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Assignment feedback

Please study and utilize detailed assignment feedback

Grade < 5.0: insufficient; compensate with extra assignment
m 5.0 < Grade < 5.5: insufficient, unless compensated with
Assignment 2 to average of two assignments > 5.5

Grade > 5.5: sufficient

Questions? Ask your grader during the upcoming lab session (initials
on work)
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Today

Recap
Temporal networks
Network models

Network dynamics and evolution

Challenges in network science
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Recap
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Networks
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Notation

Concept Symbol
m Network (graph) G=(V,E)
m Nodes (objects, vertices, ... ) 74
m Links (ties, relationships, ...) E
m Directed — EC V x V — "links"
m Undirected — "edges”
m Number of nodes — |V/| n
m Number of edges — |E]| m
m Degree of node u deg(u)
m Distance from node u to v d(u,v)
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Real-world networks

Sparse networks density
Fat-tailed power-law degree distribution degree
Giant component components
B Low pairwise node-to-node distances distance
Many triangles clustering coefficient
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Real-world networks

Sparse networks density
Fat-tailed power-law degree distribution degree
Giant component components
B Low pairwise node-to-node distances distance
Many triangles clustering coefficient

m Many examples: communication networks, citation networks,
collaboration networks (Erdos, Kevin Bacon), protein interaction
networks, information networks (Wikipedia), webgraphs, financial
networks (Bitcoin) ...
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Advanced concepts

Assortativity, homophily
Reciprocity

Power law exponent
Planar graphs

Complete graphs
Subgraphs

Trees

Spanning trees
Diameter, eccentricity
Bridges

Graph traversal: DFS, BFS
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Centrality measures

closeness and betweenness centrality

Figure: Degree

by Claudio Rocchini, Wikipedia File:Centrality.svg

" Centrality
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Centrality measures: PageRank
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Centrality measures

m Distance/path-based measures:

m Degree centrality O(n)

m Closeness centrality O(mn)

m Betweenness centrality O(mn)

m Eccentricity centrality O(mn)
m Propagation-based measures:

m Hyperlink Induced Topic Search (HITS) O(m)

m PageRank O(m)
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Community detection

Figure: Communities: node subsets connected more strongly with each other
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Community detection

Figure: Communities: node subsets connected more strongly with each other
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Bow-tie structure of the web

Tendrils

/ 164m —
4.61%

LSCC
1,828 million
51.28%

Q Disconnected }ubes
O 208m 9.1m
) 5.84% 0.26%

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Temporal networks
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Temporal network analysis

m Graphs evolve over time
m Social networks: users join the network and create new friendships
m Webgraphs: new pages and links to pages appear on the internet
m Scientific networks: new papers are being co-authored and new
citations are made in these papers
m Interesting: small world properties emerge and are preserved during
evolution!
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Temporal networks

m Graph G' = (V' EY)
m Timewindow 0<t<T

m Usually at t = 0, either

m V% = and a new edge may bring new nodes, or
m V% = VT and only edges are added at each timestamp

m Timestamp on node v € V:
T(v) € [0; T]

m Timestamp on edge e € E:
7(e) € [0; T], or as common input format:
e=(u,v,t) with u,v e Vand t €0, T]
u v t as line contents of an edge list file
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Two schools

m Synthetic graphs model-driven
m Model or algorithm to generate graphs from scratch
m Tune parameters to obtain a graph similar to an observed network
m Statistical analysis

m Real-world graphs data-driven
m Obtain data from an actual network
m Compute and derive properties and determine similarity with other

networks

m Computational analysis
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Three models

m Random graphs (Erdds-Rényi)
m Bardbasi-Albert model

m Watts-Strogatz model
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Random graphs (1959)

m Initially, n nodes and 0 edges
m Add edges at random

m Edgar Gilbert / Erd6s-Rényi: a random graph G(n, p) has n nodes
and each undirected edge exists with probability 0 < p < 1. Expected
m=p-in(n—1) edges

m Erd6s-Rényi: a random graph G(n, m) has n nodes and m edges,
and this graph is chosen uniformly random from all possible graphs
with n nodes and m edges

m Result does not really resemble real-world graphs
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Erdos-Rényi
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http://barabasi.com/networksciencebook/chapter/3

