_axis, int y_axis, double
orient, int conn, int type) ...221
int grey_morph_round(IMAGE *in, IMAGE *out, int fsize, int norm, int type)...................221
double grey_stdev(LIST *link)...223
double grey_sum(LIST *link)...224
void handle_events(void) ..432
int handle_pim(int activate) ..225
int have_diff(IMAGE *in, IMAGE *out, int mode)...226
int height(LIST *link) ...227
help <pattern> ...228
int hide_object(IMAGE *image, LIST *link)..229
int hide_object_at(IMAGE *image, LIST *link, int x, int y) ..229
int hild_skelet(IMAGE *in, IMAGE *out, int iter, int endp, int bound)................................230
hist [start], [end] ..231
int hist2d(IMAGE *in1, IMAGE *in2, IMAGE *out, int clip) ..232
int histdata(IMAGE *in, VAR_OBJECT *data, int len, int clip)...233
HISTOGRAM *histo_data(IMAGE *image, HISTOGRAM *histo, int bins, double
minrange, double maxrange)...92
int histogram(IMAGE *in)..233
HISTOGRAM *histogram_by_name(char *name, int case_check).......................................234
int histogram_comment(HISTOGRAM *histo, char *comment)...235
int histogram_ok(HISTOGRAM *histo) ..234
int histogram_to_image(HISTOGRAM *histo, IMAGE *image, int out_type)236
int histogram_to_var_object(HISTOGRAM *histo, VAR_OBJECT *object)236
int hit_or_miss(IMAGE *in, IMAGE *out, IMAGE *se, int bound).....................................237
int holt_skelet(IMAGE *in, IMAGE *out, int iter, int bound)...238
int homomorphic(IMAGE *in IMAGE *,out, double low_amplitude, double filt_size)239
int hull(IMAGE *in, IMAGE *out) ..240
double hypot(double x, double y) ...241
int Ibenke(IMAGE *filter, IMAGE *out, double gain, double convergence, double sigma, int
width, int height) ...242
int iconify_window(IMAGE *im) ..393
IMAGE *ics_readfile(char *filename, IMAGE *image, ICS *ics_header, int xpos, int ypos)243
int ics_writefile(IMAGE *image, char *filename, ICS *ics_header).....................................244
int IGreyMap(IMAGE *image) ..245
void im_begin_func(const char *fname)...246
void im_clear_errors(void)..458
void im_clear_func_stack(void)..458
void im_debug_stack(int flag)...246
int im_eigenvectors(IMAGE *in, VAR_OBJECT *vecs, VAR_OBJECT *vals)277
void im_end_func(const char *fname)..246
int im_exposure_func(void (*fp)(IMAGE *), int handle_err)..249
int im_from_silo(SILOPTR siloptr, int silo_key, IMAGE *dstimage)248
void im_get_func_stack_copy(IM_FUNC_STACK *fstack, int *flevel)...............................458
int im_get_status(void) ...246
int im_input_func(void (*fp)(IMAGE *, int, int, int, IM_EVENT), int handle_err)249
int im_principle_component(IMAGE *in, VAR_OBJECT *vecs, IMAGE *out, int nr)277
int im_report_error(const char *fname, int status, const char *message)...............................246
IM_OHFUNC im_set_output_handler(IM_OHFUNC funcptr) ..251

SCIL_Image 1.4 – Reference Manual

550

int im_to_silo(SILOPTR siloptr, int silo_key, IMAGE *image)... 252
int im_val_ok(IMAGE *image, int a1 [, int v1, int a2, int v2, ...])....................................... 253
void im1ps(IMAGE *im, char *title, double xsize, double ysize, int fntsize, int border, int
where, char *spec).. 254
void im2ps(IMAGE *im1, char *title1, IMAGE *im2, char *title2, double xsize, double
ysize, int fntsize, int border, int where, char *spec)... 254
void im3ps(IMAGE *im1, char *title1, IMAGE *im2, char *title2, IMAGE *im3, char
*title3, double xsize, double ysize, int fntsize, int border, int where, char *spec)................. 254
void im4ps(IMAGE *im1, char *title1, IMAGE *im2, char *title2, IMAGE *im3, char
*title3, IMAGE *im4, char *title4, double xsize, double ysize, int fntsize, int border, int
where, char *spec).. 254
int image_ok(IMAGE *image) .. 255
void image_output(int stream, const char *format, ...)... 256
int image_readwrite_ok(IMAGE *image) ... 257
int image_text(IMAGE *out, int x, int y, int val, int boxval, int zoom, char *str) 257
int image_to_chaincode(IMAGE *image, VAR_OBJECT *output)..................................... 258
int image_to_histogram(IMAGE *image, HISTOGRAM *histo)... 236
int ImageMotionEvents(IMAGE *image, int mode) ... 260
int images_ok(IMAGE *image1, IMAGE *image2)... 261
int imaginary_im(IMAGE *in, IMAGE *out) ... 261
LIST *Imeasure(IMAGE *grey, IMAGE *binary, int garb, unsigned long shape, unsigned
long dens, int print_it, char *file) ... 262
int increment_im(IMAGE *in, IMAGE *out) ... 263
char *index(char *s, char c)... 487
int init_func_overload(void) .. 264
void init_scil_image(void).. 264
void init_silo(void) ... 265
int initimage(void).. 265
int errno; ... 360
int sys_nerr; .. 360
void interpret(char *str) .. 265
int invert_im(IMAGE *in, IMAGE *out).. 266
int Irectangle(IMAGE **im, char *mess, int x, int y, int z, int w, int h, int d)...................... 267
int is_clut(CLUT *clut).. 69
int is_histogram(HISTOGRAM *histo)... 234
int is_image(IMAGE *image).. 268
int is_var_object(VAR_OBJECT *var_object) ... 269
int isalnum(int c) .. 270
int isalpha(int c) ... 270
int isascii(int c)... 270
int iscntrl(int c)... 270
int isdigit(int c)... 270
int isgraph(int c) ... 270
int islower(int c) ... 270
int IsMouseDown(IM_EVENT mouse_event, int button)... 272
int isodata_threshold(IMAGE *in, IMAGE *out) ... 273
int isprint(int c)... 270
int ispunct(int c) ... 270
int isspace(int c) ... 270

SCIL_Image 1.4 – Reference Manual

551

int isupper(int c)..270
int isxdigit(int c)..270
int iter_ok(int iter)...274
void IThreshold(IMAGE *image)...275
int join_channels(IMAGE *in1, IMAGE *in2, IMAGE *in3, IMAGE *in4, IMAGE *out, int
im_type, int subtype)...478
IMAGE *jpeg_readfile(char *filename, IMAGE *image, int xpos, int ypos)........................276
int jpeg_writefile(IMAGE *image, char *filename)...276
int karhunen_loeve(IMAGE *in, IMAGE *out, int start, int end)..277
int KeyPressed(IM_EVENT event) ..278
int kirsch_temp(IMAGE *in, IMAGE *out, IMAGE *direction, int flag).............................279
int kuwahara(IMAGE *in, IMAGE *out, int fsize)..280
int kuwahara_round(IMAGE *in, IMAGE *out, int fsize)...281
int label(IMAGE *in, IMAGE *out, int conn)..282
long labs(long n) ...6
int laplace(IMAGE *in, IMAGE *out, int mask) ...283
double laxis(LIST *link)...284
double ldexp(doublex, int n) ...180
int lens(IMAGE *output, int width, int height, char *command)...285
int life(IMAGE *in, IMAGE *out, int iter, int bound) ...286
list [start],[end]..287
int list_cluts(void) ...288
int list_histograms(void) ...235
LIST *list_label(IMAGE *in, IMAGE *out, int con, int garb) ..289
int list_var_objects(void) ..290
int ln_im(IMAGE *in, IMAGE *out)...291
load [filename] ..292
int local_contrast(IMAGE *in, IMAGE *out, int radius, int frightmarexp, int fleftmarexp, int
fleftmargin, int frightmargin) ..293
int local_glc_asymmetry(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx,
int vectory) ..295
int local_glc_contrast(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx, int
vectory)..295
int local_glc_entropy(IMAGE *input, IMAGE *output, int fwidth, int fheight int vectorx, int
vectory)..295
int local_gld_asymmetry(IMAGE *input, IMAGE *output, int fwidth, int fheight,int vectorx,
int vectory) ..297
int local_gld_contrast(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx, int
vectory)..297
int local_gld_entropy(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx, int
vectory)..297
int local_gld_mean(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx, int
vectory)..297
double local_glr_greynonuniformity(IMAGE *input, IMAGE *output, int fwidth, int fheight)299
double local_glr_longrunemphasis(IMAGE *input, IMAGE *output, int fwidth, int fheight)299
double local_glr_nonuniformity(IMAGE *input, IMAGE *output, int fwidth, int fheight)..299
double local_glr_percentage(IMAGE *input, IMAGE *output, int fwidth, int fheight)........299
double local_glr_shortrunemphasis(IMAGE *input, IMAGE *output, int fwidth, int fheight)299
struct tm *localtime(time_t *tp) ...27

