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Assignment feedback

Please study and utilize detailed assignment feedback

Grade < 5.0: insufficient; compensate with extra assignment

5.0 ≤ Grade < 5.5: insufficient, unless compensated with
Assignment 2 to average of two assignments ≥ 5.5

Grade ≥ 5.5: sufficient

Questions? Ask your grader during the upcoming lab session (initials
on work)
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Today

Recap

Temporal networks

Network models

Network dynamics and evolution

Challenges in network science
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Recap
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Networks
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Notation

Concept Symbol

Network (graph) G = (V ,E )

Nodes (objects, vertices, . . . ) V

Links (ties, relationships, . . . ) E

Directed — E ⊆ V × V — ”links”
Undirected — ”edges”

Number of nodes — |V | n

Number of edges — |E | m

Degree of node u deg(u)

Distance from node u to v d(u, v)
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Real-world networks

1 Sparse networks density

2 Fat-tailed power-law degree distribution degree

3 Giant component components

4 Low pairwise node-to-node distances distance

5 Many triangles clustering coefficient

Many examples: communication networks, citation networks,
collaboration networks (Erdös, Kevin Bacon), protein interaction
networks, information networks (Wikipedia), webgraphs, financial
networks (Bitcoin) . . .
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Advanced concepts

Assortativity, homophily

Reciprocity

Power law exponent

Planar graphs

Complete graphs

Subgraphs

Trees

Spanning trees

Diameter, eccentricity

Bridges

Graph traversal: DFS, BFS
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Centrality measures

Figure: Degree, closeness and betweenness centrality

Source: ”Centrality”’ by Claudio Rocchini, Wikipedia File:Centrality.svg
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Centrality measures: PageRank
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Centrality measures

Distance/path-based measures:

Degree centrality O(n)
Closeness centrality O(mn)
Betweenness centrality O(mn)
Eccentricity centrality O(mn)

Propagation-based measures:

Hyperlink Induced Topic Search (HITS) O(m)
PageRank O(m)
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Community detection

Figure: Communities: node subsets connected more strongly with each other
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Bow-tie structure of the web

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Temporal networks
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Temporal network analysis

Graphs evolve over time

Social networks: users join the network and create new friendships
Webgraphs: new pages and links to pages appear on the internet
Scientific networks: new papers are being co-authored and new
citations are made in these papers

Interesting: small world properties emerge and are preserved during
evolution!
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Temporal networks

Graph G t = (V t ,E t)

Time window 0 ≤ t ≤ T

Usually at t = 0, either

V 0 = ∅ and a new edge may bring new nodes, or
V 0 = V T and only edges are added at each timestamp

Timestamp on node v ∈ V :
τ(v) ∈ [0;T ]

Timestamp on edge e ∈ E :
τ(e) ∈ [0;T ], or as common input format:
e = (u, v , t) with u, v ∈ V and t ∈ [0,T ]
u v t as line contents of an edge list file
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Two schools

Synthetic graphs model-driven

Model or algorithm to generate graphs from scratch
Tune parameters to obtain a graph similar to an observed network
Statistical analysis

Real-world graphs data-driven

Obtain data from an actual network
Compute and derive properties and determine similarity with other
networks
Computational analysis
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Three models

Random graphs (Erdös-Rényi)

Barábasi-Albert model

Watts-Strogatz model
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Random graphs (1959)

Initially, n nodes and 0 edges

Add edges at random

Edgar Gilbert / Erdös-Rényi: a random graph G (n, p) has n nodes
and each undirected edge exists with probability 0 < p < 1. Expected
m = p · 1

2n(n − 1) edges

Erdös-Rényi: a random graph G (n,m) has n nodes and m edges,
and this graph is chosen uniformly random from all possible graphs
with n nodes and m edges

Result does not really resemble real-world graphs
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Erdös-Rényi

http://barabasi.com/networksciencebook/chapter/3
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Barábasi-Albert model (1999)

“Rich get richer”

Preferential attachment: nodes with a high degree more strongly
attract new links

An edge (u, v) is added between a new node u and a non-random
node v with probability:

p(v) =
deg(v)∑

w∈V deg(w)

(Plus some dampening based on the age of the node and correction
for links between high-degree nodes)

Result: giant component and power-law degree distribution: the
scale-free property
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Barábasi-Albert model (1999)
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Random vs. scale-free

B. Svenson, Complex networks and social network analysis in information fusion
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Watts-Strogatz model (1998)

Input number of nodes n, average degree k and parameter p

Constructs undirected graph with n nodes and 1
2 · n · k edges

Start with “circle-shaped” graph connecting each node to its k
nearest neighbors

Until each edge has been considered, in clock-wise order,
Rewire each node’s edge to a closest neighbor, to a random node
with probability p

Result: low distances, giant component, high clustering
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Watts-Strogatz

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440-442.
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Discussion of models

http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/bgc-sci.jpg
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Discussion of models

Many generative more models exist: configuration model,
stub-matching model, . . .

ERGM, SAOM, REM, stochastic block models, . . .