Bardbasi-Albert model (1999)

m “Rich get richer”

m Preferential attachment: nodes with a high degree more strongly
attract new links

m An edge (u, v) is added between a new node u and a non-random
node v with probability:

_ deg(v)
PU) = 5=~ dea(w)

m (Plus some dampening based on the age of the node and correction
for links between high-degree nodes)

m Result: giant component and power-law degree distribution: the
scale-free property
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Bardbasi-Albert model (1999)

\/
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Random vs. scale-free

(a) Random network (b) Scale-free network

B. Svenson, Complex networks and social network analysis in information fusion
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Watts-Strogatz model (1998)

® Input number of nodes n, average degree k and parameter p
m Constructs undirected graph with n nodes and % -n- k edges

m Start with “circle-shaped” graph connecting each node to its k
nearest neighbors

m Until each edge has been considered, in clock-wise order,
Rewire each node's edge to a closest neighbor, to a random node
with probability p

m Result: low distances, giant component, high clustering
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Watts-Strogatz

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440-442.
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Discussion of models

a. b. C:
REGULAR SMALL-WORLD  RANDOM
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Increasing randomness

http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/bgc-sci.jpg
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Discussion of models

m Many generative more models exist: configuration model,
stub-matching model, ...

m ERGM, SAOM, REM, stochastic block models, ...

Frank Takes — SNACS — Lecture 5 — Network evolution and model extensions



Discussion of models

m Many generative more models exist: configuration model,
stub-matching model, ...

ERGM, SAOM, REM, stochastic block models, . ..

Better understanding of system'’s evolution

Compare real-world structure with model structure

Investigate system’s complexity
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Discussion of models

m Many generative more models exist: configuration model,
stub-matching model, ...

m ERGM, SAOM, REM, stochastic block models, ...

m Better understanding of system’s evolution
m Compare real-world structure with model structure

m Investigate system’s complexity

m Model is never perfect

m Not all small-world properties are captured
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Network evolution
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Levels of evolution

= Microscopic (local)

m Macroscopic (global)
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Microscopic evolution

Node-based investigation of evolution

Analysis of four online social networks: DELICIOUS, FLICKR,
LINKEDIN and YAHOO! ANSWERS

m Other than degree, preferential attachment (assortativity) can also be
based on node age and the number of hops (distance before link is
created)

m Derive model based on these properties

Leskovec et al., Microscopic Evolution of Social Networks, in Proceedings of KDD, pp. 462-470, 2008.
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Datasets

Network | T N E E, E. Ea % p K
FLICKR (03/2003-09/2005) | 621 584207 3,554,130 2594078 2257211 1475345 6563 132 144
DELICIOUS (05/2006-02/2007) | 292 203,234 430,707 348,437 348,437 96387 2766 1.15 081

ANSWERS (03/2007-06/2007) 121 598,314 1,834,217 1,067,021 1,300,698 303,858 2336 125 092
LINKEDIN (05/2003-10/2006) | 1294 7,550,955 30,682,028 30,682,028 30,682,028 15,201,596 4955 1.14 1.04

Table 1: Network dataset statistics. E, is the number of bidirectional edges, F', is the number of edges in undirected network, Fx is
the number of edges that close triangles, % is the fraction of triangle-closing edges, p is the densification exponent (E(t) o< N(t)"),
and « is the decay exponent (E;, o exp(—xh)) of the number of edges E), closing h hop paths
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Preferential attachment: degree
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p(a)

p(a)
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Preferential attachment: age
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Triadic closure

Frank Takes — SNACS — Lecture 5 — Network evolution and model extensions



Frank Takes

Preferential attachment: hops
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Microscopic evolution model