SCIL_Image 1.4 – Reference Manual

552

double log(double x) .. 142
double log10(double x) .. 142
int log10_im(IMAGE *in, IMAGE *out) .. 300
logoff .. 301
logon <logfile>... 301
int lookup(IMAGE *in, IMAGE *out, VAR_OBJECT *table, int clip) 302
int lower_gskeleton(IMAGE *in, IMAGE *g_out, int border, int endpixel)......................... 303
int lower_window(IMAGE *im).. 393
int lowest_int(IMAGE *in, IMAGE *out)... 304
ls <name> ... 522
long lseek(int fildes, long offset, int whence).. 305
macro [-i] [-v] <macrofile> .. 306
int majority(IMAGE *in, IMAGE *out, int bound, int weight)... 307
int make_color_im(IMAGE *im1, IMAGE *im2, IMAGE *im3, IMAGE *out)................. 308
int make_complex_im(IMAGE *in1, IMAGE *in2, IMAGE *out).. 73
int make_gabor(IMAGE *out, double fcentral, double sigma_u, double sigma_v, double
orientation) ... 309
IMAGE *make_image(char *name, int type, int lenx, int leny, int lenz, int posx, int posy) 310
ABSTRACT *MakeNewMenu(char *name, ABSTRACT *parentmenu)............................. 311
void *malloc(unsigned int size).. 314
int max_element(IMAGE *in, VAR_OBJECT *result, int whole, int dimension) 315
int maximum_cost_path(IMAGE *input, VAR_OBJECT *output, int markov, int circular)316
int maximum_im(IMAGE *in1, IMAGE *in2, IMAGE *out).. 317
int maximum_trace(IMAGE *input, IMAGE *output, int startx, int starty, int dir, int avglen,
int length, int minedge, double minval, VAR_OBJECT *table).. 318
LIST *measure(IMAGE *grey, IMAGE *binary, int garb, int inter, unsigned long shape,
unsigned long dens, int print_it, char *file).. 320
void *memchr(void *s, int c, int n) .. 321
int memcmp(void *s, void *t, int n)... 321
void *memcpy(void *s, void *t, int n).. 321
void *memmove(void *s, void *t, int n) .. 321
void *memset(void *s, int c, int n) ... 321
int merge(IMAGE *in, IMAGE *out, int direct, int iter)... 322
int merge_horizontal(IMAGE *in, IMAGE *out, int iter)... 322
int merge_vertical(IMAGE *in, IMAGE *out, int iter)... 323
int message_line_info(int code, char *buf).. 324
int min_element(IMAGE *in, VAR_OBJECT *result, int whole, int dimension)................ 315
int minimum_im(IMAGE *in1, IMAGE *in2, IMAGE *out)... 325
int mirror(IMAGE *in, IMAGE *out, int direct)... 326
int mirror_horizontal(IMAGE *in, IMAGE *out) ... 327
int mirror_vertical(IMAGE *in, IMAGE *out) ... 327
int mix(IMAGE *in, IMAGE *out, long thres, long val1, long val2, long val3)................... 328
int mix_filter(IMAGE *in1, IMAGE *in2, IMAGE *sum, IMAGE *diff, IMAGE *alpha) 329
time_t mktime(struct tm *tp).. 27
unsigned long mmops3x3(IMAGE *X, IMAGE *Y, IMAGE *M, int S, int T, int opcode, int
edge) ... 330
int modal_input(buf0, …) .. 334
double modf(double x, double *ip).. 180
int modulo_im(IMAGE *in1, IMAGE *in2, IMAGE *out).. 335

SCIL_Image 1.4 – Reference Manual

553

more [start],[end] ..287
int MouseMove(IM_EVENT mouse_event) ..336
int MousePress(IM_EVENT mouse_event) ...337
int MouseRelease(IM_EVENT mouse_event) ...338
int mul_complex(IMAGE *in, double real_part, double imaginary_part, IMAGE *out)........11
int mul_float(IMAGE *in, double constant, IMAGE *out)..12
int mul_im(IMAGE *in1, IMAGE *in2, IMAGE *out)...13
int mul_int(IMAGE *in, int constant, IMAGE *out) ...14
int natural_window_size(IMAGE im) ..339
int nearest_int(IMAGE *in, IMAGE *out)...340
int negation_im(IMAGE *in, IMAGE *out) ..340
int next_plane(IMAGE *im, int num) ..341
LIST *object_contour(IMAGE *mask, LIST *link) ...341
int object_dens_meas(IMAGE *grey, IMAGE *mask, LIST *link, unsigned long bitmap).342
int object_freeman_meas(IMAGE *mask, LIST *link, unsigned long bitmap)....................344
int object_moment_meas(IMAGE *mask, LIST *link, unsigned long bitmap)....................345
int object_rect_to_silo(SILOPTR siloptr, int silo_key, IMAGE *srcimage, LIST *link)......346
int object_shape_meas(IMAGE *mask, LIST *link, unsigned long bitmap)........................347
int objectsize(IMAGE *in, IMAGE *out) ..348
double od_mean(LIST *link)..220
double od_stdev(LIST *link)..223
double od_sum(LIST *link)..224
int odd_fsizes_ok(int fx, int fy, int fmax)...349
int odd_ok(int value, char *text)...350
int open(char *name, int mode) ..351
SILOPTR open_silo(char *siloname)...351
int opening3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound).................................352
int or_im(IMAGE *in1, IMAGE *in2, IMAGE *out)..352
FPI overload_func(char *name, IMAGE *im)...353
FPI overloadable_func(char *name, IMAGE *im)..353
int palette2color(IMAGE *in, IMAGE *out)..354
int parabolic_closing(IMAGE *in, IMAGE *out, double rho)...355
int parabolic_dilation(IMAGE *in, IMAGE *out, double rho)..355
int parabolic_erosion(IMAGE *in, IMAGE *out, double rho)...355
int parabolic_opening(IMAGE *in, IMAGE *out, double rho) ...355
int part_from_silo(SILOPTR siloptr, int silo_key, IMAGE *dstimage, int left, int top)........357
int part_image_display(IMAGE *im, int sx, int sy, int sz, int width, int height, int depth)...357
int part_to_silo(SILOPTR siloptr, int silo_key, IMAGE *srcimage, int left, int top, int sizex,
int sizey) ..358
int perc_to_pixel(IMAGE *in, int top, int mode, int slicenr, double perc)461
int percentile(IMAGE *in, IMAGE *out, int fx, int fy, int num)...358
double peri(LIST *link) ..359
void perror(char *s) ...360
int phase_im(IMAGE *in, IMAGE *out)...361
double pix_abs_sum(IMAGE *in)..361
long pix_count(IMAGE *in, int val) ..362
int pix_maxval(IMAGE *in, VAR_OBJECT *result, int whole, int dimension)...................363
int pix_minval(IMAGE *in, VAR_OBJECT *result, int whole, int dimension)363
int pix_sum(IMAGE *in, VAR_OBJECT *sum)...364

SCIL_Image 1.4 – Reference Manual

554

char *pix_value_str(IMAGE *im, int x, int y, int z) ... 364
PIXEL pixval(LIST *link)... 365
int pl_io_ok(int in, int out)... 366
int plane_ok(int plane) ... 367
int plane_to_binary(IMAGE *in, int plane, IMAGE *out).. 367
int planecopy(IMAGE *in, int inplane, IMAGE *out, int outplane)..................................... 368
int plot_histogram(IMAGE *in, int action, int clip) .. 368
int point_im(IMAGE **imptr, int *xptr, int *yptr, int *butptr)... 369
int point_im_display_buf(char *buf, int follow).. 370
LIST *point_object(IMAGE *image, LIST *list).. 371
int poll_mouse(IMAGEimage.h *image, int *im_x, int *im_y, int *win_x, int *win_y) 372
int positive_ok(int value, char *text) ... 373
int post_op(IMAGE *out).. 374
double pow(double x, double y)... 142
int power_im(IMAGE *in1, IMAGE *in2, IMAGE *out) .. 374
int power_of_2_ok(int value, char *text)... 375
int pre_op(IMAGE *first, IMAGE *second, int mode, int first_spec, unsigned long sec_type)376
int prefered_model(IMAGE *image, int inout, int model) .. 71
int prewitt_diff(IMAGE *in, IMAGE *out, int mode) .. 380
int prewitt_temp(IMAGE *in, IMAGE *out, IMAGE *direction, int flag)........................... 381
void print_RGB_matrices(void) ... 436
void print_XYZ_ref_white(void) ... 535
int printf(char *format, ...) ... 383
int propagation(IMAGE *in, IMAGE *mask, IMAGE *out, int iter, int conn, int edge)...... 385
int ps_head(char *filename, int papersize)... 386
int ps_image(IMAGE *image, int orient, int unit, double xpos, double ypos, double xsiz,
double ysiz, int border, char *comment, int textsize) .. 386
int ps_tail(void) .. 386
int pseudo(IMAGE *in, IMAGE *out) .. 388
int psremoval(IMAGE *in, IMAGE *out, int bound).. 388
int put_pixel(IMAGE *im, int x, int y, [int z,] int/doule val1, [int/double val2, ...]) 200
int put_slice(IMAGE *im2d, IMAGE *im3d, int orientation, int slice_no).......................... 204
int put_xy_into_image(VAR_OBJECT *input, IMAGE *output, int value) 389
int putc(int c, FILE *stream).. 390
int putchar(int c)... 390
int puts(char *s).. 391
int putw(int w, FILE *stream).. 390
pwd ... 522
int qpix(IMAGE *in, char *fname, int zoom, int append)... 392
void qsort(void *base, size_t n, size_t size, int (*cmp)(void *, void *)).................................. 48
void quit(void) .. 392
int raise_window(IMAGE *im) ... 393
int rand(void).. 394
int random_filter(IMAGE *out, double mean, double max, int symmetric) 394
int random_im(IMAGE *im, int alt).. 395
int range_ok(int value, int vmin, int vmax, char *text).. 396
int raster(IMAGE *in, IMAGE *out, int factor, int ratio).. 397
int read(int fildes, char *buffer, int nbytes).. 398
int read_var_object(char *filename, VAR_OBJECT *object) .. 399

