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Networks

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality




Notation

Concept Symbol
m Network (graph) G=(V,E)
m Nodes (objects, vertices, ... ) 74
m Links (ties, relationships, ...) E
m Directed — EC V x V — "links"
m Undirected — "edges”
m Number of nodes — |V/| n
m Number of edges — |E]| m
m Degree of node u deg(u)
m Distance from node u to v d(u,v)
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Real-world networks

Sparse networks density
Fat-tailed power-law degree distribution degree
Giant component components
B Low pairwise node-to-node distances distance
Many triangles clustering coefficient

m Many examples: communication networks, citation networks,
collaboration networks (Erdos, Kevin Bacon), protein interaction
networks, information networks (Wikipedia), webgraphs, financial
networks (Bitcoin) ...
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Advanced concepts

centrality




Advanced concepts

Assortativity
Reciprocity

Power law exponent
Planar graphs
Complete graphs
Subgraphs

Trees

Spanning trees
Diameter

Bridges

Graph traversal
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Assortativity

m Assortativity: extent to which “similar” nodes attract each other
Value close to -1 if dissimilar nodes more often attract each other
Value close to 1 if similar nodes more often attract each other
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Assortativity

m Assortativity: extent to which “similar” nodes attract each other
Value close to -1 if dissimilar nodes more often attract each other
Value close to 1 if similar nodes more often attract each other

m Degree assortativity: nodes with a similar degree connect more
frequently

m Attribute assortativity: nodes with similar attributes attract each
other

m Influence on connectivity of network, spreading of information, etc.
m Social networks: homophily

m Complex networks: mixing patterns
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Degree assortativity

Figure: Degree assortativity (left) and degree disassortativity (right)

Image: Estrada et al., Clumpiness mixing in complex networks, J. Stat. Mech. Theor. Exp. P03008 (2008).
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Attribute assortativity

B - C
o
. % * YA
S . % y
. o o 0
i °
s ‘.‘ @ \:‘
JRew
® .
L ]
: A=0.06 A=096

Figure: Attribute assortativity

Image: Moya-Garcia, A. et al. Identification of New Toxicity Mechanisms ... Genes, 13(7), 1292, 2022.
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Reciprocity

m Reciprocity: measure of the likelihood of nodes in a directed network
to be mutually linked

m Let m._- be the number of links in the directed network for which
there also exists a symmetric counterpart:

me—s = {(u,v) € E: (v,u) € E}]

m Reciprocity r is then the fraction of links that is symmetric:

m<—>
m

r =

m Measures the extent to which relationships are mutual

m Useful to compare between networks
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Power law degree distribution
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Source: http://konect.cc/networks/citeseer/
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Power law exponent in undirected networks

m The probabibility px of a node having degree k depends on the power
law exponent ~:
pk ~ k7
m This means that
log px ~ — log k
And as such, the straight line in log-log scale plots is observed.
m In real-world networks, v has a value of around 2 to 3

m Useful to compare between similar networks
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Power law exponent in directed networks

Source: A. Barabasi, Network Science, 2016.

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality 14 / 49



Planar graphs

m Planar graphs can be visualized such that no two edges cross each
other

Vs V2

VE V2N

(a) Planar Graph (b) Non-planar Graph

(v2)

Image: Zafarani et al., Social Media Mining, 2014.
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Complete graphs

m In complete graphs, all pairs of nodes are connected

= The number of edges m is equal to 2 - n- (n—1)

0 o-0 [\ X

Figure: Complete graphs of size 1, 2, 3 and 4

Image: Zafarani et al., Social Media Mining, 2014.
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Ego network

Alter

Ego

Figure: The ego network of a given node in a network consists of the set of
nodes containing that node (“Ego”) and its direct neighbors (“Alters"), and all
edges present between the nodes in this set

Image: Wikipedia " Egocentric network.png”, accessed 2022.
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Trees

m A tree is a graph without cycles
m A set of disconnected trees is called a forest

m A tree with n nodes has m = n — 1 edges
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Image: Zafarani et al., Social Media Mining, 2014.
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Trees

Image: M. Lima, Book of trees: Visualizing branches of knowledge, 2014.
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Subgraphs

m Given a graph G = (V,E)

m Subgraph G’ = (V' E’) with V' C V and E' C (EN (V' x V’))
(subset of the nodes and edges of the original network, commonly
used when defining communities or clusters)

m Subgraph G’ = (V,E’) with E' C E
(only edges are left out, commonly used when modelling network
evolution)

m Special subgraphs: spanning trees
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Spanning trees

m A spanning tree is a tree and subgraph of a graph that covers all
nodes of the graph

m In weighted graphs, a minimal spanning tree is one of minimal edge
weight

Image: Zafarani et al., Social Media Mining, 2014.
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Diameter

m Distance d(u, v) = length of shortest path from u to v

m Diameter D(G) = max, vev d(u, v) = maximal distance
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Diameter

m Distance d(u, v) = length of shortest path from u to v

m Diameter D(G) = max, vev d(u, v) = maximal distance

m Eccentricity e(u) = max,cv d(u, v) = length of longest shortest path
from u

Diameter D(G) = max,cv e(u) = maximal eccentricity

Radius R(G) = min,cy e(u) = minimal eccentricity
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Bridges

m Bridge: an edge whose removal will result in an increase in the
number of connected components

m Also called cut edges, with applications in community detection

Image: Zafarani et al., Social Media Mining, 2014.
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Graph traversal

m Given a network, how can we explore it?
m Specifically: exploration starting from a particular source

m Node adjacency: two nodes are adjacent if there is an edge
connecting them

m Neighborhood: set of nodes adjacent to a node v € V:
N(v)={we V:(v,w)e€ E}

m Techniques to iteratively explore neighborhoods: DFS and BFS
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Graph traversal: DFS

m Depth First Search (DFS)
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Image: Zafarani et al., Social Media Mining, 2014.