= Node arrival and lifetime determined using function (based on derived
exponential distribution)

m Node goes to sleep for a time gap, length again sampled from a
derived distribution

m Node wakes up to create an edge using (adjusted) triangle closing
model and goes to sleep

m Sleep time gets shorter as the degree of a node increases

m Node dies after lifetime is reached

Leskovec et al., Microscopic Evolution of Social Networks, in Proceedings of KDD, pp. 462-470, 2008.
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Link prediction

m Predict “next friendship” to be formed

Time T Time T+1

Liben-Nowell et al., The Link Prediction Problem for Social Networks, in Proceedings of CIKM, pp. 556-559, 2003.
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Levels of evolution

= Microscopic (local)

= Macroscopic (global)
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Macroscopic evolution

m Look at evolution of network as a whole
m Observe different characteristic graph properties

m Devise model that incorporates these properties

Dataset Nodes Edges Time DPL exponent
Arxiv HEP-PH 30,501 347,268 124 months 1.56
Arxiv HEP-TH 29,555 352,807 124 months 1.68
Patents 3,923,922 16,522,438 37 years 1.66
AS 6,474 26,467 | 785 days 1.18
Affiliation ASTRO-PH 57,381 133,179 10 years 1.15
Affiliation COND-MAT 62,085 108,182 10 years 110
Affiliation GR-QC 19,309 26,169 10 years 1.08
Affiliation HEP-PH 51,037 89,163 10 years 1.08
Affiliation HEP-TH 45,280 68,695 10 years 1.08
Email 35,756 123,254 18 months 1.12
IMDB 1,230,276 3,790,667 | 114 years 1.11
Recommendations 3,943,084 15,656,121 710 days 1.26

Leskovec et al., Graph Evolution: Densification and Shrinking Diameters, in TKDD 1(1): 2, 2007
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Macroscopic patterns

Densification: density increases over time
Giant component grows asymptotically
Shrinking average distance: d ~ log(n) does not hold over time

Shrinking effective diameter

m Effective diameter dg.9: path length such that 90% of all node pairs are
at distance dg.9 or less
m Diameter: longest shortest path length

Frank Takes — SNACS — Lecture 5 — Network evolution and model extensions 42 / 69



Effective diameter
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Effective diameter

Effective diameter

Effective diameter
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Densification
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Community evolution

Slightly different: user-defined communities

DBLP: scientific collaboration network where communities are
conferences that authors visit

m LIVEJOURNAL: online social network with explicit groups based on
common interest
m What motivates nodes to join a community?

What causes nodes to switch between communities?

m When do communities grow?

Backstrom et al., " Group formation in large social networks: membership, growth, and evolution”,
in Proceedings of KDD, pp. 44-54, 2006.
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Community evolution (LIVEJOURNAL)

Probability of joining a community when k friends are already members
0.025 T T T T T T T

0.015 -

probability

0.01 —

0.005 .
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Community evolution (DBLP)

Probability of joining a conference when k coauthors are already 'members’ of that conference
0.1 T T T T T T

probability

0.04 b

Frank Takes — SNACS — Lecture 5 — Network evolution and model extensions




Features

Table 1: Features.

Feature Set

Feature

Features related
to the community,
C'. (Edges between
only members of
the community are
Ec CE)

Number of members ([CT).

Number of individuals with a friend in C (the fringe of C) .

Number of edges with one end in the community and the other in the fringe.

Number of edges with both ends in the community, |Ec|.

The number of open triads: |{(u, v, w)|(u,v) € Ec A (v,w) € Ec A (u,w) ¢ Ec Au# w}|.
The number of closed triads: |{(x, v, w)|(n,v) € Ec A (v,w) € Ec A (u,w) € Ec}|.

The ratio of closed to open triads.

The fraction of individuals in the fringe with at least k friends in the community for 2 < k& < 19.
The number of posts and responses made by members of the community.

The number of members of the community with at least one post or response.

The number of responses per post.

Features related to
an individual « and
her set S of friends
in community C.

Number of friends in community (|S]).
Number of adjacent pairs in S (|{(u, v)[u, v € S A (u,v) € Ec}]).

Number of pairs in S connected via a path in Ec.