SCIL_Image 1.4 – Reference Manual

555

IMAGE *readfile(char *filename, IMAGE *image, int xpos, int ypos).................................400
int real_im(IMAGE *in, IMAGE *out) ..401
int real_time_recognizer(IMAGE *in, IMAGE *out, IMAGE *se, int thr, int bound)..........401
void *realloc(void *ptr, unsigned int size)..314
int reduce(IMAGE *in, IMAGE *out, int hfact, int vfact, int dfact, int adjust)402
FILE *rel_searchfile(char *name, char *envvar, char *pathret)..421
void remark()...403
int remove(char *filename)...404
int remove_holes(IMAGE *in, IMAGE *out)..404
int RemoveImageInfo(IMAGE *im, char *name)..15
int rename(char *oldname, char *newname)..404
int resample_perp(IMAGE *input, VAR_OBJECT *xy, IMAGE *out, int width, int fitlength,
VAR_OBJECT *data, int threshold)...405
LIST *retrieve_object_list(void) ..406
void rewind(FILE *stream) ...186
int RGB_clear_extra(IMAGE *image)...52
int RGB_gamma_correction(IMAGE *in, IMAGE *out, double r_gamma, double g_gamma,
double b_gamma)..406
void RGB_ref_white(int Rn, int Gn, int Bn)...535
int rhull(IMAGE *in, IMAGE *out, int dist)..407
char *rindex(char *s, char c) ..487
LIST *rm_list(LIST *list)...407
void rm_object(LIST *link) ..408
int rm_silo(SILOPTR siloptr) ...409
int rm_silo_object(SILOPTR siloptr, int silo_key)...409
rmvar ...410
int roberts_diff(IMAGE *in, IMAGE *out, int fsize, int mode)...410
int robinson_temp(IMAGE *in, IMAGE *out, IMAGE *direction, int flag).........................412
IMAGE *roi_define(char *name, IMAGE *parent, int sx, int sy, int sz, int width, int height,
int depth, BOOL_MASK *mask)..413
int rotate(IMAGE *in, IMAGE *out, int iter)...414
run ...414
LIST *S_Append(INFO *item, LIST *list)..415
LIST *S_BreakList(LIST *list) ..415
LIST *S_CloseList(LIST *list)...415
LIST *S_CopyList(LIST *list) ...415
LIST *S_Delete(LIST *item, FREEFUNC FreeInfo) ..415
LIST *S_FindItem(INFO *item, LIST *list)..415
int S_FreeList(LIST *list, FREEFUNC FreeInfo)..415
LIST *S_Insert(INFO *item, LIST *list)..415
int S_Length(LIST *list)...415
LIST *S_Prefix(INFO *item, LIST *list)...415
LIST *S_SortList(LIST *list, COMPAREFUNC compare) ..415
double saxis(LIST *link) ..417
int scanf(char *format, ...)...418
FILE *searchfile(char *name, char *envvar, char *pathret)..421
int set_aio_disp(int mode) ..422
int set_border(IMAGE *out, double value, int top, int right, int bot, int left, int z_min, int
z_max)...422

SCIL_Image 1.4 – Reference Manual

556

int set_clut(IMAGE *image, CLUT *clut, int disp) .. 423
int set_color(IMAGE *image, int red_val, int green_val, int blue_val) 423
int set_color_model(IMAGE *image, int inout, int model)... 71
int set_color_model(IMAGE *image, int model) .. 71
void set_common_line(COMMON_LINE *com_line, int type, void *data, int x, int y, int z,
int t, int chan, double h_min, double h_max)... 424
void set_comp_margin(int size) ... 425
int set_complex(IMAGE *im, double real_part, double imaginary_part)............................. 425
void set_cross_dim(int cross_x, int cross_y, int cross_z) .. 376
int set_dialog_pos(int x, int y) ... 426
int set_display_mode(IMAGE *image, int mode, int global, int direct_display).................. 427
int set_display_slice(IMAGE *image, int slice) .. 428
int set_dither_mode(IMAGE *image, int mode, int direct_display)...................................... 429
int set_float(IMAGE *im, double constant)... 430
int set_im_type(IMAGE *im, int type).. 430
void set_image_flag(IMAGE *im, int flag) ... 431
int set_image_interaction(int mode) .. 432
int set_int(IMAGE *im, int constant) .. 433
int set_jpeg_quality(int percentage)... 276
void set_line_editor(int mode).. 434
int set_menu_pos(int x, int y)... 435
int set_rgb_bits(int r_bit, int g_bit, int b_bit)... 435
void set_RGB2XYZ_matrix(int matrix_type).. 436
void set_RGB2XYZ_mvalues(double m11, double m12, double m13, double m21, double
m22, double m23, double m31, double m32, double m33) ... 436
int set_roi_mask(IMAGE *roi_im, BOOL_MASK *mask).. 438
int set_roi_parent(IMAGE *roi_im, IMAGE *parent) .. 438
int set_roi_pos(IMAGE *roi_im, int sx, int sy, int sz)... 438
int set_screen_gamma(double gamma).. 439
int set_sigmoid_shape(float slope, float bending_point) ... 440
void set_start_pos(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4)......................... 441
void set_start_sizes(int w1, int h1, int w2, int h2, int w3, int h3, int w4, int h4) 441
void set_tiff_compression(int enable) .. 442
void set_tiff_image_number(int number)... 442
int set_var_object_class(VAR_OBJECT *obj, char *class).. 443
int set_var_object_comment(VAR_OBJECT *obj, char *comment).................................... 443
int set_var_object_data(VAR_OBJECT *obj, int type, int nr_channels, int nr_dim, int dim1,
int dim2, int dim3, int dim4, int dim5)... 444
int set_var_object_size(VAR_OBJECT *obj, int nr_channels, int nr_dim, int dim1, int dim2,
int dim3, int dim4, int dim5) .. 445
int set_var_object_type(VAR_OBJECT *obj, int type_of_data)... 446
int set_window_pos(IMAGE im, int x, int y) .. 447
int set_window_size(IMAGE *im, int sizex, int sizey) ... 447
void setbuffer(FILE *stream, char *buf, int size)... 448
void SETENV(const char *string).. 207
void setlinebuf(FILE *stream).. 448
void SetMacFileCreator(long creator).. 450
void SetMacFileType(long type).. 450
void setprompt(char *prompt) .. 451

