# Determining the Diameter of Small World Networks 

Frank W. Takes \& Walter A. Kosters<br>Leiden University, The Netherlands

CIKM 2011 - October 27, 2011 — Glasgow, UK
$\mathrm{N} \boldsymbol{W} \bigcirc \quad$ NWO COMPASS project (grant \#612.065.92)

## Overview

- Introduction

■ Preliminaries

- Problem statement

■ Related work

- Algorithm
- Results
- Conclusion
- Future work


## Introduction

- Small world networks
- Power law degree distribution, giant component, low average pairwise distances
■ Examples: social networks, webgraphs, communication networks, collaboration networks, information networks, protein-protein interaction networks, citation networks, etc.
■ Diameter: length of longest shortest path in a graph


## Diameter Example



Figure: Graph with diameter 6 . Numbers denote node eccentricity

## Preliminaries

■ Graph $G=(V, E)$ with $|V|=n$ nodes and $|E|=m$ edges
■ Distance $d(u, v)$ : length of shortest path between $u, v \in V$

- Undirected: $d(u, v)=d(v, u)$ for all $u, v \in V$

■ One connected component: $d(u, v)$ is finite for all $u, v \in V$
■ Neighborhood $N(u)$ : set of nodes connected to $u$ via an edge
■ Degree $\operatorname{deg}(u)$ : number of edges connected to node $u$

## Problem statement

- Consider a connected undirected graph $G=(V, E)$

■ Our aim is to compute in large small-world graphs $(1,000 \leq n \leq 100,000,000, \bar{d}(u, v) \approx 6$ for all $u, v \in V)$ :

## Problem statement

- Consider a connected undirected graph $G=(V, E)$
- Our aim is to compute in large small-world graphs $(1,000 \leq n \leq 100,000,000, \bar{d}(u, v) \approx 6$ for all $u, v \in V)$ :

■ Eccentricity $e(v)$ : length of a longest shortest path from $v$ : $e(v)=\max _{w \in V} d(v, w)$

- Diameter $D(G)$ : maximal distance (longest shortest path length) over all node pairs: $\max _{v, w \in V} d(v, w)$


## Problem statement

■ Consider a connected undirected graph $G=(V, E)$

- Our aim is to compute in large small-world graphs $(1,000 \leq n \leq 100,000,000, \bar{d}(u, v) \approx 6$ for all $u, v \in V)$ :

■ Eccentricity $e(v)$ : length of a longest shortest path from $v$ : $e(v)=\max _{w \in V} d(v, w)$

- Diameter $D(G)$ : maximal distance (longest shortest path length) over all node pairs: $\max _{v, w \in V} d(v, w)$
- Diameter $D(G)$ (alternative definition): maximal eccentricity over all nodes: $\max _{v \in V} e(v)$


## Problem statement

■ Consider a connected undirected graph $G=(V, E)$
■ Our aim is to compute in large small-world graphs $(1,000 \leq n \leq 100,000,000, \bar{d}(u, v) \approx 6$ for all $u, v \in V)$ :

■ Eccentricity $e(v)$ : length of a longest shortest path from $v$ : $e(v)=\max _{w \in V} d(v, w)$
■ Diameter $D(G)$ : maximal distance (longest shortest path length) over all node pairs: $\max _{v, w \in V} d(v, w)$

- Diameter $D(G)$ (alternative definition): maximal eccentricity over all nodes: $\max _{v \in V} e(v)$
- Radius $R(G)$ : minimal eccentricity over all nodes: $\min _{v \in V} e(v)$
- Eccentricity distribution: (relative) frequency $f(x)$ of each eccentricity value $x$

$$
f(x)=\frac{|\{u \in V \mid e(u)=x\}|}{n}
$$

## Eccentricity distribution



Figure: Relative eccentricity distribution of five large graphs

## Diameter Applications

■ Router networks: what is the worst-case response time between any two machines?
■ Social networks: in how many steps does a message released by a single user reach everyone in the network?

- Biological interaction networks: which proteins are likely to not influence each other at all?

■ Information networks (i.e., Wikipedia): how do I change the conversation topic to a maximally different subject? ;-)

- Eccentricity has been suggested as a worst-case measure of node centrality: the relative importance of a node based on the graph's structure


## Naive Algorithm

■ Diameter is equal to the largest value returned by an All Pairs Shortest Path (APSP) algorithm
■ Brute-force: for each of the $n$ nodes, execute a Breadth First Search (BFS) run in $O(m)$ time to find the eccentricity, and return the largest value found

- Time complexity $O(m n)$
- Problematic if $n=8$ million and $m=1$ billion.

Then one BFS takes 6 seconds on a 3.4 GHz machine. That results in 1.5 years to compute the diameter...

