Social Network Analysis for Computer Scientists

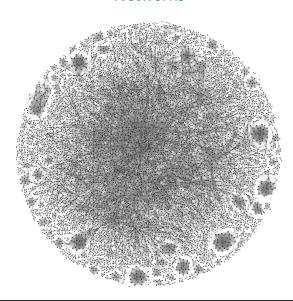
Frank Takes

LIACS, Leiden University
https://liacs.leidenuniv.nl/~takesfw/SNACS

Lecture 2 — Advanced network concepts and centrality

Recap

Networks



Notation

Concept	Symbol
Network (graph)	G=(V,E)
Nodes (objects, vertices,)	V
Links (ties, relationships,)	Ε
 Directed — E ⊆ V × V — "links" Undirected — "edges" 	
■ Number of nodes — $ V $	n
■ Number of edges — E	т
Degree of node u	deg(u)
Distance from node u to v	d(u, v)

Real-world networks

- Sparse networks density
- 2 Fat-tailed power-law degree distribution degree
- 3 Giant component components
- 4 Low pairwise node-to-node distances distance
- 5 Many triangles clustering coefficient
- Many examples: communication networks, citation networks, collaboration networks (Erdös, Kevin Bacon), protein interaction networks, information networks (Wikipedia), webgraphs, financial networks (Bitcoin) . . .

Advanced concepts

Advanced concepts

- Assortativity
- Reciprocity
- Power law exponent
- Planar graphs
- Complete graphs
- Subgraphs
- Trees
- Spanning trees
- Diameter
- Bridges
- Graph traversal

Assortativity

■ Assortativity: extent to which "similar" nodes attract each other Value close to -1 if dissimilar nodes more often attract each other Value close to 1 if similar nodes more often attract each other

Assortativity

- Assortativity: extent to which "similar" nodes attract each other
 Value close to -1 if dissimilar nodes more often attract each other
 Value close to 1 if similar nodes more often attract each other
- Degree assortativity: nodes with a similar degree connect more frequently
- Attribute assortativity: nodes with similar attributes attract each other
- Influence on connectivity of network, spreading of information, etc.
- Social networks: homophily
- Complex networks: mixing patterns

Degree assortativity

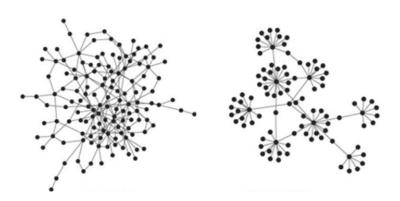


Figure: Degree assortativity (left) and degree disassortativity (right)

Image: Estrada et al., Clumpiness mixing in complex networks, J. Stat. Mech. Theor. Exp. P03008 (2008).

Attribute assortativity

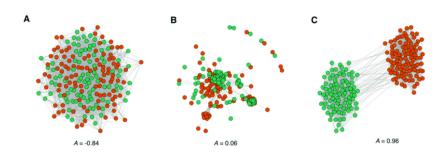


Figure: Attribute assortativity

Image: Moya-García, A. et al. Identification of New Toxicity Mechanisms ... Genes, 13(7), 1292, 2022.

Reciprocity

- Reciprocity: measure of the likelihood of nodes in a directed network to be mutually linked
- Let $m_{<->}$ be the number of links in the directed network for which there also exists a symmetric counterpart:

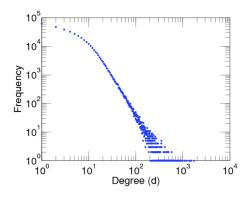
$$m_{<->} = |\{(u, v) \in E : (v, u) \in E\}|$$

Reciprocity r is then the fraction of links that is symmetric:

$$r = \frac{m_{<->}}{m}$$

- Measures the extent to which relationships are mutual
- Useful to compare between networks

Power law degree distribution



Source: http://konect.cc/networks/citeseer/

Power law exponent in undirected networks

■ The probabibility p_k of a node having degree k depends on the power law exponent γ :

$$p_k \sim k^{-\gamma}$$

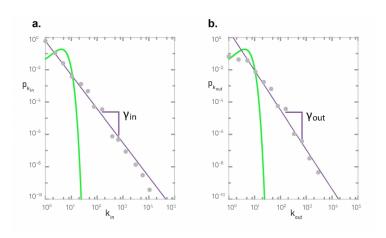
This means that

$$\log p_k \sim -\gamma \log k$$

And as such, the straight line in log-log scale plots is observed.