SCIL_Image 1.4 – Reference Manual

557

int setvbuf(FILE *stream, char *buf, int type, int size) ..448
int sfp(IMAGE *In, IMAGE *Out, int Orientation, int Background, int Light, int View, int
Excitation, int Emission, int Extra_light)..452
sh ...522
int shape(IMAGE *label_im, VAR_OBJECT *label, VAR_OBJECT *xcentre,
VAR_OBJECT *ycentre, VAR_OBJECT *area, VAR_OBJECT *peri, VAR_OBJECT *p2a,
VAR_OBJECT *ccoun, VAR_OBJECT *count, int nosmooth)..454
int shift_im(IMAGE *in, IMAGE *out, int nshift)...455
void show_cur_dir(int flag)...456
int show_dmode_flags(IMAGE *image)..456
void show_error_stack(void)...458
int show_func_overload(char *spec_func, int im_type, char *file_name).............................457
void show_func_stack(void) ...458
int show_histogram_info(HISTOGRAM *histo) ...235
void show_image_info(IMAGE *im) ...459
int show_menu_layout(char *filename, int show_items) ...460
int show_statistics(IMAGE *in, int mode, int slicenr, int lo_limit, int hi_limit)461
int show_var_object_info(VAR_OBJECT *obj)..463
int sigma(IMAGE *in, IMAGE *out, int fsize)..463
int sign_im(IMAGE *in, IMAGE *out) ...464
void silo_list(SILOPTR siloptr) ..465
int silo_to_comp(SILOPTR siloptr, COMPTR comptr, int startlabel, int endlabel)466
double sin(double x) ...467
int sin_im(IMAGE *in, IMAGE *out) ...469
int single_pixels(IMAGE *in, IMAGE *out, int bound, int conn, int obj_bkg, int detect_rem)470
double sinh(double x) ...467
int sinh_im(IMAGE *in, IMAGE *out) ...469
int skelpoints(IMAGE *in, IMAGE *out, int bound, int opcode, int type)............................471
unsigned sleep(unsigned seconds)..472
int small_object_removal(IMAGE *in, IMAGE *out, int size) ...472
int sobel_diff(IMAGE *in, IMAGE *out, int mode)..473
void spb_publish(void *obj, int mess, void *data)..474
void spb_subscribe(void *obj, void *id, SPBFUNC subscr, void *cldata)475
void spb_unsubscribe(void *obj, void *id, SPBFUNC subscr) ..475
int spix(IMAGE *in, IMAGE *out)..476
int split(IMAGE *in, IMAGE *out, int direct, int iter)...477
int split_channels(IMAGE *in, IMAGE *out1, IMAGE *out2, IMAGE *out3, IMAGE
*out4) ..478
int split_color_im(IMAGE *in, IMAGE *out1, IMAGE *out2, IMAGE *out3)...................308
int split_horizontal(IMAGE *in, IMAGE *out, int iter)...479
int split_vertical(IMAGE *in, IMAGE *out, int iter)...479
int sprintf(char *s, char *format, ...) ...383
double sqrt(double x) ..142
int sqrt_im(IMAGE *in, IMAGE *out) ..480
void srand(unsigned int seed)..394
void srandom_im(long seed) ...395
int sscanf(char *s, char *format, ...)..418
int standard_gabor(IMAGE *out, double radial_bandw, double fcentral, double
angular_bandw, double orientation)..309

SCIL_Image 1.4 – Reference Manual

558

COMPTR start_comp(IMAGE *im).. 481
int stat(char *name, struct stat *buf) .. 482
int stereo_view(IMAGE *in, int mode, int view, IMAGE *left, IMAGE *middle, IMAGE
*out) ... 484
int stop_lens(void).. 285
int strcasecmp(const char *str1, const char *str2).. 485
char *strcat(char *s1, char *s2) ... 486
char *strchr(char *s, char c)... 486
int strcmp(char *s1, char *s2) .. 486
char *strcpy(char *s1, char *s2) .. 486
size_t strcspn(char *s, char *t) ... 487
char *strerror(int errnum) .. 487
size_t strftime(char *s, size_t smax, char *fmt, struct tm *tp)... 27
unsigned int strlen(char *s) ... 486
int strncasecmp(const char *str1, const char *str2, size_t num).. 485
char *strncat(char *s1, char *s2, int n) .. 486
int strncmp(char *s1, char *s2, int n)... 486
char *strncpy(char *s1, char *s2, int n)... 486
char *strpbrk(char *s, char *t) ... 487
char *strrchr(char *s, char c) ... 487
char *strsave(const char *str) .. 485
size_t strspn(char *s, char *t) ... 487
char *strstr(char *s, char *t) .. 487
double strtod(char *s, char **endp) ... 30
char *strtok(char *s, char *t) ... 487
long strtol(char *s, char **endp, int base) ... 30
unsigned long strtoul(char *s, char **endp, int base) ... 30
int sub_complex(IMAGE *in, double real_part, double imaginary_part, IMAGE *out)........ 11
int sub_float(IMAGE *in, double constant, IMAGE *out) ... 12
int sub_im(IMAGE *in1, IMAGE *in2, out)... 13
int sub_int(IMAGE *in, int constant, IMAGE *out) ... 14
void swab(char *from, char *to, int nbytes)... 488
int sync_display(void).. 489
int system(char *string).. 489
int t_morphology(IMAGE *in, IMAGE *out, IMAGE *se, int thr, int bound)..................... 490
int tan_im(IMAGE *in, IMAGE *out) .. 469
double tanh(double x) .. 467
int tanh_im(IMAGE *in, IMAGE *out) .. 469
int taylor_expansion(IMAGE *in, IMAGE *out, double sigma, int order, double accuracy,
double delta_x, double delta_y, double t) .. 492
int taylor_polynomial(VAR_OBJECT *out, int order, double delta_x, double delta_y, double
delta_s) ... 492
int taylor_segmentation(IMAGE *in, IMAGE *out, double dscale, int order, double smooth)493
IMAGE *tcl_readfile(char *filename, IMAGE *image, int xpos, int ypos).......................... 494
int tcl_writefile(IMAGE *image, char *filename)... 495
long tell(int fildes).. 305
int threshold(IMAGE *in, IMAGE *out, int level).. 496
int ti_block(IMAGE *out, int block_size, int forgr, int backgr).. 497
int ti_circle(IMAGE *out, int dist, int rad, int line_w, int forg, int back).............................. 497

SCIL_Image 1.4 – Reference Manual

559

int ti_fractal(IMAGE *out, double dim)...498
int ti_hlines(IMAGE *out, int dist, int start_p, int line_w, int forg, int back)........................499
int ti_ifr(IMAGE *out, double slope) ...498
int ti_lines(IMAGE *out, int dist, int start_p, int line_w, int forg, int back)..........................500
int ti_lshading(IMAGE *out, double top_r, double top_l, double bot_l)500
int ti_points(IMAGE *out, int dist, int start_p, int width, int forg, int back)501
int ti_qshading(IMAGE *out, int cval, int top_l) ...501
int ti_vlines(IMAGE *out, int dist, int start_p, int line_w, int forg, int back)........................502
IMAGE *tiff_readfile(char *filename, IMAGE *image, int xpos, int ypos)..........................503
int tiff_writefile(IMAGE *image, char *filename)...504
time <command> ..506
time_t time(time_t *tp) ...27
FILE *tmpfile(void) ...507
char *tmpnam(char s[L_tmpnam])...507
int tolower(int c) ...508
int toupper(int c) ...508
double trans_mean(LIST *link)..220
double trans_stdev(LIST *link) ..223
int tri_state_threshold(IMAGE *in, IMAGE *out, int thresh, int val1, int fl1, int val2, int fl2,
int val3, int fl3)..509
int truncate_im(IMAGE *in, IMAGE *out) ...510
int TWAcquire(IMAGE *image)..511
int TWAcquireArea(IMAGE *image, double res, double xleft, double ytop, double xright,
ybottom, int type) ..511
FPI type_overload_func(char *name, int type)..353
FPI type_overloadable_func(char *name, int type) ...353
int unequal0_ok(int value, char *text) ..512
int ungetc(char *c, FILE *stream)...513
int uniform(IMAGE *in, IMAGE *out, int filtx, int filty, int filtz)..514
int uniform_round(IMAGE *in, IMAGE *out, int fsize, int norm)..514
LIST *update(LIST *list)..515
int upper_gskeleton(IMAGE *in, IMAGE *g_out, IMAGE *b_out, int metric, int border, int
endpixel)..303
int val_check(IMAGE *image, int axis, int value) ...516
VAR_OBJECT *var_object(char *name, char *class, int type, int nr_channels, int nr_dim, int
dim1, int dim2, int dim3, int dim4, int dim5) ...517
VAR_OBJECT *var_object_by_name(char *name, int case_sensitive)................................518
int var_object_convert(VAR_OBJECT *source, VAR_OBJECT *destination, int out_type)519
int var_object_copy(VAR_OBJECT *obj1, VAR_OBJECT *obj2)......................................519
int var_object_ok(VAR_OBJECT *var_object)...520
int var_object_to_image(VAR_OBJECT *object, IMAGE *image, int type_of_image)......521
int vfuzzy_derivative(IMAGE *in, IMAGE *out, double sigmax, double sigmay, double
sigmaz, int derix, int deriy, int deriz, double accx, double accy, double accz, int fwidthx, int
fwidthy, int fwidthz)..188
int vgauss(IMAGE *in, IMAGE *out, double sigmax, double sigmay, double sigmaz, double
accx, double accy, double accz, int fwidthx, int fwidthy, int fwidthz)192
int vkuwahara(IMAGE *in, IMAGE *out, int fsize, int vari)...523
int vlaplace(in, out) ...524
int vlinear(IMAGE *in, IMAGE *filter, IMAGE *out)..524

SCIL_Image 1.4 – Reference Manual

560

int vmedian(IMAGE *in, IMAGE *out, int fsize)... 525
int vpercentile(IMAGE *in, IMAGE *out, int perc).. 525
int vsobel(IMAGE *in, IMAGE *out, int weight_factor).. 526
int warp_image(IMAGE *in, IMAGE *out).. 526
int width(LIST *link) ... 527
int win_to_comp(COMPTR comptr, IMAGE *image, int left, int top, int sizex, int sizey) . 528
int wrap(IMAGE *in, IMAGE *out, int hdispl, int vdispl, int zdispl)................................... 528
unsigned int write(int fildes, char *buffer, int nbytes) .. 529
int write_var_object(VAR_OBJECT *object, char *filename)... 530
int writefile(IMAGE *image, char *filename, int fileformat).. 531
int xmax(LIST *link) ... 532
int xmin(LIST *link).. 533
int xor_im(IMAGE *in1, IMAGE *in2, IMAGE *out)... 534
void XYZ_ref_white(double Xn, double Yn, double Zn) .. 535
int ymax(LIST *link) ... 536
int ymin(LIST *link).. 537
int z_planes(IMAGE *in, IMAGE *out, int start, int number, int border, int value) 538
int zcross(IMAGE *input, IMAGE *output, double threshold)... 538