## Related work

■ Approximation algorithms, for example ANF (Palmer et al.)

- Use a random sample of the set of nodes (Mislove et al.)

■ Heuristics, for example repeatedly select the farthest node until there is no more improvement (Leskovec et al.)

- Matrix multiplication for APSP in $O\left(n^{2.376}\right)$ (Yuster et al.)

■ Bounds: diameter upper bound is at most two times the lowest found eccentricity value (Magnien et al.)

## Social Network Example (1)

■ If I am connected to everyone in at most 6 steps, then

- My direct friend is connected to everyone in at most 7 steps (he reaches everyone through me)
- My direct friend is connected to everyone in at least 5 steps (I reach everyone through him)

■ If I can reach everyone in the network in 6 steps, then

- There is nobody who can reach everyone in less than 3 steps (or I could have utilized him)
- There is nobody who needs more than 12 steps to reach everyone (or he could have utilized me)


## Social Network Example (2)

- If a node $v$ has eccentricity $e(v)$, then
- Nodes $w$ at distance $d(v, w)$ needs at most $e(v)+d(v, w)$ steps ( $w$ reaches every node via $v$ )
- Nodes $w$ at distance $d(v, w)$ needs at least $e(v)-d(v, w)$ steps ( $v$ reaches every node via $w$ )
We call this the Eccentricity bounds
- If a node $v$ can reach every other node in $e(v)$ steps, then
- There is no node that can reach everyone in less than $\lceil e(v) / 2\rceil$ steps (or $v$ could have used that node)
- There is no node that needs more than $e(v) \cdot 2$ steps to reach all other nodes (or that node could have used $v$ )
We call this the Diameter bounds


## Eccentricity bounds

## Theorem

For nodes $v, w \in V$ we have
$\max (e(v)-d(v, w), d(v, w)) \leq e(w) \leq e(v)+d(v, w)$.
Proof

- Upper bound $e(v)+d(v, w)$ : if node $w$ is at distance $d(v, w)$ of node $v$, it can always employ $v$ to get to every other node in $e(v)$ steps. To get to node $v$, exactly $d(v, w)$ steps are needed, totalling $e(v)+d(v, w)$ steps to get to any other node.
- Lower bound $e(v)-d(v, w)$ : interchanging $v$ and $w$ in the previous statement.
- Lower bound $d(v, w)$ : the eccentricity of $w$ is at least equal to some found distance to $w$.


## Diameter bounds

■ Let $e_{L}(v)$ and $e_{U}(v)$ denote the lower and upper eccentricity bounds derived using the Eccentricity bounds.

- Then we can derive the following diameter bounds: $\max _{v \in V} e_{L}(v) \leq D(G) \leq \max _{v \in V} e_{U}(v)$
■ Let $D_{L}(G)$ and $D_{U}(G)$ denote these lower and upper diameter bounds. $D_{L}(G) \leq D(G) \leq D_{U}(G)$


## BoundingDiameters Algorithm

```
Input: Graph G
Output: Diameter of \(G\)
\(W \leftarrow V \quad D_{\ell} \leftarrow-\infty \quad D_{u} \leftarrow+\infty\)
for \(w \in W\) do
    \(e_{\ell}[w] \leftarrow-\infty\)
    \(e_{u}[w] \leftarrow+\infty\)
end for
while \(D_{\ell} \neq D_{u}\) and \(W \neq \emptyset\) do
    \(v \leftarrow \operatorname{SelectFrom}(W)\)
    \(e[v] \leftarrow \operatorname{ECCENTRICITy}(v)\)
    \(D_{\ell} \leftarrow \max \left(D_{\ell}, e[v]\right)\)
    \(D_{u} \leftarrow \min \left(D_{u}, 2 \cdot e[v]\right)\)
    for \(w \in W\) do
        \(e_{\ell}[w]=\max \left(e_{\ell}[w], \max (e[v]-d(v, w), d(v, w))\right)\)
        \(e_{u}[w]=\min \left(e_{u}[w], e[v]+d(v, w)\right)\)
        if \(\left(e_{u}[w] \leq D_{\ell}\right.\) and \(\left.e_{\ell}[w] \geq D_{u} / 2\right)\) or
            \(\left(e_{\ell}[w]=e_{u}[w]\right)\) then
                \(W \leftarrow W-\{w\}\)
        end if
    end for
    \(D_{u} \leftarrow \min \left(D_{u}, \max _{w \in V}\left(e_{u}[w]\right)\right)\)
end while
return \(D_{\ell}\);
```


