Introduction to Set Notation

- Definition - Set

A set is a unordered collection of zero or more distinct objects.

- The objects that make up a set are called elements or members of the set.

Specifying Sets

Two main ways:

1. Listing the members of the set.

$$
\begin{aligned}
& \text { NOTATION: } A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \text { or } A=\left\{a_{1}, a_{2}, \ldots\right\} \\
& \text { examples: } A=\{a, e, i, o, u\} \\
& \qquad N=\{1,2,3,4, \ldots\}
\end{aligned}
$$

2. State the properties that characterize the members in the set.

NOTATION: $\mathrm{B}=\{\mathrm{x}: \mathrm{x}$ satisfies...$\}$
example: $B=\{x: x$ is an even integer, $x>0\}$
We read this as " B is the set of x such that x is an even integer and x is grater than zero". Note that we can't list all the members in the set B.

Note: Sets are often denoted by capitals, elements are usually lowercase.

Some Properties of Sets

- The order in which the elements are presented in a set is not important:

$$
A=\{a, e, i, o, u\} \text { and } B=\{e, o, u, a, i\} \text { both define the same set }
$$

- The members of a set can be anything, even sets.
- In a set the same member does not appear more than once.
$F=\{a, e, i, o, a, u\}$ is incorrect since the element ' a ' repeats.

"Element in/Member of" Notation

- Consider the set $A=\{a, e, i, o, u\}$ then
- We write "' a ' is a member of ' A '" as: $a \in A$
- We write "'b' is not a member of ' A '" as: $b \notin A$

Universal Set and Empty Set

- The members of all the investigated sets in a particular problem usually belongs to some fixed large set. In probability theory this is usually the sample space Ω.
- The set that has no elements is called the empty set and is denoted by \varnothing or $\}$.
e.g. $\left\{x: x^{2}=4\right.$ and x is an odd integer $\}=\varnothing$

Cardinality of a Set

- The number of elements in a set is called the cardinality of a set. Let ' A ' be any set then its cardinality is denoted by $|\mathrm{A}|$
- E.g. $A=\{a, e, i, o, u\}$ then $|A|=5$.

Venn Diagrams

- A pictorial way of representing sets.
- The universal set is represented by the interior of a rectangle and the other sets are represented by disks lying within the rectangle.
- E.g. $A=\{a, e, i, o, u\}$

Subsets

- Set ' A ' is called a subset of set ' B ' if and only if every element of set ' A ' is also an element of set ' B '. We also say that ' A ' is contained in ' B ' or that ' B ' contains ' A '. It is denoted by $A \subseteq B$ or $B \supseteq A$.

Venn Diagram for a Proper Subset

- Note that if $B \subset A$ then the Venn diagram depicting those sets is as follows:

- If $\mathrm{B} \subseteq \mathrm{A}$ then the disc showing ' B ' may overlap with the disc showing ' A ' ($A=B$)

Power Set

- The set of all subsets of a set ' S ' is called the power set of ' S '. It is denoted by $\mathrm{P}(\mathrm{S})$ or 2^{S}.
- So:

$$
P(S)=\{x: x \subseteq S\}
$$

- E.g. $A=\{1,2,3\}$ then

$$
P(A)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

- Note that $|P(S)|=2^{|S|}$.
- E.g. $|P(A)|=2^{|A|}=2^{3}=8$.

Set Operations - Complement

- The (absolute) complement of a set ' A ' is the set of elements which belong to Ω but which do not belong to A. This is denoted by A^{c} or \bar{A} or \tilde{A}.
- In other words we can say:
- $A^{c}=\{x: x \in \Omega \wedge x \notin A\}$

Venn Diagram for the Complement

Set Operations - Union

- Union of two sets ' A ' and ' B ' is the set of all elements which belong to either ' A ' or ' B ' or both. This is denoted by $A \cup B$.
- In other words we can say:

$$
A \cup B=\{x: x \in A \cup x \in B\}
$$

- E.g. $A=\{3,5,7\}, B=\{2,3,5\}$

$$
A \cup B=\{3,5,7,2,3,5\}=\{2,3,5,7\}
$$

Venn Diagram Representation for Union

Set Operations - Intersection

- Intersection of two sets ' A ' and ' B ' is the set of all elements which belong to both ' A ' and ' B '. This is denoted by $A \cap B$.
- In other words we can say:

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

- E.g. $A=\{3,5,7\}, B=\{2,3,5\}$

$$
A \cap B=\{3,5\}
$$

Set Operations - Difference

- The difference or the relative complement of a set ' B ' with respect to a set ' A ' is the set of elements which belong to ' A ' but which do not belong to ' B '. This is denoted by $\mathrm{A}-\mathrm{B}$ or $\mathrm{A} \backslash \mathrm{B}$.
- In other words we can say:

$$
A-B=\{x: x \in A \wedge x \notin B\}
$$

- E.g. $A=\{3,5,7\}, B=\{2,3,5\}$

$$
A-B=\{3,5,7\}-\{2,3,5\}=\{7\}
$$

Venn Diagram Representation for Difference

Thanks

- Next time:
- Relation between sets and probability
- See study guide