SCIL_Image 1.4 – Reference Manual

561

Index

$
$ 522; 539

:
: 231; 539

?
? 228; 539

_
_exit 141

A
abort 5
abs 6
abs_im 7
abs_pathname 37
absd_im 8
acos 467
acos_im 469
ActivateMenu 311
add_applic_exposure_func 9
add_applic_win_input_func 10
add_complex 11
add_float 12
add_im 13
add_int 14
AddImageInfo 15
AddToMenu 311
aim_readfile 16
aio_label 17
all_im 18
anchor_skelet 19
and_im 20
angle 20
angle_detection 21
applic_exposure 22
applic_win_input 23
apply_frequency_bank 24
apply_spatial_bank 24
arbit_dilation 25
arbit_erosion 26
area 26
asctime 27
asin 467
asin_im 469

atan 467
atan_im 469
atan2 467
atan2_im 469
atexit 29
atof 30
atoi 30
atol 30
auto_display 32
auto_plane 33
auto_point 34
average 35

B
b_to_comp 35
back_project 36
bangle 36
bank_frequency_response 24
base_name 37
baskel 37
bcdist 38
bclose 38
bcont 38
bcount 38
bdila 39
bdist 39
bdskel 39
bedge 39
bend 40
benke 41
bernsen_threshold 100
beros 42
bi_threshold 496
bin_disp_colors 42
binary_to_grey 43
binary_to_plane 43
bit_ok 44
blabel 44
blife 44
bline 45
blow 45
bmaj 45
bopen 46
box_dimension 46
bperc 47
bprop 47
bpsr 47
bremh 47
bril 48

SCIL_Image 1.4 – Reference Manual

562

bsearch 48
bskbp 49
bskel 49
bskep 49
bsklp 49
bsngl 50
buf_from_silo 50
buf_to_silo 51

C
cabs 241
calc_greyvalue 52
calibrated_density 53
calloc 314
canny 54
cd 522; 539
cdens 55
ceil 146
chain 55; 539
chaincode_to_image 56
chaincode_to_xy 57
change_image_size 58
channel_bi_threshold 59
chdir 60
check_image_integrity 61
check_status 62
clear_im 63
clear_image_flag 431
clear_part_image 63
clear_var_object 64
clearerr 65
clip 66
clock 27
close 66
close_comp 67
close_silo 67
closing3x3 68
cmp_pixels 70
cnvo 70
color_get_model_size 71
color_set_color_model 71
com_dialog 72
compact_silo 73
complex_im 73
complx 74
compute_clut 74
con_ok 75
con6_ok 76
conjugate_im 76

conjugate_mul_im 77
constr_distance 78
contour 79
contrast_stretch 79
convert 80
convert_cmodel 81
convolution 82
cooccur 83
copy_channel 83
copy_clut 84
copy_histogram 92
copy_im 84
copy_masked_part 86
copy_object 85
copy_part_image 86
cos 467
cos_im 469
cosh 467
cosh_im 469
covariance 87
covmatrix 87
covplanematrix 88
cr 88
creat 89
create_clut 90
create_diff_window 95
create_display 91
create_histogram 92
create_image 94
create_live_window 95
create_silo 95
cst 96
ctime 27
cube_view 97

D
decrement_im 98
default_images 99
defuz 100
deiconify_window 393
del_im_exposure_func 249
del_im_input_func 249
dens 101
dens_limits 102
density 104
destroy_clut 105
destroy_histogram 92
destroy_image 105
destroy_var_object 106

SCIL_Image 1.4 – Reference Manual

563

dialog_options 107
dialog_stay_up 108
dialog_wm 108
different_ok 109
difftime 27
dilation3x3 110
dir_maximum 111
dir_name 37
disp_circle 112
disp_draw_mode 112
disp_draw_value 112
disp_oval 112
disp_rect 112
disp_srect 112
disp_text 112
disp_text_font 112
disp_vector 112
display_image 114
dist_average 115
dist_skelet 116
distance 117
dither 118
div_complex 11
div_float 12
div_im 13
div_int 14
do_alert 119
dots 120
draw_line 120
drawcurve 121
dump_histogram 235
dump_var_object 122
dyn_link 123
dyn_unlink 123

E
eccentr 124
ecvt 125
edge_average 126
edge_object 127
edge_ok 127
edge_preserve 128
edgps 128
eigen_segmentation 129
eigenfilters 130
eigenvectors 131
entropy_threshold 131
eql 132
equal_images 132

equalize 133
equivalent_im 133
eqv 134
erosion3x3 134
err_report 135
errno 360
eval 136
even_ok 139
EventType 140
exit 141
exp 142
exp_im 143
exp10_im 144
expand 145; 539

F
fabs 146
fast_fourier 147
fast_hartley 148
fblow 149
fclose 150
fcvt 125
fdopen 181
feof 65
ferror 65
fflush 150
fft 150
fg_buffers 151
fg_channels 152
fg_close 153
fg_depth 154
fg_exec 155
fg_freeze 161
fg_gain 156
fg_get_datasize 157
fg_get_last_error 158
fg_get_rgb_order 159
fg_getdata 160
fg_grab 161
fg_grab_image 162
fg_grab_next 163
fg_grab_series 164
fg_height 176
fg_init 165
fg_load 166
fg_maxdepth 154
fg_maxheight 167
fg_maxwidth 167
fg_minheight 168

SCIL_Image 1.4 – Reference Manual

564

fg_minwidth 168
fg_offset 169
fg_set_input_lut 170
fg_setdepth 171
fg_setgain 156
fg_setoffset 169
fg_setres 172
fg_setroi 173
fg_settype 174
fg_type 174
fg_width 176
fgetc 206
fgetpos 177
fgets 209
fgr_buffers 151
fgr_channels 152
fgr_close 153
fgr_depth 154
fgr_exec 155
fgr_freeze 161
fgr_gain 156
fgr_get_datasize 157
fgr_get_last_error 158
fgr_get_rgb_order 159
fgr_getdata 160
fgr_grab 161
fgr_grab_next 163
fgr_grab_series 164
fgr_height 176
fgr_init 165
fgr_maxdepth 154
fgr_maxheight 167
fgr_maxwidth 167
fgr_minheight 168
fgr_minwidth 168
fgr_offset 169
fgr_set_input_lut 170
fgr_setdepth 171
fgr_setgain 156
fgr_setoffset 169
fgr_setres 172
fgr_setroi 173
fgr_settype 174
fgr_type 174
fgr_width 176
fgreater0_ok 178
filter_energy_ratio 179
flip 179
floor 146

fmod 180
fopen 181
fpositive_ok 182
fprintf 383
fputc 390
fputs 391
fraction_im 183
frange_ok 184
fread 185
free 314
freopen 181
frexp 180
fscanf 418
fseek 186
fsetpos 177
fstat 482
ftell 186
funequal0_ok 187
fuz_width 188
fuzzy_derivative 188
fwrite 185

G
g_copy_object 190
g_copy_object_to 191
gabor_bank 309
gauss 192
gauss_deblur 193
gauss_family 194
gcvt 125
geo_affine 195
geo_rotate 195
geo_warp 195
get_bool_mask 197
get_display_mode 198
get_free_entry 198
get_im_error_stack 458
get_image_by_name 199
get_image_window_info 199
get_pixel 200
get_pixel_range 202
get_pixel_size 203
get_sizes 203
get_slice 204
get_super_clut 205
get_super_histo 205
get_super_im 205
getc 206
getchar 206

SCIL_Image 1.4 – Reference Manual

565

GETENV 207
GetImageInfo 15
getlogin 208
gets 209
getw 206
glc_asymmetry 210
glc_contrast 210
glc_entropy 210
gld_asymmetry 212
gld_contrast 212
gld_entropy 212
gld_mean 212
glr_greynonuniformity 214
glr_longrunemphasis 214
glr_nonuniformity 214
glr_percentage 214
glr_shortrunemphasis 214
gmtime 27
gravx 215
gravy 216
greater0_ok 217
greduce 218
grep 522; 539
grey_dilation 218
grey_erosion 219
grey_mean 220
grey_morph_arbit 221
grey_morph_diamond 221
grey_morph_ellipse 221
grey_morph_hollow_ellipse 221
grey_morph_round 221
grey_stdev 223
grey_sum 224

