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Introduction

• This class will be about conditional probability.

• I’m sure you’ve seen the notation before: P(E|F) with the 
straight bar. What is the probability of event E given that you 
already know event F occurred?

• So today we are going to see, in some detail, how this 
works: for both the discrete and the continuous probability 
spaces. 

• These conditional probabilities are important because they 
allow us to quantify how different probabilistic processes 
interact and, for instance, to define what it means for events 
or random variables to be independent.

• Other topics are joint and marginal distributions.

• So, quite some new and useful theory: let’s get started.



Probability and Statistics, Mark Huiskes, LIACS, Lecture 58/11/2006

Discrete Conditional Probability

• Suppose                                     is a discrete sample space, 
with distribution function

• We learn that event      has occurred. What is our new 
distribution function               ?

1. If                 then   

2. For                the relative magnitudes of the outcome 

probabilities should stay the same:

• We can compute     from                                         , 
giving

• So, we define the conditional distribution given as

Ω = {ω1, ω2, . . . , ωn}

E
m(ω|E)

m(ω)

c

ω /∈ E m(ω|E) = 0

ω ∈ E

m(ω|E) = c×m(ω)

c = 1/
∑

E

m(ω) = 1/P (E)

E

∑

ω∈Ω

m(ω|E) = c
∑

ω∈E

m(ω) = 1

m(ω|E) = m(ω)
P (E) , for ω ∈ E, and 0 elsewhere.



Probability and Statistics, Mark Huiskes, LIACS, Lecture 58/11/2006

Conditional Probability of Events

• The probability of an event      is defined by

• The probability of an event       given       (given that the 
event      has occurred) is then:

• is called the conditional probability of      given 

• Note that this means

P (F ) =
∑

ω∈F

m(ω)

P (F |E) =
∑

ω∈F

m(ω|E) =
∑

ω∈F∩E

m(ω)
P (E) =

P (F∩E)
P (E)

P (F |E) E

E
E

F

F

F

P (F ∩E) = P (F |E)P (E) = P (E|F )P (F )
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Example

Assignment 4. (a) 

Card drawn randomly from full deck of (52) cards. What is 
the probability that it is a heart given that it is red. (Should
be quite obvious that it is one half; but let’s compute it 
anyway).

P(heart|red) = P(heart and red) / P(red) 

P(red) = 26/52 = ½

P(heart and red) = P(heart) = ¼

P(heart|red) = ½ / ¼ = ½
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Using Conditional Probability

• Urn 1 contains 4 red and 6 green balls while urn 2 contains 
7 red and 3 green balls. An urn is chosen at random and 
then a ball is chosen from the selected urn.

(a) Find the probability that the ball is green. 

(b) Given that the ball is green, find the conditional          
probability that urn 1 was selected. 
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Using Conditional Probability

• (From the second lecture: Theorem 1.3)

• Let                      be pairwise disjoint events with

and let     be any event. Then

• This means that 

• This decomposing a probability over different disjoint events 
is called conditioning.

E

H1, . . . , Hn

Ω = H1 ∪ . . . ∪Hn

P (E) =
n∑

i=1
P (E ∩Hi)

P (E) =
n∑

i=1
P (E|Hi)P (Hi)
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Using Conditional Probability: Bayes’ Formula

• Again                    ,                                disjoint events: hypotheses

and     an event: the evidence. 

• Suppose we know:

: the probability of the evidence given the hypothesis

: the prior probabilities (of the hypothesis: before evidence)

• We want to know:                     the posterior probabilities

• With                                              based on conditioning, 

we get Bayes’s formula:

E

H1, . . . , Hn Ω = H1 ∪ . . . ∪Hn

P (E|Hi)

P (Hi)

P (Hi|E)

P (Hi|E) =
P (Hi∩E)
P (E) = P (E|Hi)P (Hi)

P (E)

P (E) =
n∑

i=1
P (E|Hi)P (Hi)

P (Hi|E) =
P (E|Hi)P (Hi)
n∑

j=1

P (E|Hj)P (Hj)



Probability and Statistics, Mark Huiskes, LIACS, Lecture 58/11/2006

Independence of Events

• Let E and F be events. They are independent if:

1. P(F|E) = P(F), and P(E|F) = P(E) or:

2. At least one of the events has probability 0

• Mention that P(F|E) = P(F), also means P(E|F) = P(F) [so if 
E doesn’t tell us about F, F also doesn’t tell us about E]: we 
will see that in a moment (from P(F and E) = P(E)P(F))

• Two events are independent if and only if (      )

• Proof: true for zero-event probabilities; else P(F|E) = P(F), 
or P(F and E) / P(E) = P(F), so P(F and E) = P(E) P(F); the 
other way around directly follows from this as well.

• Mention extension to more events: Definition 4.2. Explain 
with last expression: only one way.

⇔

P (E ∩ F ) = P (E)P (F )
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Example

• Two coin tosses. A = {First toss is a head}; B = {two 
outcomes are the same}. Are these events independent?

• P(B|A) = P(A and B) / P(B) = P({HH})/P({HH,TT}) =1/2 = 
P(B)
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Joint Distribution Functions

• Let X_1, … , X_n random variables with sample space R_i. 
The joint random variable X = (X_1, …, X_n) has sample 
space Omega = R_1 x R_2 x … R_n. 

• The joint distribution function of X is the function that gives 
the probability of each of the outcomes of X.
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Example

• X2/X1     1            2        3

1         0.05     0.1       0.1

2         0.05     0.3       0.05

3         0.05     0.1       0.2
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Marginal Distributions

• The probability distributions of the individual variables in a 
joint distribution.

• They can be obtained by summing:

mX1
(ω1) =

∑

ω2

mX(ω1, ω2)
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Independence of Random Variables

• The random variables X_1, …, X_n are (mutually) 
independent if 

for any choice of 

• So if X_1, …, X_n are independent then their joint 
distribution function is the product of the individual 
distribution functions.

P (X1 = r1, X2 = r2, . . . , Xn = rn = P (X1 = r1)P (X2 = r2) · · ·P (Xn = rn)

r1, r2, . . . , rn.
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Continuous Conditional Probability

• The conditional density function is defined by:

• Probability of an event:

• Probability of an event F, given event E:

f(x|E) =

{
f(x)/P (E) if x ∈ E

0 if x /∈ E

P (F ) =
∫

x∈F

f(x) dx

P (F |E) =
∫

x∈F

f(x|E) dx =
∫

x∈F∩E

f(x)
P (E) dx =

P (F∩E)
P (E)
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Independence

• Independence is defined exactly as for discrete sample 
spaces.
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Joint Density Functions

• Theorem 4.2: Let X_1, X_2, …., X_n be continuous random 
variables with density functions f_1(x), f_2(x), …., f_n(x) and 
joint density f(x). Then these variables are independent if 
and only if:

for any choice x1, x2, . . . , xn

f(x1, . . . , xn) = f1(x1)f2(x2) · · · fn(xn)
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Binomial distribution

• Given n Bernouilli trials with probability p of success on 
each experiment, the probability of exactly k successes is:

• Explanation:

Using the tree: every path with k successes and n-k failures:

How many such paths are there?  n possible trials, k should 
be successes: 

• If B is a random variable counting the number of successes 
in a Bernouilli trials process with parameters n and p. Then 
the distribution m(k) = b(n,p,k) is called the Binomial 
distribution.

b(n, p, k) =

(
n
k

)
pkqn−k

P (E) with E = {ω|ω has k successes} .

P (E) =
∑

ω∈E

m(ω)

m({k successes, n− k failures}) = pkqn−k

(
n
k

)