## BoundingDiameters Algorithm

- Initialize candidate set $W$ to $V$ While $D_{L}(G) \neq D_{U}(G)$ :
1 Select a node $v$ from $W$ cf. some Selection strategy
2 Compute $v$ 's eccentricity, and update $e_{L}(v)$ and $e_{U}(v)$ for every node $v \in W$ according to the Eccentricity bounds
3 Update the diameter bounds $D_{L}(G)$ and $D_{U}(G)$
4 Remove nodes $w$ that can no longer contribute to refining the Diameter bounds
- Worst-case: $n$ iterations, best-case: 2 iterations (investigate $v$ and $w$ with $e(v)=2 \cdot e(w)=D(G))$
- To compute the complete eccentricity distribution, stop when: $\forall v \in V: e_{L}(v)=e_{U}(v)$
- Selection strategy is important (and discussed later)


## Example run (0)



What is the diameter of this graph?

$$
D_{L}=-\infty \text { and } D_{U}=\infty
$$

## Example run (1)



Iteration 1: after computing the eccentricity of node F

$$
D_{L}=5 \text { and } D_{U}=10
$$

## Example run (2)



Iteration 2: after computing the eccentricity of node $T$

$$
D_{L}=7 \text { and } D_{U}=10
$$

## Example run (3)



Iteration 3: after computing the eccentricity of node L
$D_{L}=7$ and $D_{U}=7$

## Selection strategy

- Random node ("smart APSP")
- Based on the degree of the node
- Eccentricity bounds difference (1)
- Interchange smallest eccentricity lower bound and largest eccentricity upper bound (2)
■ Repeated farthest distance (cf. Leskovec et al.) (3)


## Results

1 Eccentricity bounds difference
2 Alternate between smallest eccentricity lower bound and largest upper bound
3 Repeatedly select a node furthest away from the previous node

| Dataset | Nodes | $D(G)$ | Strat. 1 | Strat. 2 | Strat. 3 | Pruned |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASTROPHYS | 17,903 | 14 | 18 | $\mathbf{9}$ | 63 | 185 |
| ENRON | 33,696 | $\mathbf{1 3}$ | 12 | $\mathbf{1 1}$ | 61 | 8,715 |
| WEB | 855,802 | 24 | 20 | $\mathbf{4}$ | 28 | 91,965 |
| YOUTUBE | $1,134,890$ | 24 | 2 | $\mathbf{2}$ | 2 | 399,553 |
| FLICKR | $1,624,992$ | 24 | 10 | $\mathbf{3}$ | 7 | 553,242 |
| SKITTER | $1,696,415$ | $\mathbf{3 1}$ | 10 | $\mathbf{4}$ | 19 | 114,803 |
| WIKIPEDIA | $2,213,236$ | 18 | 21 | $\mathbf{3}$ | 583 | 947,582 |
| ORKUT | $3,072,441$ | 10 | 357 | $\mathbf{1 0 6}$ | 389 | 27,429 |
| LIVEJOURNAL | $5,189,809$ | 23 | 6 | $\mathbf{3}$ | 14 | 318,378 |
| HYVES | $8,057,981$ | $\mathbf{2 5}$ | 40 | $\mathbf{2 1}$ | 44 | 446,258 |

Table: Comparison of three node selection strategies

## Pruning

Theorem
Assume $n>2$. For a given $v \in V$, all nodes $w \in N(v)$ with $\operatorname{deg}(w)=1$ have $e(w)=e(v)+1$.

Proof
■ Node $w$ is only connected to node $v$, and will thus need node $v$ to reach every other node in the graph. If node $v$ can do this in $e(v)$ steps, then node $w$ can do this is in exactly $e(v)+1$ steps.

- The restriction $n>2$ on the graph size excludes the case in which $w$ realizes the eccentricity of $v$.
(alternative proof is possible, based on graph homomorphism)


## Discussion

■ Main result: in real-world graphs BoundingDiameters is much faster than the naive algorithm (a handful vs. $n$ BFSes)
■ Why does it work? There is always diversity in the eccentricity values of nodes, allowing central nodes to influence the eccentricity of peripheral nodes, and vice versa
■ When does it not work so well? In graphs with little diversity in the eccentricity values, e.g., circle-shaped graphs
■ Side result: efficiently computing derived measures such as the radius, center, periphery and even the exact eccentricity distribution is also possible (after some modifications)

## Conclusion

- Our algorithm computes the diameter of large real world graphs much faster compared to the naive algorithm.
- Our algorithm improves upon previously suggested techniques, because:
- we obtain an exact result instead of an approximation
- it is possible to obtain the actual diameter path
- information between iterations is not thrown away
- computation time is very short, even for graphs with millions of nodes

■ Future work: optimize the node selection strategy even further and incremental udates as the graph changes over time through the addition and deletion of nodes and edges.

## Questions?