H
handle_events 432
handle_pim 225
have_diff 226
height 227
help 228; 539
hide_object 229
hide_object_at 229
hild_skelet 230
hist 231; 539
hist2d 232
histdata 233
histo_data 92
histogram 233
histogram_by_name 234

histogram_comment 235
histogram_ok 234
histogram_to_image 236
histogram_to_var_object 236
hit_or_miss 237
holt_skelet 238
homomorphic 239
hull 240
hypot 241

I
Ibenke 242
iconify_window 393
ics_readfile 243
ics_writefile 244
ifft 244
IGreyMap 245
im_begin_func 246
im_clear_errors 458
im_clear_func_stack 458
im_debug_stack 246
im_eigenvectors 277
im_end_func 246
im_exposure_func 249
im_from_silo 248
im_get_func_stack_copy 458
im_get_status 246
im_input_func 249
im_principle_component 277
im_report_error 246
im_set_output_handler 251
im_to_silo 252
im_val_ok 253
im1ps 254
im2ps 254
im3ps 254
im4ps 254
image_ok 255
image_output 256
image_readwrite_ok 257
image_text 257
image_to_chaincode 258
image_to_histogram 236
image_to_var_object 259
ImageMotionEvents 260
images_ok 261
imaginary_im 261
Imeasure 262
increment_im 263

SCIL_Image 1.4 – Reference Manual

566

index 486
init_func_overload 264
init_scil_image 264
init_silo 265
initimage 265
interpret 265
intlow 266
invert_im 266
Irectangle 267
is_histogram 234
is_image 268
is_var_object 269
isalnum 270
isalpha 270
isascii 270
iscntrl 270
isdigit 270
isgraph 270
islower 270
IsMouseDown 272
isodata_threshold 273
isprint 270
ispunct 270
isspace 270
isupper 270
isxdigit 270
iter_ok 274
IThreshold 275

J
join_channels 478
jpeg_readfile 276
jpeg_writefile 276

K
karhunen_loeve 277
KeyPressed 278
kirsch_temp 279
kuwahara 280
kuwahara_round 281

L
label 282
labs 6
laplace 283
laxis 284
ldexp 180
lens 285
life 286
list 287; 539

list_cluts 288
list_histograms 235
list_label 289
list_var_objects 290
lmax 290
lmin 291
ln 291
load 292; 539
local_contrast 293
local_glc_asymmetry 295
local_glc_contrast 295
local_glc_entropy 295
local_gld_asymmetry 297
local_gld_contrast 297
local_gld_entropy 297
local_gld_mean 297
local_glr_greynonuniformity 299
local_glr_longrunemphasis 299
local_glr_nonuniformity 299
local_glr_percentage 299
local_glr_shortrunemphasis 299
localtime 27
log 142
log10 142
log10_im 300
logoff 301; 539
logon 301; 539
lookup 302
lower_gskeleton 303
lower_window 393
lowest_int 304
ls 522; 539
lseek 305

M
macro 306; 539
majority 307
make_color_im 308
make_complex_im 73
make_gabor 309
make_image 310
MakeNewMenu 311
malloc 314
max_element 315
maximum_cost_path 316
maximum_im 317
maximum_trace 318
maxval 319
measure 320

SCIL_Image 1.4 – Reference Manual

567

memchr 321
memcmp 321
memcpy 321
memmove 321
memset 321
merge 322
merge_horizontal 322
merge_vertical 323
mergh 323
mergv 323
message_line_info 324
min_element 315; 316
minelm 325
minimum_im 325
minval 325
mirrh 326
mirror 326
mirror_horizontal 327
mirror_vertical 327
mirrv 328
mix 328
mix_filter 329
mktime 27
mmops3x3 330
modal_input 334
modf 180
modulo 335
more 287; 539
MouseMove 336
MousePress 337
MouseRelease 338
muj 339
mul_complex 11
mul_float 12
mul_im 13
mul_int 14

N
natural_window_size 339
nearest_int 340
negation_im 340
next_plane 341

O
object_contour 341
object_dens_meas 342
object_freeman_meas 344
object_moment_meas 345
object_rect_to_silo 346

object_shape_meas 347
objectsize 348
od_mean 220
od_stdev 223
od_sum 224
odd_fsizes_ok 349
odd_ok 350
open 351
open_silo 351
opening3x3 352
or_im 352
overload_func 353
overloadable_func 353

P
palette2color 354
parabolic_closing 355
parabolic_dilation 355
parabolic_erosion 355
parabolic_opening 355
part_from_silo 357
part_image_display 357
part_to_silo 358
perc_to_pixel 461
percentile 358
peri 359
perror 360
phase_im 361
pix_abs_sum 361
pix_average_val 362
pix_count 362
pix_maxval 363
pix_minval 363
pix_sum 364
pix_value_str 364
pixval 365
pl_io_ok 366
plane_ok 367
plane_to_binary 367
planecopy 368
plot_histogram 368
point_im 369
point_im_display_buf 370
point_object 371
poll_mouse 372
positive_ok 373
post_op 374
pow 142
power_im 374

SCIL_Image 1.4 – Reference Manual

568

power_of_2_ok 375
pre_op 376
prefered_color_model 71
prewd 379
prewitt_diff 380
prewitt_temp 381
prewt 382
print_RGB_matrices 436
print_XYZ_ref_white 535
printf 383
propagation 385
ps_head 386
ps_image 386
ps_tail 386
pseudo 388
psremoval 388
put 389
put_pixel 200
put_slice 204
put_xy_into_image 389
putc 390
putchar 390
puts 391
putw 390
pwd 522; 539

Q
qpix 392
qsort 48
quit 392

R
raise_window 393
rand 394
random_filter 394
random_im 395
range_ok 396
raster 397
read 398
read_var_object 399
readfile 400
real_im 401
real_time_recognizer 401
realloc 314
reduce 402
rel_searchfile 421
remark 403
remove 404
remove_holes 404

RemoveImageInfo 15
rename 404
resample_perp 405
retrieve_object_list 406
rewind 186
RGB_clear_extra 52
RGB_gamma_correction 406
RGB_ref_white 535
rhull 407
rindex 486
rm_list 407
rm_object 408
rm_silo 409
rm_silo_object 409
rmvar 410; 539
roberts_diff 410
robg 411
robinson_temp 412
roi_define 413
rotate 414
run 414; 539

S
S_Append 415
S_BreakList 415
S_CloseList 415
S_CopyList 415
S_Delete 415
S_FindItem 415
S_FreeList 415
S_Insert 415
S_Length 415
S_Prefix 415
S_SortList 415
saxis 417
scanf 418
searchfile 421
set 433
set_aio_disp 422
set_border 422
set_clut 423
set_color 423
set_color_model 71
set_common_line 424
set_comp_margin 425
set_complex 425
set_cross_dim 376
set_dialog_pos 426
set_display_mode 427

SCIL_Image 1.4 – Reference Manual

569

set_display_slice 428
set_dither_mode 429
set_float 430
set_im_type 430
set_image_flag 431
set_image_interaction 432
set_jpeg_quality 276
set_line_editor 434
set_menu_pos 435
set_rgb_bits 435
set_RGB2XYZ_matrix 436
set_RGB2XYZ_mvalues 436
set_roi_clean_display 437
set_roi_mask 438
set_roi_parent 438
set_roi_pos 438
set_screen_gamma 439
set_sigmoid_shape 440
set_start_pos 441
set_start_sizes 441
set_tiff_compression 442
set_tiff_image_number 442
set_var_object_class 443
set_var_object_comment 443
set_var_object_data 444
set_var_object_size 445
set_var_object_type 446
set_window_pos 447
set_window_size 447
setbuf 448
setbuffer 448
SETENV 207
setlinebuf 448
SetMacFileCreator 450
SetMacFileType 450
setprompt 451
setvbuf 448
sfp 452
sh 522; 539
shape 454
shift_im 455
show_cur_dir 456
show_dmode_flags 456
show_error_stack 458
show_func_overload 457
show_func_stack 458
show_histogram_info 235
show_image_info 459
show_menu_layout 460

show_statistics 461
show_var_object_info 463
sigma 463
sign_im 464
silo_list 465
silo_to_comp 466
sin 467
sin_im 469
single_pixels 470
sinh 467
sinh_im 469
size 471
skelpoints 471
sleep 472
small_object_removal 472
sobel_diff 473
sos 473
spb_publish 474
spb_subscribe 475
spb_unsubscribe 475
spix 476
splih 476
split 477
split_channels 478
split_color_im 308
split_horizontal 479
split_vertical 479
spliv 480
sprintf 383
sqrt 142
sqrt_im 480
srand 394
srandom_im 395
sscanf 418
ssum 480
standard_gabor 309
start_comp 481
stat 482
stereo_view 484
stop_bril 48
stop_lens 285
strcasecmp 485
strcat 486
strchr 486
strcmp 486
strcpy 486
strcspn 486
strerror 486
strftime 27

SCIL_Image 1.4 – Reference Manual

570

strlen 486
strncasecmp 485
strncat 486
strncmp 486
strncpy 486
strpbrk 486
strrchr 486
strspn 486
strstr 486
strtod 30
strtok 486
strtol 30
strtoul 30
sub_complex 11
sub_float 12
sub_im 13
sub_int 14
swab 488
sync_display 489
system 489