Average distance between friends connected via a path in E¢.

Number of community members reachable from S using edges in Ec.
Average distance from S' to reachable community members using edges in Ec.
The number of posts and response made by individuals in S.

The number of individuals in S with at least 1 post or response.

Frank Takes — SNACS
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Decision tree (LIVEJOURNAL)

proportion fringe
with 213 friends

<2.0e-4 22.0e-
proportion fringe ratio of closed
with 27 friends to open triads
<2. SV &36 -4 <0% \0.25
0.682 0.421
(593/2442) (1355/3565) (4096/6007) (655/1556)

Figure 5: The top two levels of decision tree splits for predicting
community growth in LiveJournal.
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Decision tree (LIVEJOURNAL)

proportion of friends in community
who are friends with each other

<0.099 >0.09
proportion fringe number of connected pairs
with = 19 friends of friends in community
<1.02e-3 >1.02e-3 / &
3.70e-4 7.222e-4 1.82e-3 4.88e-3

Figure 3: The top two levels of decision tree splits for predict-
ing single individuals joining communities in LiveJournal. The
overall rate of joining is 8.48e-4.
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Community evolution patterns

m Number of friends already in a community correlates with decision to
join a community

m Using various features, decision trees can predict community behavior

m In most models, parameters are specific for considered network

m Challenge: do not flatten data, but use actual network and
community structure, perhaps even parameter-free?
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Apple collaboration network

2007-2008 2009-2010 2011-2012

http://www.kenedict.com/apples-internal-innovation-network-unraveled/
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Network contraction

m Example: social network losing members to competitor

m Deletion of nodes (and its edges)

m Deletion of edges (and ultimately nodes)

m Merging nodes (a corporate network in which companies merge)
m What happens when you remove a hub?

m How about reversing existing models?
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Network science challenges
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Network science

m Network science: understanding data by investigating interactions
and relationships between individual data objects as a network

m Networks are the central model of computation
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Network science

m Network science: understanding data by investigating interactions
and relationships between individual data objects as a network

Networks are the central model of computation
Branch of data science focusing on network data
Method in complexity research

Complex systems approach: the behavior emerging from the network
reveals patterns not visible when studying the individuals

m For now assume: network science = social network analysis
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Network analysis
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Micro scale

0
c
2
@
=
(7]
o]
X
(3]
o)
°
<]
=
°
=

olution a

Frank Takes — SNACS — Lecture 5 — Network ev:




Macro scale
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Macro scale

Frank Takes — SNACS — Lecture 5 — Network evolution and model extensions



Network analysis

m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)
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Network analysis

m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)

m Meso scale: analyzing groups of nodes occurring in a particular
configuration
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Network analysis

m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)

m Meso scale: analyzing groups of nodes occurring in a particular
configuration (e.g., communities or networks motifs)
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Meso scale: communities
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Meso scale: communities




Meso scale: motifs
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Meso scale: motifs
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Meso scale: motifs
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Meso scale: motifs
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uniplex /
one-layer
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uniplex /
one-layer

multiplex /
multi-layer
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simulated

uniplex /
one-layer

multiplex /
multi-layer
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simulated real-world
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multi-layer
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dynamic
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Network (community) dynamics
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Multilayer networks
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Multilevel networks
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Higher-order networks / Simplicial complexes

a Network b Hypergraph c Simplicial complex

Battiston et al. " The physics of higher-order interactions in complex systems.” Nature Physics 17 (2021): 1093-1098.
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Upcoming week

m Next week: last lab session to work on Assignment 2

m Next week: no lecture; from Oct 27 onwards: student presentations

m Be sure you know the following:
m your track letter (A/B/C/D)
m with whom (Frank or Hanjo) you are presenting
m the time of your session: differs per week; 11:00 or 12:10; see website
m Presenting? On the Tuesday before your Friday presentation, drop by
Frank (157b; agree on a time the lab session before) or Hanjo (126;
Tuesdays between 15-17h).

m From now on, use the time between 9:00 and 11:00 to work on your
course project; we are there to help.
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