Continuous Probability Spaces

Mark Huiskes, LIACS
mark.huiskes@liacs.nl

Continuous Probability Spaces

- We first consider (non-discrete) sample spaces $\Omega \subseteq \mathbb{R}$
- Goal, again, is to be able to compute the probability of events $E \subseteq \Omega$
- This time we don't specify the probability for individual outcomes $m(\omega)$, but a probability density function $f(\omega)$,or usually: $f(x)$
- Definition: Let X be a continuous real-valued random variable. A density function for X is a real-valued function that satisfies
for all $a, b \in \mathbb{R}$

$$
P(a<=X<=b)=\int_{a}^{b} f(x) d x
$$

Continuous Probability Spaces

- Read $P(a<=X<=b)$ as $P(E)$, with $E=\{\omega \mid \omega \in \Omega, a \leq \omega \leq b\}$
- A density function is a density in the sense that it gives the probability per unit sample space
- Analogy: mass density of a wire:

Suppose we have a wire and its mass density along its length is given by $f(x)$

- Example 1: we have a wire of 2 meters long with a uniform density of $10 \mathrm{~kg} / \mathrm{m} 2$. Draw graph. Explain some masses.
- Example 2: Now for a general density function $f(x)$. Now

$$
M \approx \sum_{i=1}^{N} f\left(x_{i}\right) \Delta x
$$

- We can get the exact mass by letting $\Delta x \rightarrow 0$:

$$
M=\int_{a}^{b} f(x) d x
$$

Continuous Probability Spaces

- Using the density function we can compute the probability of (almost) any (reasonable) event $E \subseteq \Omega$:

$$
P(E)=\int_{E} f(x) d x
$$

- Note:

$$
\begin{aligned}
& P(\Omega)=\int_{-\infty}^{\infty} f(x) d x=1 \\
& \mathrm{P}(\{x\})=\int_{x}^{x} f(s) d s=0
\end{aligned}
$$

Two examples of density functions

- Uniform distribution on an interval [a, b]:

$$
f(x)=\left\{\begin{array}{lll}
\frac{1}{b-a} & \text { if } & a \leq x \leq b \\
0 & & \text { elsewhere }
\end{array}\right.
$$

- Exponential distribution: often a good model for times between occurrences

$$
f(t)= \begin{cases}\lambda e^{-\lambda t} & \text { if } \quad t \geq 0 \\ 0 & \text { if } \quad t<0\end{cases}
$$

Uniform density for 2 variables

- Now consider $\Omega \subseteq \mathbb{R}^{2}$
- For a uniform density $f(x, y)=\frac{1}{\operatorname{Area}(\Omega)}$
- Probability of an event $E \subseteq \Omega$:

$$
P(E)=\int_{E} \int f(x) d x d y=\frac{\operatorname{Area}(E)}{\operatorname{Area}(\Omega)}
$$

- Dart example: compute the probability that the dart lands in a certain region (e.g. first quadrant, half slice near rim 3/16)

Cumulative distribution functions

- Let X be a continuous real-valued random variable with density function $f(x)$. The cumulative distribution function $F(x)$ is defined by

$$
F(x)=P(X<=x)=\int_{-\infty}^{x} f(t) d t
$$

- $\mathrm{F}(\mathrm{x})$ is a specific primitive of $\mathrm{f}(\mathrm{x}): \frac{d}{d x} F(x)=f(x)$
- Uses of the cumulative distribution function:
- Sometimes easier to determine than the density function
- It's already integrated out making it easier to use to compute probabilities:

$$
\begin{aligned}
& P(X<=a)=F(a) \\
& P(X>a)=1-F(a) \\
& P(a \leq X \leq b)=F(b)-F(a)
\end{aligned}
$$

e.g.

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=\int_{-\infty}^{b} f(x) d x-\int_{-\infty}^{a} f(x) d x
$$

Cumulative distribution functions

- The uniform density

$$
F(x)=P(X<=x)=\int_{-\infty}^{x} \frac{1}{b-a} d t=\frac{x-a}{b-a}
$$

- The exponential density

$$
F(x)=P(X<=x)=\int_{-\infty}^{x} \lambda e^{-\lambda t} d t=\left[-e^{-\lambda t}\right]_{-\infty}^{x}=1-e^{-\lambda t}
$$

Assignment

The density of a continuous random variable X is given by

$$
f(x)=\left\{\begin{array}{ccc}
x & \text { if } & 0<x<1 \\
\frac{1}{2} & \text { if } & 1<x<2 \\
0 & & \text { elsewhere }
\end{array}\right.
$$

(a) Compute the cumulative distribution function $F(x)$
(b) Compute $\mathrm{P}(\{x>3 / 2\})$
(c) Compute $\mathrm{P}(\{1 / 2<x<3 / 2\})$