T
t_morphology 490
tan 467
tan_im 469
tanh 467
tanh_im 469
taylor_expansion 492
taylor_polynomial 492
taylor_segmentation 493
tcl_readfile 494
tcl_writefile 495
tell 305
threshold 496
ti_block 497
ti_circle 497
ti_fractal 498
ti_hlines 499
ti_ifr 498
ti_lines 500
ti_lshading 500
ti_points 501
ti_qshading 501
ti_vlines 502
ticb 502
ticc 502
tiff_readfile 503
tiff_writefile 504
tilh 504

tiln 505
tils 505
tilv 505
time 27; 506; 539
tipt 506
tiqs 506
tmpfile 507
tmpnam 507
tolower 508
toupper 508
trans_mean 220
trans_stdev 223
trans_sum 224
tri_state_threshold 509
truncate_im 510
TWAcquire 511
TWAcquireArea 511
txt 512
type_overload_func 353
type_overloadable_func 353

U
unequal0_ok 512
ungetc 513
uniform 514
uniform_round 514
update 515
upper_gskeleton 303

V
val_check 516
var_object 517
var_object_by_name 518
var_object_convert 519
var_object_copy 519
var_object_ok 520
var_object_to_image 521
vi 522; 539
vkuwahara 523
vlaplace 524
vlinear 524
vmedian 525
vpercentile 525
vsobel 526