centrality




Graph traversal: BFS
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Source: A. Barabasi, Network Science, 2016.
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Graph traversal: BFS

= Breadth First Search (BFS)

m Graph traversal in level-order
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Image: Zafarani et al., Social Media Mining, 2014.
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Graph traversal: BFS

= Breadth First Search (BFS)

m From source node, create a rooted spanning tree of the graph
m Graph traversal in level-order

m Often implemented using a queue

m BFS considers traversing each of the m edges once, so O(m)

m Important for computing various centrality measures

your friends

friends of your friends

Image: Zafarani et al., Social Media Mining, 2014.

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality 28 / 49



Centrality

centrality




Centrality

m Given a social network, which person is most important?

m What is the most important page on the web?

m Which protein is most vital in a biological network?

m Who is the most respected author in a scientific citation network?

m What is the most crucial router in an internet topology network?
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Centrality

m Node centrality: the importance of a node with respect to the other
nodes based on the structure of the network

m Centrality measure: computes the centrality value of all nodes in
the graph

m For all v € V a measure M returns a value Cpy(v) € [0;1]

m Cy(v) > Cy(w) means that node v is more important than w
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Degree centrality

m Undirected graphs — degree centrality: measure the number of
adjacent nodes

deg(v)
C =
d(v) ==+
m Directed graphs — indegree centrality and outdegree centrality

m Local measure

m O(1) time to compute
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Degree distribution

frequency

1000 1500 2000 2500
degree

0 500

m Not so many distinct values in the lower ranges
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Degree centrality
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Degree centrality
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Closeness centrality

m Closeness centrality: based on the average distance to all other

nodes 1 -1
C(v) = (n 1 Z d(v, W))

m Global distance-based measure

m O(mn) to compute: one BFS in O(m) for each of the n nodes

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality 37 /49



Closeness centrality

m Closeness centrality: based on the average distance to all other

nodes 1 -1
C(v) = (n 1 Z d(v, W))

m Global distance-based measure

m O(mn) to compute: one BFS in O(m) for each of the n nodes
m Connected component(s). ..

= Harmonic centrality: variant of closeness (not normalized)

4= X G

wev
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Closeness centrality
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Degree vs. closeness centrality
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Betweenness centrality

m Betweenness centrality: measure the number of shortest paths that
run through a node

aw= Y e

o(v,w)
v,wevV
VEW,UFV U#W
o(v,w) is the number of shortest paths from v to w
oy(v, w) is the number of such shortest paths that run through u
Divide by largest value to normalize to [0; 1]

Global path-based measure

O(2mn) time to compute (two "BFSes” for each node)

U. Brandes, " A faster algorithm for betweenness centrality”, Journal of Mathematical Sociology 25(2): 163-177, 2001
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Betweenness centrality
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Degree vs. betweeness centrality
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Centrality measures compared

closeness and betweenness centrality

Figure: Degree

by Claudio Rocchini, Wikipedia File:Centrality.svg
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Eccentricity centrality

= Node eccentricity: length of a longest shortest path (distance to a
node furthest away)
= d
e(v) = maxd(v,w)

m Eccentricity centrality:

m Worst-case variant of closeness centrality
m O(mn) to compute: one BFS in O(m) for each of the n nodes
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Eccentricity centrality

= Node eccentricity: length of a longest shortest path (distance to a
node furthest away)
= d
e(v) = maxd(v,w)

m Eccentricity centrality:

m Worst-case variant of closeness centrality
m O(mn) to compute: one BFS in O(m) for each of the n nodes

m Large optimizations possible using lower and upper bounds, see
F.W. Takes and W.A. Kosters, Computing the Eccentricity Distribution
of Large Graphs, Algorithms, vol. 6, nr. 1, pp. 100-118, 2013.
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Eccentricity centrality
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Degree vs. eccentricity centrality
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Centrality measures

m Distance/path-based measures:

m Degree centrality O(n)
m Closeness centrality O(mn)
m Betweenness centrality O(mn)
m Eccentricity centrality O(mn)

(complexity is for computing centralities of all n nodes)
m Many more: Eigenvector centrality, Katz centrality, ...
m Approximating these measures is also possible

m Also: propagation-based centrality measures like PageRank
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Periodic table of centrality
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Homework for next week / Upcoming lab session

m Make serious progress with Assignment 1

m Make choice of participation in course explicit. Un-enroll no later
than September 25; anyone registered after that date will get a grade

m Consult the list of project topics on course website,
and think of what you may want to work on

m Topic selection on Brigthspace opens Wednesday September 27 at
9:00; first come, first serve

m Today: stick around if you are already certain that you will take the
course, and want to find a teammate already

m Next lab session: Friday September 29 from 9:00 to 10:45 in Snellius
computer rooms

m Chance to ask final questions about Assignment 1
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