

Determining the Diameter of Small World Networks

Frank W. Takes & Walter A. Kosters

Leiden University, The Netherlands

CIKM 2011 — October 27, 2011 — Glasgow, UK

NWO COMPASS project (grant #612.065.92)

Overview

- Introduction
- Preliminaries
- Problem statement
- Related work
- Algorithm
- Results
- Conclusion
- Future work

Introduction

- Small world networks
- Power law degree distribution, giant component, low average pairwise distances
- Examples: social networks, webgraphs, communication networks, collaboration networks, information networks, protein-protein interaction networks, citation networks, etc.
- **Diameter**: length of longest shortest path in a graph

Diameter Example

Figure: Graph with diameter 6. Numbers denote node eccentricity

Preliminaries

- Graph G = (V, E) with |V| = n nodes and |E| = m edges
- Distance d(u, v): length of shortest path between $u, v \in V$
- Undirected: d(u, v) = d(v, u) for all $u, v \in V$
- One connected component: d(u, v) is finite for all $u, v \in V$
- Neighborhood N(u): set of nodes connected to u via an edge
- Degree deg(u): number of edges connected to node u

- Consider a connected undirected graph G = (V, E)
- Our aim is to compute in large small-world graphs $(1,000 \le n \le 100,000,000, \overline{d}(u,v) \approx 6$ for all $u, v \in V$):

- Consider a connected undirected graph G = (V, E)
- Our aim is to compute in large small-world graphs $(1,000 \le n \le 100,000,000, \overline{d}(u,v) \approx 6$ for all $u, v \in V$):
 - Eccentricity e(v): length of a longest shortest path from v: $e(v) = \max_{w \in V} d(v, w)$
 - **Diameter** *D*(*G*): maximal distance (longest shortest path length) over all node pairs: max_{v,w∈V} *d*(v, w)

- Consider a connected undirected graph G = (V, E)
- Our aim is to compute in large small-world graphs $(1,000 \le n \le 100,000,000, \overline{d}(u,v) \approx 6$ for all $u, v \in V$):
 - Eccentricity e(v): length of a longest shortest path from v: $e(v) = \max_{w \in V} d(v, w)$
 - **Diameter** *D*(*G*): maximal distance (longest shortest path length) over all node pairs: max_{v,w∈V} *d*(v, w)
 - Diameter D(G) (alternative definition): maximal eccentricity over all nodes: max_{v∈V} e(v)

- Consider a connected undirected graph G = (V, E)
- Our aim is to compute in large small-world graphs $(1,000 \le n \le 100,000,000, \overline{d}(u,v) \approx 6$ for all $u, v \in V$):
 - Eccentricity e(v): length of a longest shortest path from v: $e(v) = \max_{w \in V} d(v, w)$
 - **Diameter** *D*(*G*): maximal distance (longest shortest path length) over all node pairs: max_{v,w∈V} *d*(v, w)
 - Diameter D(G) (alternative definition): maximal eccentricity over all nodes: max_{v∈V} e(v)
 - **Radius** *R*(*G*): minimal eccentricity over all nodes: min_{v∈V} *e*(*v*)
 - Eccentricity distribution: (relative) frequency f(x) of each eccentricity value x

$$f(x) = \frac{|\{u \in V \mid e(u) = x\}|}{n}$$

Eccentricity distribution

Figure: Relative eccentricity distribution of five large graphs

Diameter Applications

- Router networks: what is the worst-case response time between any two machines?
- Social networks: in how many steps does a message released by a single user reach everyone in the network?
- Biological interaction networks: which proteins are likely to not influence each other at all?
- Information networks (i.e., Wikipedia): how do I change the conversation topic to a maximally different subject? ;-)
- Eccentricity has been suggested as a worst-case measure of node centrality: the relative importance of a node based on the graph's structure

Naive Algorithm

- Diameter is equal to the largest value returned by an All Pairs Shortest Path (APSP) algorithm
- Brute-force: for each of the *n* nodes, execute a Breadth First Search (BFS) run in O(m) time to find the eccentricity, and return the largest value found
- Time complexity *O*(*mn*)
- Problematic if n = 8 million and m = 1 billion.
 Then one BFS takes 6 seconds on a 3.4GHz machine.
 That results in 1.5 years to compute the diameter ...