W
warp_image 526
width 527
win_to_comp 528
wrap 528

SCIL_Image 1.4 – Reference Manual

571

write 529
write_var_object 530
writefile 531
writf 531

X
xmax 532
xmin 533
xor_im 534
XYZ_ref_white 535

Y
ymax 536
ymin 537

Z
z_planes 538
zcross 538

	Reference Manual Pages
	abort
	abs
	labs
	abs_im
	absd_im
	add_applic_exposure_func
	add_applic_win_input_func
	add_complex
	sub_complex
	mul_complex
	div_complex
	add_float
	sub_float
	mul_float
	div_float
	add_im
	sub_im
	mul_im
	div_im
	add_int
	sub_int
	mul_int
	div_int
	AddImageInfo
	GetImageInfo
	RemoveImageInfo
	aim_readfile
	aio_label
	all_im
	anchor_skelet
	and_im
	angle
	angle_detection
	applic_exposure
	applic_win_input
	apply_spatial_bank
	apply_frequency_bank
	bank_frequency_response
	arbit_dilation
	arbit_erosion
	area
	asctime
	clock
	ctime
	difftime
	gmtime
	localtime
	mktime
	strftime
	time
	atexit
	atof
	atoi
	atol
	strtod
	strtol
	strtoul
	auto_display
	don
	doff
	get_disp_mode
	auto_plane
	auto_point
	average
	b_to_comp
	back_project
	bangle
	base_name
	dir_name
	abs_pathname
	baskel
	bcdist
	bclose
	bcont
	bcount
	bdila
	bdist
	bdskel
	bedge
	bend
	benke
	beros
	bin_disp_colors
	binary_to_grey
	binary_to_plane
	bit_ok
	blabel
	blife
	bline
	blow
	bmaj
	bopen
	box_dimension
	bperc
	bprop
	bpsr
	bremh
	bril
	stop_bril
	bsearch
	qsort
	bskbp
	bskel
	bskep
	bsklp
	bsngl
	buf_from_silo
	buf_to_silo
	calc_greyvalue
	RGB_clear_extra
	calibrated_density
	canny
	cdens
	chain
	chaincode_to_image
	chaincode_to_xy
	change_image_size
	channel_bi_threshold
	chdir
	check_image_integrity
	check_status
	clear_im
	clear_part_image
	clear_var_object
	clearerr
	feof
	ferror
	clip
	close
	close_comp
	close_silo
	closing3x3
	clut_by_name
	clut_ok
	is_clut
	cmp_pixels
	cnvo
	color_get_model_size
	color_set_color_model
	prefered_color_model
	set_color_model
	com_dialog
	compact_silo
	complex_im
	make_complex_im
	complx
	compute_clut
	con_ok
	con6_ok
	conjugate_im
	conjugate_mul_im
	constr_distance
	contour
	contrast_stretch
	convert
	convert_cmodel
	convolution
	cooccur
	copy_channel
	copy_clut
	copy_im
	copy_object
	copy_part_image
	copy_masked_part
	covariance
	covmatrix
	covplanematrix
	cr
	creat
	create_clut
	create_display
	create_histogram
	destroy_histogram
	histo_data
	copy_histogram
	create_image
	create_live_window
	create_diff_window
	create_silo
	cst
	cube_view
	decrement_im
	default_images
	defuz
	bernsen_threshold
	dens
	dens_limits
	density
	destroy_clut
	destroy_image
	destroy_var_object
	dialog_options
	dialog_stay_up
	dialog_wm
	different_ok
	dilation3x3
	dir_maximum
	disp_circle
	disp_draw_mode
	disp_draw_value
	disp_oval
	disp_rect
	disp_srect
	disp_text
	disp_text_font
	disp_vector
	display_image
	dist_average
	dist_skelet
	distance
	dither
	do_alert
	dots
	draw_line
	drawcurve
	dump_var_object
	dyn_link
	dyn_unlink
	eccentr
	ecvt
	fcvt
	gcvt
	edge_average
	edge_object
	edge_ok
	edge_preserve
	edgps
	eigen_segmentation
	eigenfilters
	eigenvectors
	entropy_threshold
	eql
	equal_images
	equalize
	equivalent_im
	eqv
	erosion3x3
	err_report
	eval
	even_ok
	EventType
	exit
	_exit
	exp
	log
	log10
	pow
	sqrt
	exp_im
	exp10_im
	expand
	fabs
	floor
	ceil
	fast_fourier
	fast_hartley
	fblow
	fclose
	fflush
	fft
	fg_buffers
	fgr_buffers
	fg_channels
	fgr_channels
	fg_close
	fgr_close
	fg_depth
	fgr_depth
	fg_maxdepth
	fgr_maxdepth
	fg_exec
	fgr_exec
	fg_gain
	fgr_gain
	fg_setgain
	fgr_setgain
	fg_get_datasize
	fgr_get_datasize
	fg_get_last_error
	fgr_get_last_error
	fg_get_rgb_order
	fgr_get_rgb_order
	fg_getdata
	fgr_getdata
	fg_grab
	fgr_grab
	fg_freeze
	fgr_freeze
	fg_grab_image
	fg_grab_next
	fgr_grab_next
	fg_grab_series
	fgr_grab_series
	fg_init
	fgr_init
	fg_load
	fg_maxwidth
	fgr_maxwidth
	fg_maxheight
	fgr_maxheight
	fg_minwidth
	fgr_minwidth
	fg_minheight
	fgr_minheight
	fg_offset
	fgr_offset
	fg_setoffset
	fgr_setoffset
	fg_set_input_lut
	fgr_set_input_lut
	fg_setdepth
	fgr_setdepth
	fg_setres
	fgr_setres
	fg_setroi
	fgr_setroi
	fg_type
	fgr_type
	fg_settype
	fgr_settype
	fg_width
	fgr_width
	fg_height
	fgr_height
	fgetpos
	fsetpos
	fgreater0_ok
	filter_energy_ratio
	flip
	fmod
	frexp
	ldexp
	modf
	fopen
	freopen
	fdopen
	fpositive_ok
	fraction_im
	frange_ok
	fread
	fwrite
	fseek
	ftell
	rewind
	funequal0_ok
	fuzzy_derivative
	vfuzzy_derivative
	fuz_width
	g_copy_object
	g_copy_object_to
	gauss
	vgauss
	gauss_deblur
	gauss_family
	geo_affine
	geo_rotate
	geo_warp
	get_bool_mask
	get_display_mode
	get_free_entry
	get_image_by_name
	get_image_window_info
	get_pixel
	put_pixel
	get_pixel_range
	get_pixel_size
	get_sizes
	get_slice
	put_slice
	get_super_im
	get_super_clut
	get_super_histo
	getc
	getchar
	fgetc
	getw
	GETENV
	SETENV
	getlogin
	gets
	fgets
	glc_entropy
	glc_contrast
	glc_asymmetry
	gld_mean
	gld_entropy
	gld_contrast
	gld_asymmetry
	glr_nonuniformity
	glr_shortrunemphasis
	glr_longrunemphasis
	glr_greynonuniformity
	glr_percentage
	gravx
	gravy
	greater0_ok
	greduce
	grey_dilation
	grey_erosion
	grey_mean
	trans_mean
	od_mean
	grey_morph_round
	grey_morph_ellipse
	grey_morph_hollow_ellipse
	grey_morph_diamond
	grey_morph_arbit
	grey_stdev
	trans_stdev
	od_stdev
	grey_sum
	trans_sum
	od_sum
	handle_pim
	have_diff
	height
	help
	hide_object
	hide_object_at
	hild_skelet
	hist
	:
	hist2d
	histdata
	histogram
	histogram_by_name
	histogram_ok
	is_histogram
	histogram_comment
	dump_histogram
	list_histograms
	show_histogram_info
	histogram_to_image
	image_to_histogram
	histogram_to_var_object
	hit_or_miss
	holt_skelet
	homomorphic
	hull
	hypot
	cabs
	Ibenke
	ics_readfile
	ics_writefile
	ifft
	IGreyMap
	im_begin_func
	im_end_func
	im_report_error
	im_get_status
	im_debug_stack
	im_from_silo
	im_input_func
	del_im_input_func
	im_exposure_func
	del_im_exposure_func
	im_set_output_handler
	im_to_silo
	im_val_ok
	im1ps
	im2ps
	im3ps
	im4ps
	image_ok
	image_output
	image_readwrite_ok
	image_text
	image_to_chaincode
	image_to_var_object
	ImageMotionEvents
	images_ok
	imaginary_im
	Imeasure
	increment_im
	init_func_overload
	init_scil_image
	init_silo
	initimage
	interpret
	intlow
	invert_im
	Irectangle
	is_image
	is_var_object
	isalnum
	isalpha
	isascii
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	IsMouseDown
	isodata_threshold
	iter_ok
	IThreshold
	jpeg_readfile
	jpeg_writefile
	set_jpeg_quality
	karhunen_loeve
	im_eigenvectors
	im_principle_component
	KeyPressed
	kirsch_temp
	kuwahara
	kuwahara_round
	label
	laplace
	laxis
	lens
	stop_lens
	life
	list
	more
	list_cluts
	list_label
	list_var_objects
	lmax
	lmin
	ln_im
	load
	local_contrast
	local_glc_entropy
	local_glc_contrast
	local_glc_asymmetry
	local_gld_mean
	local_gld_entropy
	local_gld_contrast
	local_gld_asymmetry
	local_glr_nonuniformity
	local_glr_shortrunemphasis
	local_glr_longrunemphasis
	local_glr_greynonuniformity
	local_glr_percentage
	log10_im
	logon
	logoff
	lookup
	lower_gskeleton
	upper_gskeleton
	lowest_int
	lseek
	tell
	macro
	majority
	make_color_im
	split_color_im
	make_gabor
	standard_gabor
	gabor_bank
	make_image
	MakeNewMenu
	AddToMenu
	ActivateMenu
	malloc
	free
	realloc
	calloc
	max_element
	min_element
	maxelm
	maximum_cost_path
	maximum_im
	maximum_trace
	maxval
	measure
	memchr
	memcmp
	memcpy
	memmove
	memset
	merge
	merge_horizontal
	merge_vertical
	mergh
	mergv
	message_line_info
	minelm
	minimum_im
	minval
	mirrh
	mirror
	mirror_horizontal
	mirror_vertical
	mirrv
	mix
	mix_filter
	mmops3x3
	modal_input
	modulo_im
	MouseMove
	MousePress
	MouseRelease
	muj
	natural_window_size
	nearest_int
	negation_im
	next_plane
	object_contour
	object_dens_meas
	object_freeman_meas
	object_moment_meas
	object_rect_to_silo
	object_shape_meas
	objectsize
	odd_fsizes_ok
	odd_ok
	open
	open_silo
	opening3x3
	or_im
	overload_func
	overloadable_func
	type_overload_func
	type_overloadable_func
	palette2color
	parabolic_dilation
	parabolic_erosion
	parabolic_opening
	parabolic_closing
	part_from_silo
	part_image_display
	part_to_silo
	percentile
	peri
	perror
	errno
	phase_im
	pix_abs_sum
	pix_average_val
	pix_count
	pix_minval
	pix_maxval
	pix_sum
	pix_value_str
	pixval
	pl_io_ok
	plane_ok
	plane_to_binary
	planecopy
	plot_histogram
	point_im
	point_im_display_buf
	point_object
	poll_mouse
	positive_ok
	post_op
	power_im
	power_of_2_ok
	pre_op
	set_cross_dim
	prewd
	prewitt_diff
	prewitt_temp
	prewt
	printf
	fprintf
	sprintf
	propagation
	ps_head
	ps_image
	ps_tail
	pseudo
	psremoval
	put
	put_xy_into_image
	putc
	putchar
	fputc
	putw
	puts
	fputs
	qpix
	quit
	raise_window
	lower_window
	iconify_window
	deiconify_window
	rand
	srand
	random_filter
	random_im
	srandom_im
	range_ok
	raster
	read
	read_var_object
	readfile
	real_im
	real_time_recognizer
	reduce
	remark
	remove
	rename
	remove_holes
	resample_perp
	retrieve_object_list
	RGB_gamma_correction
	rhull
	rm_list
	rm_object
	rm_silo
	rm_silo_object
	rmvar
	roberts_diff
	robg
	robinson_temp
	roi_define
	rotate
	S_Append
	S_BreakList
	S_CloseList
	S_CopyList
	S_Delete
	S_FindItem
	S_FreeList
	S_Insert
	S_Length
	S_Prefix
	S_SortList
	saxis
	scanf
	fscanf
	sscanf
	searchfile
	rel_searchfile
	set_aio_disp
	set_border
	set_clut
	set_color
	set_common_line
	set_comp_margin
	set_complex
	set_dialog_pos
	set_display_mode
	set_display_slice
	set_dither_mode
	set_float
	set_im_type
	set_image_flag
	clear_image_flag
	set_image_interaction
	handle_events
	set_int
	set_line_editor
	set_menu_pos
	set_rgb_bits
	set_RGB2XYZ_matrix
	set_RGB2XYZ_mvalues
	print_RGB_matrices
	set_roi_clean_display
	set_roi_pos
	set_roi_mask
	set_roi_parent
	set_screen_gamma
	set_sigmoid_shape
	set_start_pos
	set_start_sizes
	set_tiff_compression
	set_tiff_image_number
	set_var_object_class
	set_var_object_comment
	set_var_object_data
	set_var_object_size
	set_var_object_type
	set_window_pos
	set_window_size
	setbuf
	setbuffer
	setlinebuf
	setvbuf
	SetMacFileType
	SetMacFileCreator
	setprompt
	sfp
	shape
	shift_im
	show_cur_dir
	show_dmode_flags
	show_func_overload
	show_func_stack
	show_error_stack
	im_clear_func_stack
	im_clear_errors
	get_im_error_stack
	im_get_func_stack_copy
	show_image_info
	show_menu_layout
	show_statistics
	perc_to_pixel
	show_var_object_info
	sigma
	sign_im
	silo_list
	silo_to_comp
	sin
	cos
	tan
	asin
	acos
	atan
	atan2
	sinh
	cosh
	tanh
	sin_im
	cos_im
	tan_im
	asin_im
	acos_im
	atan_im
	atan2_im
	sinh_im
	cosh_im
	tanh_im
	single_pixels
	size
	skelpoints
	sleep
	small_object_removal
	sobel_diff
	sos
	spb_publish
	spb_subscribe
	spb_unsubscribe
	spix
	splih
	split
	split_channels
	join_channels
	split_horizontal
	split_vertical
	spliv
	sqrt_im
	ssum
	start_comp
	stat
	fstat
	stereo_view
	strcasecmp
	strncasecmp
	strsave
	strcat
	strncat
	strcmp
	strncmp
	strcpy
	strncpy
	strlen
	strchr
	strrchr
	index
	rindex
	strspn
	strcspn
	strpbrk
	strstr
	strtok
	strerror
	swab
	sync_display
	system
	t_morphology
	taylor_polynomial
	taylor_expansion
	taylor_segmentation
	tcl_readfile
	tcl_writefile
	threshold
	bi_threshold
	ti_block
	ti_circle
	ti_fractal
	ti_ifr
	ti_hlines
	ti_lines
	ti_lshading
	ti_points
	ti_qshading
	ti_vlines
	ticb
	ticc
	tiff_readfile
	tiff_writefile
	tilh
	tiln
	tils
	tilv
	tipt
	tiqs
	tmpfile
	tmpnam
	tolower
	toupper
	tri_state_threshold
	truncate_im
	TWAcquire
	TWAcquireArea
	txt
	unequal0_ok
	ungetc
	uniform
	uniform_round
	update
	val_check
	var_object
	var_object_by_name
	var_object_convert
	var_object_copy
	var_object_ok
	var_object_to_image
	vi
	$
	ls
	cd
	sh
	pwd
	grep
	vkuwahara
	vlaplace
	vlinear
	vmedian
	vpercentile
	vsobel
	warp_image
	width
	win_to_comp
	wrap
	write
	write_var_object
	writefile
	writf
	xmax
	xmin
	xor_im
	XYZ_ref_white
	RGB_ref_white
	print_XYZ_ref_white
	ymax
	ymin
	z_planes
	zcross

	Command syntax in alphabetical order
	Index
	?
	_ B
	A
	C
	D
	F
	E
	G
	I
	H
	J
	K M
	L
	P
	N
	O
	S
	Q
	R
	T U
	V
	W
	Y
	Z X

	User Manual