- $lue{}$ In real-world networks, γ has a value of around 2 to 3
- Useful to compare between similar networks

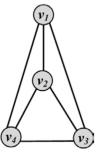
Power law exponent in directed networks



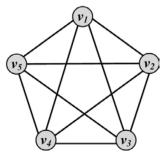
Source: A. Barabasi, Network Science, 2016.

Planar graphs

 Planar graphs can be visualized such that no two edges cross each other



(a) Planar Graph



(b) Non-planar Graph

Complete graphs

- In complete graphs, all pairs of nodes are connected
- The number of edges m is equal to $\frac{1}{2} \cdot n \cdot (n-1)$

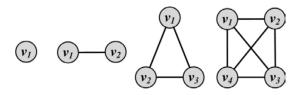


Figure: Complete graphs of size 1, 2, 3 and 4

Ego network

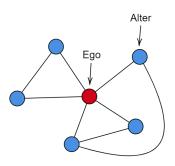


Figure: The **ego network** of a given node in a network consists of the set of nodes containing that node ("Ego") and its direct neighbors ("Alters"), and all edges present between the nodes in this set

Image: Wikipedia "Egocentric network.png", accessed 2022.

Trees

- A tree is a graph without cycles
- A set of disconnected trees is called a forest
- A tree with n nodes has m = n 1 edges

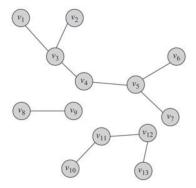


Image: Zafarani et al., Social Media Mining, 2014.

Trees

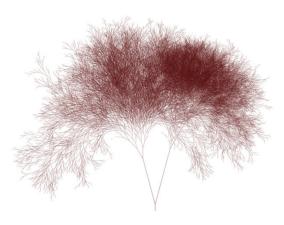


Image: M. Lima, Book of trees: Visualizing branches of knowledge, 2014.

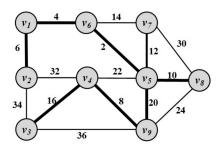
19 / 49

Subgraphs

- Given a graph G = (V, E)
- Subgraph G' = (V', E') with $V' \subseteq V$ and $E' \subseteq (E \cap (V' \times V'))$ (subset of the nodes and edges of the original network, commonly used when defining communities or clusters)
- Subgraph G' = (V, E') with $E' \subseteq E$ (only edges are left out, commonly used when modelling network evolution)
- Special subgraphs: spanning trees

Spanning trees

- A spanning tree is a tree and subgraph of a graph that covers all nodes of the graph
- In weighted graphs, a minimal spanning tree is one of minimal edge weight

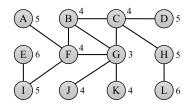


Diameter

- Distance d(u, v) = length of shortest path from u to v
- Diameter $D(G) = \max_{u,v \in V} d(u,v) = \max$ imal distance

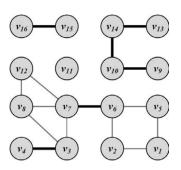
Diameter

- Distance d(u, v) = length of shortest path from u to v
- Diameter $D(G) = \max_{u,v \in V} d(u,v) = \max$ imal distance
- Eccentricity $e(u) = \max_{v \in V} d(u, v)$ = length of longest shortest path from u
- Diameter $D(G) = \max_{u \in V} e(u) = \max$ imal eccentricity
- Radius $R(G) = \min_{u \in V} e(u) = \min$ eccentricity



Bridges

- Bridge: an edge whose removal will result in an increase in the number of connected components
- Also called cut edges, with applications in community detection



Graph traversal

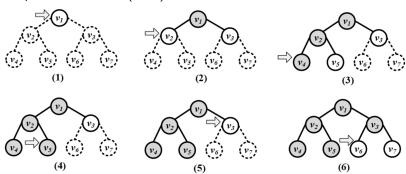
- Given a network, how can we explore it?
- Specifically: exploration starting from a particular source
- Node adjacency: two nodes are adjacent if there is an edge connecting them
- **Neighborhood**: set of nodes adjacent to a node $v \in V$:

$$N(v) = \{ w \in V : (v, w) \in E \}$$

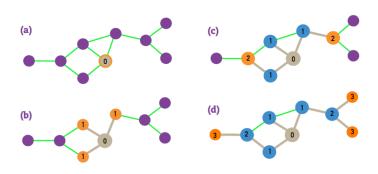
Techniques to iteratively explore neighborhoods: DFS and BFS

Graph traversal: DFS

Depth First Search (DFS)



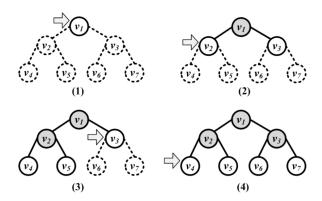
Graph traversal: BFS



Source: A. Barabasi, Network Science, 2016.