Related work

- Approximation algorithms, for example ANF (Palmer et al.)
- Use a random sample of the set of nodes (Mislove et al.)
- Heuristics, for example repeatedly select the farthest node until there is no more improvement (Leskovec et al.)
- Matrix multiplication for APSP in $O(n^{2.376})$ (Yuster et al.)
- Bounds: diameter upper bound is at most two times the lowest found eccentricity value (Magnien et al.)

Social Network Example (1)

- If I am connected to everyone in at most 6 steps, then
 - My direct friend is connected to everyone in at most 7 steps (he reaches everyone through me)
 - My direct friend is connected to everyone in at least 5 steps (I reach everyone through him)
- If I can reach everyone in the network in 6 steps, then
 - There is nobody who can reach everyone in less than 3 steps (or I could have utilized him)
 - There is nobody who needs more than 12 steps to reach everyone
 - (or he could have utilized me)

Social Network Example (2)

• If a node v has eccentricity e(v), then

- Nodes w at distance d(v, w) needs at most e(v) + d(v, w) steps
 - (*w* reaches every node via v)
- Nodes w at distance d(v, w) needs at least e(v) d(v, w) steps (v reaches every node via w)

We call this the Eccentricity bounds

If a node v can reach every other node in e(v) steps, then

- There is no node that can reach everyone in less than \[e(v)/2\] steps (or v could have used that node)
- There is no node that needs more than *e*(*v*) · 2 steps to reach all other nodes (or that node could have used *v*)

We call this the **Diameter bounds**

Eccentricity bounds

Theorem

For nodes $v, w \in V$ we have $\max(e(v) - d(v, w), d(v, w)) \leq e(w) \leq e(v) + d(v, w).$

Proof

- Upper bound e(v) + d(v, w): if node w is at distance d(v, w) of node v, it can always employ v to get to every other node in e(v) steps. To get to node v, exactly d(v, w) steps are needed, totalling e(v) + d(v, w) steps to get to any other node.
- Lower bound e(v) d(v, w): interchanging v and w in the previous statement.
- Lower bound d(v, w): the eccentricity of w is at least equal to some found distance to w.

Diameter bounds

- Let *e*_L(*v*) and *e*_U(*v*) denote the lower and upper eccentricity bounds derived using the *Eccentricity bounds*.
- Then we can derive the following diameter bounds: max_{v∈V} e_L(v) ≤ D(G) ≤ max_{v∈V} e_U(v)
- Let D_L(G) and D_U(G) denote these lower and upper diameter bounds. D_L(G) ≤ D(G) ≤ D_U(G)

BoundingDiameters Algorithm

Input: Graph G Output: Diameter of G $W \leftarrow V$ $D_{\ell} \leftarrow -\infty$ $D_{\mu} \leftarrow +\infty$ for $w \in W$ do $e_{\ell}[w] \leftarrow -\infty$ $e_{ii}[w] \leftarrow +\infty$ end for while $D_{\ell} \neq D_{\mu}$ and $W \neq \emptyset$ do $v \leftarrow \text{SelectFrom}(W)$ $e[v] \leftarrow \text{ECCENTRICITY}(v)$ $D_{\ell} \leftarrow \max(D_{\ell}, e[v])$ $D_{\mu} \leftarrow \min(D_{\mu}, 2 \cdot e[v])$ for $w \in W$ do $e_{\ell}[w] = \max(e_{\ell}[w], \max(e[v] - d(v, w), d(v, w)))$ $e_{ii}[w] = \min(e_{ii}[w], e[v] + d(v, w))$ if $(e_{ij}[w] < D_{\ell}$ and $e_{\ell}[w] > D_{ij}/2)$ or $(e_{\ell}[w] = e_{\mu}[w])$ then $W \leftarrow W - \{w\}$ end if end for