Better understanding of system’s evolution

Compare real-world structure with model structure

Investigate system’s complexity

Model is never perfect

Not all small-world properties are captured
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Network evolution
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Levels of evolution

Microscopic (local)

Macroscopic (global)
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Microscopic evolution

Node-based investigation of evolution

Analysis of four online social networks: Delicious, Flickr,
LinkedIn and Yahoo! Answers

Other than degree, preferential attachment (assortativity) can also be
based on node age and the number of hops (distance before link is
created)

Derive model based on these properties

Leskovec et al., Microscopic Evolution of Social Networks, in Proceedings of KDD, pp. 462-470, 2008.
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Datasets
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Preferential attachment: degree
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Preferential attachment: age
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Triadic closure
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Preferential attachment: hops

Frank Takes — SNACS — Lecture 5 — Network evolution and model extensions 36 / 69



Microscopic evolution model

Node arrival and lifetime determined using function (based on derived
exponential distribution)

Node goes to sleep for a time gap, length again sampled from a
derived distribution

Node wakes up to create an edge using (adjusted) triangle closing
model and goes to sleep

Sleep time gets shorter as the degree of a node increases

Node dies after lifetime is reached

Leskovec et al., Microscopic Evolution of Social Networks, in Proceedings of KDD, pp. 462-470, 2008.
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Link prediction

Predict “next friendship” to be formed

Liben-Nowell et al., The Link Prediction Problem for Social Networks, in Proceedings of CIKM, pp. 556-559, 2003.
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Levels of evolution

Microscopic (local)

Macroscopic (global)
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Macroscopic evolution

Look at evolution of network as a whole

Observe different characteristic graph properties

Devise model that incorporates these properties

Leskovec et al., Graph Evolution: Densification and Shrinking Diameters, in TKDD 1(1): 2, 2007
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Enron

Frank Takes — SNACS — Lecture 5 — Network evolution and model extensions 41 / 69



Macroscopic patterns

Densification: density increases over time

Giant component grows asymptotically

Shrinking average distance: d ∼ log(n) does not hold over time

Shrinking effective diameter

Effective diameter δ0.9: path length such that 90% of all node pairs are
at distance δ0.9 or less
Diameter: longest shortest path length
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Effective diameter
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Effective diameter
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Giant component
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Densification
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Community evolution

Slightly different: user-defined communities

DBLP: scientific collaboration network where communities are
conferences that authors visit

LiveJournal: online social network with explicit groups based on
common interest

What motivates nodes to join a community?

What causes nodes to switch between communities?

When do communities grow?

Backstrom et al., ”Group formation in large social networks: membership, growth, and evolution”,
in Proceedings of KDD, pp. 44–54, 2006.
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Community evolution (LiveJournal)
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Community evolution (DBLP)
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Features
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Decision tree (LiveJournal)
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Decision tree (LiveJournal)
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Community evolution patterns

Number of friends already in a community correlates with decision to
join a community

Using various features, decision trees can predict community behavior

In most models, parameters are specific for considered network

Challenge: do not flatten data, but use actual network and
community structure, perhaps even parameter-free?
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Apple collaboration network

http://www.kenedict.com/apples-internal-innovation-network-unraveled/
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Network contraction

Example: social network losing members to competitor

Deletion of nodes (and its edges)

Deletion of edges (and ultimately nodes)

Merging nodes (a corporate network in which companies merge)

What happens when you remove a hub?

How about reversing existing models?
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Network science challenges
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Network science

Network science: understanding data by investigating interactions
and relationships between individual data objects as a network

Networks are the central model of computation

Branch of data science focusing on network data

Method in complexity research

Complex systems approach: the behavior emerging from the network
reveals patterns not visible when studying the individuals

For now assume: network science = social network analysis
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Network analysis
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Micro scale
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Macro scale
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Macro scale
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Network analysis

Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)

Meso scale: analyzing groups of nodes occurring in a particular
configuration (e.g., communities or networks motifs)
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Meso scale: communities
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Meso scale: communities
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Meso scale: motifs
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Meso scale: motifs

Frank Takes — SNACS — Lecture 5 — Network evolution and model extensions 63 / 69



Meso scale: motifs
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Meso scale: motifs
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Network (community) dynamics

t=2

t=1

t=0

t=2

t=1

t=0
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Multilayer networks
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Multilevel networks
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Higher-order networks / Simplicial complexes

Battiston et al. ”The physics of higher-order interactions in complex systems.” Nature Physics 17 (2021): 1093–1098.
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Upcoming week

Next week: last lab session to work on Assignment 2

Next week: no lecture; from Oct 27 onwards: student presentations

Be sure you know the following:

your track letter (A/B/C/D)
with whom (Frank or Hanjo) you are presenting
the time of your session: differs per week; 11:00 or 12:10; see website

Presenting? On the Tuesday before your Friday presentation, drop by
Frank (157b; agree on a time the lab session before) or Hanjo (126;
Tuesdays between 15-17h).

From now on, use the time between 9:00 and 11:00 to work on your
course project; we are there to help.
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