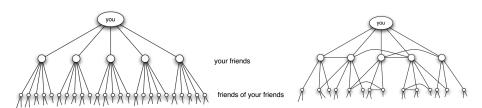
Graph traversal: BFS

- Breadth First Search (BFS)
- Graph traversal in level-order



Graph traversal: BFS

- Breadth First Search (BFS)
- From source node, create a rooted spanning tree of the graph
- Graph traversal in level-order
- Often implemented using a queue
- BFS considers traversing each of the m edges once, so O(m)
- Important for computing various centrality measures



Centrality

Centrality

- Given a social network, which person is most important?
- What is the most important page on the web?
- Which protein is most vital in a biological network?
- Who is the most respected author in a scientific citation network?
- What is the most crucial router in an internet topology network?

Centrality

- Node centrality: the importance of a node with respect to the other nodes based on the structure of the network
- Centrality measure: computes the centrality value of all nodes in the graph
- For all $v \in V$ a measure M returns a value $C_M(v) \in [0;1]$
- $C_M(v) > C_M(w)$ means that node v is more important than w

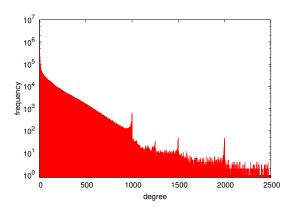
Degree centrality

 Undirected graphs – degree centrality: measure the number of adjacent nodes

$$C_d(v) = \frac{deg(v)}{n-1}$$

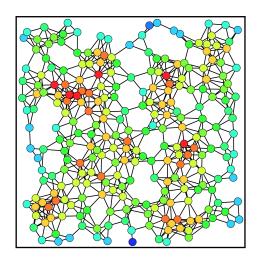
- Directed graphs indegree centrality and outdegree centrality
- Local measure
- O(1) time to compute

Degree distribution

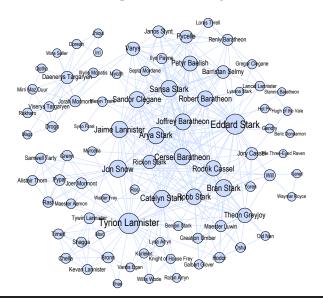


Not so many distinct values in the lower ranges

Degree centrality



Degree centrality



Closeness centrality

■ Closeness centrality: based on the average distance to all other nodes

$$C_c(v) = \left(\frac{1}{n-1}\sum_{w\in V}d(v,w)\right)^{-1}$$

- Global distance-based measure
- O(mn) to compute: one BFS in O(m) for each of the n nodes

Closeness centrality

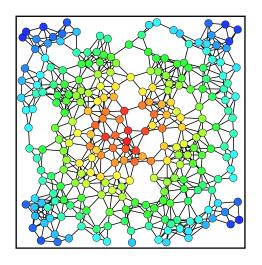
■ Closeness centrality: based on the average distance to all other nodes / 1

$$C_c(v) = \left(\frac{1}{n-1} \sum_{w \in V} d(v, w)\right)^{-1}$$

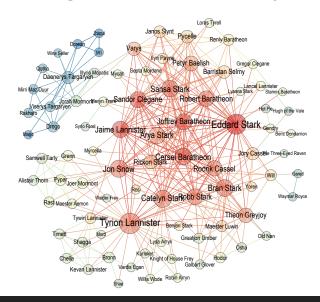
- Global distance-based measure
- O(mn) to compute: one BFS in O(m) for each of the n nodes
- Connected component(s)...
- Harmonic centrality: variant of closeness (not normalized)

$$C_h(v) = \sum_{w \in V} \frac{1}{d(w, v)}$$

Closeness centrality



Degree vs. closeness centrality



Betweenness centrality

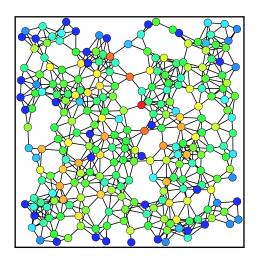
Betweenness centrality: measure the number of shortest paths that run through a node

$$C_b(u) = \sum_{\substack{v,w \in V \\ v \neq w, u \neq v, u \neq w}} \frac{\sigma_u(v,w)}{\sigma(v,w)}$$