 $D_u \leftarrow \min (D_u, \max_{w \in V} (e_u[w]))$ end while

return D_{ℓ} ;

BoundingDiameters Algorithm

Initialize candidate set W to VWhile $D_L(G) \neq D_U(G)$:

- **1** Select a node v from W cf. some **Selection strategy**
- 2 Compute v's eccentricity, and update $e_L(v)$ and $e_U(v)$ for every node $v \in W$ according to the **Eccentricity bounds**
- **3** Update the diameter bounds $D_L(G)$ and $D_U(G)$
- Remove nodes w that can no longer contribute to refining the Diameter bounds
- Worst-case: n iterations, best-case: 2 iterations (investigate v and w with e(v) = 2 · e(w) = D(G))
- To compute the complete eccentricity distribution, stop when: $\forall v \in V : e_L(v) = e_U(v)$
- Selection strategy is important (and discussed later)

Example run (0)

What is the diameter of this graph? $D_L = -\infty$ and $D_U = \infty$

Example run (1)

Iteration 1: after computing the eccentricity of node F $D_L = 5$ and $D_U = 10$

Example run (2)

Iteration 2: after computing the eccentricity of node T $D_L = 7$ and $D_U = 10$

Example run (3)

Iteration 3: after computing the eccentricity of node L $D_L = 7$ and $D_U = 7$

Selection strategy

- Random node ("smart APSP")
- Based on the degree of the node
- Eccentricity bounds difference (1)
- Interchange smallest eccentricity lower bound and largest eccentricity upper bound (2)
- Repeated farthest distance (cf. Leskovec et al.) (3)

Results

1 Eccentricity bounds difference

- 2 Alternate between smallest eccentricity lower bound and largest upper bound
- 3 Repeatedly select a node furthest away from the previous node

Dataset	Nodes	D(G)	Strat. 1	Strat. 2	Strat. 3	Pruned
AstroPhys	17,903	14	18	9	63	185
ENRON	33,696	13	12	11	61	8,715
Web	855,802	24	20	4	28	91,965
YouTube	1,134,890	24	2	2	2	399,553
FLICKR	1,624,992	24	10	3	7	553,242
SKITTER	1,696,415	31	10	4	19	114,803
WIKIPEDIA	2,213,236	18	21	3	583	947,582
Orkut	3,072,441	10	357	106	389	27,429
LIVEJOURNAL	5,189,809	23	6	3	14	318,378
HYVES	8,057,981	25	40	21	44	446,258

Table: Comparison of three node selection strategies

Pruning

Theorem

Assume n > 2. For a given $v \in V$, all nodes $w \in N(v)$ with deg(w) = 1 have e(w) = e(v) + 1.

Proof

- Node w is only connected to node v, and will thus need node v to reach every other node in the graph. If node v can do this in e(v) steps, then node w can do this is in exactly e(v) + 1 steps.
- The restriction n > 2 on the graph size excludes the case in which w realizes the eccentricity of v.

(alternative proof is possible, based on graph homomorphism)

Discussion

- **Main result:** in real-world graphs BOUNDINGDIAMETERS is much faster than the naive algorithm (a handful vs. *n* BFSes)
- Why does it work? There is always diversity in the eccentricity values of nodes, allowing central nodes to influence the eccentricity of peripheral nodes, and vice versa
- When does it not work so well? In graphs with little diversity in the eccentricity values, e.g., circle-shaped graphs
- Side result: efficiently computing derived measures such as the radius, center, periphery and even the exact eccentricity distribution is also possible (after some modifications)

Conclusion

- Our algorithm computes the diameter of large real world graphs much faster compared to the naive algorithm.
- Our algorithm improves upon previously suggested techniques, because:
 - we obtain an exact result instead of an approximation
 - it is possible to obtain the actual diameter path
 - information between iterations is not thrown away
 - computation time is very short, even for graphs with millions of nodes
- Future work: optimize the node selection strategy even further and incremental udates as the graph changes over time through the addition and deletion of nodes and edges.

Questions?

