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Introduction

Small world networks

Power law degree distribution, giant component, low average
pairwise distances

Examples: social networks, webgraphs, communication
networks, collaboration networks, information networks,
protein-protein interaction networks, citation networks, etc.

Diameter: length of longest shortest path in a graph
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Diameter Example

Figure: Graph with diameter 6. Numbers denote node eccentricity
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Preliminaries

Graph G = (V ,E ) with |V | = n nodes and |E | = m edges

Distance d(u, v): length of shortest path between u, v ∈ V

Undirected: d(u, v) = d(v , u) for all u, v ∈ V

One connected component: d(u, v) is finite for all u, v ∈ V

Neighborhood N(u): set of nodes connected to u via an edge

Degree deg(u): number of edges connected to node u
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Problem statement

Consider a connected undirected graph G = (V ,E )

Our aim is to compute in large small-world graphs
(1, 000 ≤ n ≤ 100, 000, 000, d(u, v) ≈ 6 for all u, v ∈ V ):

Eccentricity e(v): length of a longest shortest path from v :
e(v) = maxw∈V d(v ,w)
Diameter D(G ): maximal distance (longest shortest path
length) over all node pairs: maxv ,w∈V d(v ,w)
Diameter D(G ) (alternative definition): maximal eccentricity
over all nodes: maxv∈V e(v)
Radius R(G ): minimal eccentricity over all nodes:
minv∈V e(v)
Eccentricity distribution: (relative) frequency f (x) of each
eccentricity value x

f (x) =
|{u ∈ V | e(u) = x}|

n
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Eccentricity distribution

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 6  8  10  12  14  16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 16  18  20  22  24  26  28  30  32

re
la

ti
v
e
 f
re

q
u
e
n
c
y

eccentricity

eccentricity

ca-HepPh
cit-HepPh

email-Enron
facebook

as-skitter (x2)

Figure: Relative eccentricity distribution of five large graphs
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Diameter Applications

Router networks: what is the worst-case response time
between any two machines?

Social networks: in how many steps does a message released
by a single user reach everyone in the network?

Biological interaction networks: which proteins are likely to
not influence each other at all?

Information networks (i.e., Wikipedia): how do I change the
conversation topic to a maximally different subject? ;-)

Eccentricity has been suggested as a worst-case measure of
node centrality: the relative importance of a node based on
the graph’s structure
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Naive Algorithm

Diameter is equal to the largest value returned by an All
Pairs Shortest Path (APSP) algorithm

Brute-force: for each of the n nodes, execute a Breadth First
Search (BFS) run in O(m) time to find the eccentricity, and
return the largest value found

Time complexity O(mn)

Problematic if n = 8 million and m = 1 billion.
Then one BFS takes 6 seconds on a 3.4GHz machine.
That results in 1.5 years to compute the diameter . . .
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Related work

Approximation algorithms, for example ANF (Palmer et al.)

Use a random sample of the set of nodes (Mislove et al.)

Heuristics, for example repeatedly select the farthest node
until there is no more improvement (Leskovec et al.)

Matrix multiplication for APSP in O(n2.376) (Yuster et al.)

Bounds: diameter upper bound is at most two times the
lowest found eccentricity value (Magnien et al.)
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Social Network Example (1)

If I am connected to everyone in at most 6 steps, then

My direct friend is connected to everyone in at most 7 steps
(he reaches everyone through me)
My direct friend is connected to everyone in at least 5 steps
(I reach everyone through him)

If I can reach everyone in the network in 6 steps, then

There is nobody who can reach everyone in less than 3 steps
(or I could have utilized him)
There is nobody who needs more than 12 steps to reach
everyone
(or he could have utilized me)
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Social Network Example (2)

If a node v has eccentricity e(v), then

Nodes w at distance d(v ,w) needs at most e(v) + d(v ,w)
steps
(w reaches every node via v)
Nodes w at distance d(v ,w) needs at least e(v)− d(v ,w)
steps (v reaches every node via w)

We call this the Eccentricity bounds

If a node v can reach every other node in e(v) steps, then

There is no node that can reach everyone in less than de(v)/2e
steps (or v could have used that node)
There is no node that needs more than e(v) · 2 steps to reach
all other nodes (or that node could have used v)

We call this the Diameter bounds
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Eccentricity bounds

Theorem
For nodes v ,w ∈ V we have
max(e(v)− d(v ,w), d(v ,w)) ≤ e(w) ≤ e(v) + d(v ,w).

Proof

Upper bound e(v) + d(v ,w): if node w is at distance d(v ,w)
of node v , it can always employ v to get to every other node
in e(v) steps. To get to node v , exactly d(v ,w) steps are
needed, totalling e(v) + d(v ,w) steps to get to any other
node.

Lower bound e(v)− d(v ,w): interchanging v and w in the
previous statement.

Lower bound d(v ,w): the eccentricity of w is at least equal
to some found distance to w .
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Diameter bounds

Let eL(v) and eU(v) denote the lower and upper eccentricity
bounds derived using the Eccentricity bounds.