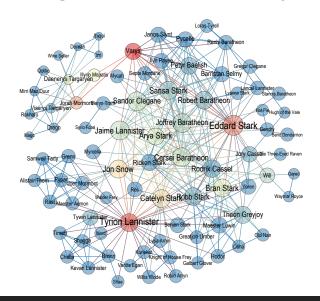
- $\sigma(v, w)$ is the number of shortest paths from v to w
- $\sigma_u(v,w)$ is the number of such shortest paths that run through u
- Divide by largest value to normalize to [0; 1]
- Global path-based measure
- O(2mn) time to compute (two "BFSes" for each node)

U. Brandes, "A faster algorithm for betweenness centrality", Journal of Mathematical Sociology 25(2): 163-177, 2001

Betweenness centrality



Degree vs. betweeness centrality



Centrality measures compared

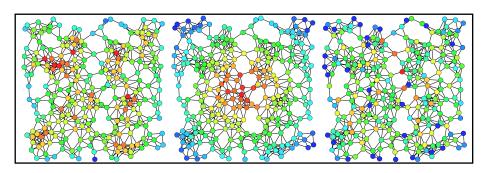


Figure: Degree, closeness and betweenness centrality

 ${\sf Source:\ "Centrality"'\ by\ Claudio\ Rocchini,\ Wikipedia\ File:Centrality.svg}$

Eccentricity centrality

 Node eccentricity: length of a longest shortest path (distance to a node furthest away)

$$e(v) = \max_{w \in V} d(v, w)$$

Eccentricity centrality:

$$C_e(v) = \frac{1}{e(v)}$$

- Worst-case variant of closeness centrality
- O(mn) to compute: one BFS in O(m) for each of the n nodes

Eccentricity centrality

Node eccentricity: length of a longest shortest path (distance to a node furthest away)

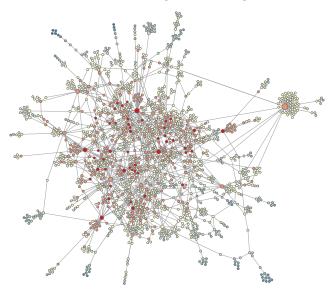
$$e(v) = \max_{w \in V} d(v, w)$$

Eccentricity centrality:

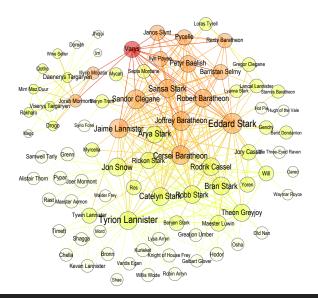
$$C_e(v) = \frac{1}{e(v)}$$

- Worst-case variant of closeness centrality
- O(mn) to compute: one BFS in O(m) for each of the n nodes
 - Large optimizations possible using lower and upper bounds, see
 F.W. Takes and W.A. Kosters, Computing the Eccentricity Distribution of Large Graphs, Algorithms, vol. 6, nr. 1, pp. 100-118, 2013.

Eccentricity centrality



Degree vs. eccentricity centrality



46 / 49

Centrality measures

- Distance/path-based measures:
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
 - Eccentricity centrality

(complexity is for computing centralities of all n nodes)

- Many more: Eigenvector centrality, Katz centrality, . . .
- Approximating these measures is also possible
- Also: propagation-based centrality measures like PageRank

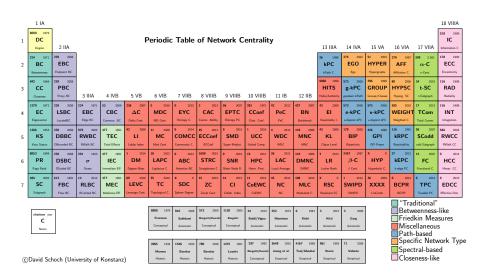
O(n)

O(mn)

O(mn)

O(mn)

Periodic table of centrality



Homework for next week / Upcoming lab session

- Make serious progress with Assignment 1
- Make choice of participation in course explicit. Un-enroll no later than September 25; anyone registered after that date will get a grade
- Consult the list of project topics on course website, and think of what you may want to work on
- Topic selection on Brigthspace opens Wednesday September 27 at 9:00; first come, first serve
- Today: stick around if you are already certain that you will take the course, and want to find a teammate already
- Next lab session: Friday September 29 from 9:00 to 10:45 in Snellius computer rooms
- Chance to ask final questions about Assignment 1