Then we can derive the following diameter bounds:
maxv∈V eL(v) ≤ D(G ) ≤ maxv∈V eU(v)

Let DL(G ) and DU(G ) denote these lower and upper diameter
bounds. DL(G ) ≤ D(G ) ≤ DU(G )
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BoundingDiameters Algorithm

Input: Graph G
Output: Diameter of G

W ← V D` ← −∞ Du ← +∞
for w ∈ W do

e`[w ]← −∞
eu [w ]← +∞

end for

while D` 6= Du and W 6= ∅ do
v ← SelectFrom(W )
e[v ]← Eccentricity(v)

D` ← max(D`, e[v ])
Du ← min(Du , 2 · e[v ])

for w ∈ W do
e`[w ] = max(e`[w ],max(e[v ]− d(v,w), d(v,w)))
eu [w ] = min(eu [w ], e[v ] + d(v,w))
if (eu [w ] ≤ D` and e`[w ] ≥ Du/2) or

(e`[w ] = eu [w ]) then
W ← W − {w}

end if
end for

Du ← min
(
Du ,maxw∈V (eu [w ])

)
end while

return D`;
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BoundingDiameters Algorithm

Initialize candidate set W to V
While DL(G ) 6= DU(G ):

1 Select a node v from W cf. some Selection strategy
2 Compute v ’s eccentricity, and update eL(v) and eU(v) for

every node v ∈W according to the Eccentricity bounds
3 Update the diameter bounds DL(G ) and DU(G )
4 Remove nodes w that can no longer contribute to refining the

Diameter bounds

Worst-case: n iterations, best-case: 2 iterations (investigate v
and w with e(v) = 2 · e(w) = D(G ))

To compute the complete eccentricity distribution, stop when:
∀v ∈ V : eL(v) = eU(v)

Selection strategy is important (and discussed later)
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Example run (0)
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What is the diameter of this graph?
DL = −∞ and DU =∞
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Example run (1)
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Iteration 1: after computing the eccentricity of node F
DL = 5 and DU = 10
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Example run (2)
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Iteration 2: after computing the eccentricity of node T
DL = 7 and DU = 10
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Example run (3)
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Iteration 3: after computing the eccentricity of node L
DL = 7 and DU = 7
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Selection strategy

Random node (“smart APSP”)

Based on the degree of the node

Eccentricity bounds difference (1)

Interchange smallest eccentricity lower bound and
largest eccentricity upper bound (2)

Repeated farthest distance (cf. Leskovec et al.) (3)
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Results

1 Eccentricity bounds difference

2 Alternate between smallest eccentricity lower bound and
largest upper bound

3 Repeatedly select a node furthest away from the previous node

Dataset Nodes D(G) Strat. 1 Strat. 2 Strat. 3 Pruned
AstroPhys 17,903 14 18 9 63 185

Enron 33,696 13 12 11 61 8,715
Web 855,802 24 20 4 28 91,965

YouTube 1,134,890 24 2 2 2 399,553
Flickr 1,624,992 24 10 3 7 553,242
Skitter 1,696,415 31 10 4 19 114,803

Wikipedia 2,213,236 18 21 3 583 947,582
Orkut 3,072,441 10 357 106 389 27,429

LiveJournal 5,189,809 23 6 3 14 318,378
Hyves 8,057,981 25 40 21 44 446,258

Table: Comparison of three node selection strategies
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Pruning

Theorem
Assume n > 2. For a given v ∈ V , all nodes w ∈ N(v) with
deg(w) = 1 have e(w) = e(v) + 1.

Proof

Node w is only connected to node v , and will thus need node
v to reach every other node in the graph. If node v can do
this in e(v) steps, then node w can do this is in exactly
e(v) + 1 steps.

The restriction n > 2 on the graph size excludes the case in
which w realizes the eccentricity of v .

(alternative proof is possible, based on graph homomorphism)
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Discussion

Main result: in real-world graphs BoundingDiameters is
much faster than the naive algorithm (a handful vs. n BFSes)

Why does it work? There is always diversity in the
eccentricity values of nodes, allowing central nodes to
influence the eccentricity of peripheral nodes, and vice versa

When does it not work so well? In graphs with little
diversity in the eccentricity values, e.g., circle-shaped graphs

Side result: efficiently computing derived measures such as
the radius, center, periphery and even the exact eccentricity
distribution is also possible (after some modifications)
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Conclusion

Our algorithm computes the diameter of large real world
graphs much faster compared to the naive algorithm.

Our algorithm improves upon previously suggested techniques,
because:

we obtain an exact result instead of an approximation
it is possible to obtain the actual diameter path
information between iterations is not thrown away
computation time is very short, even for graphs with millions
of nodes

Future work: optimize the node selection strategy even further
and incremental udates as the graph changes over time
through the addition and deletion of nodes and edges.
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Questions?
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