Hidden Markov Models

music recognition

Stock Market Prediction

- Actual Value versus Forcasted Value for Tata Steel in Rupees over the period 5-9 2009-23-9 2011.
- Variations of value over time.
- From: A. Gupta, B. Dhingra, Stock Market Prediction Using Hidden Markov Models, 2011.

application: gene finding

Poly-A site
deal with variations in

- actual sound
- timing
\rightarrow actual base (match/substitutions)
\rightarrow insertions/deletions

Basic Questions

Given:

- A sequence of "observations"
- A probabilistic model of our "domain"

Questions:

- Does the given sequence belong to a certain family?
- Markov chains
- Hidden Markov Models (HMMs)
- Can we say something about the internal structure of the sequence? (indirect observations)
- Hidden Markov Models (HMMs)

Introduction Markov Chain Model

Characteristics

- Discrete time
- Discrete space
- No state History
- Present state only
- States and transitions

Notations:

$P(X)$	probability for event X
$P(X, Y)$	event X and event Y
$P(X \mid Y)$	event X given event Y

Definition of Markov Chain Model

- A Markov chain ${ }^{[1]}$ model is defined by
- a set of states
- some states emit symbols
- other states (e.g., the begin state) are silent
- a set of transitions with associated probabilities
- the transitions emanating from a given state define a distribution over the possible next states (i.e., all positive, and sum equals 1)
[1] Марков А. А., Распространение закона больших чисел на величины, зависящие друг от друга. - Известия физико-математического общества при Казанском университете. - 2-я серия. - Том 15. (1906) — С. 135-156

Markov Model

Markov Model $\mathrm{M}=(\mathrm{Q}, \mathrm{P}, \mathrm{T})$, with

- Q the set of states
- P the set of initial probabilities p_{x} for each state x in Q
- $\mathrm{T}=\left(\mathrm{t}_{\mathrm{xy}}\right)$ the transition probabilities matrix/graph, with $t_{x y}$ the probability of the transition from state x to state y .

This is a first order Markov Model: no history is modeled

An observation X is a sequence of states:

$$
X=x_{1} x_{2} \ldots x_{n}
$$

The probability of an observation X given the model M is equal to:

$$
P(X \mid M)=p_{x_{1}} t_{x_{1} x_{2}} t_{x_{2} x_{3}} \ldots t_{x_{n-1} x_{n}}=p_{x_{1}} \cdot \prod_{i=2}^{n} t_{x_{i-1} x_{i}}
$$

A Markov Chain Model Example

The Probability of a Sequence for a Markov Chain Model

$\operatorname{Pr}(\mathrm{CGGT})=\operatorname{Pr}(\mathrm{C}) \operatorname{Pr}(\mathrm{G} \mid \mathrm{C}) \operatorname{Pr}(\mathrm{G} \mid \mathrm{G}) \operatorname{Pr}(\mathrm{T} \mid \mathrm{G})$

Markov Chains: Another Example

M_{1} :

$$
\begin{aligned}
\mathrm{Q} & =\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathrm{P} & =(1,0,0) \\
& \text { unique starting state } \mathrm{A}
\end{aligned}
$$

$$
\left.T=\begin{array}{l}
\propto \\
\infty \\
0
\end{array} \begin{array}{rrr}
.7 & B & C \\
0 & .2 & 0 \\
.4 & 0 & .6
\end{array}\right)
$$

M_{2} :

$\mathrm{P}\left(\operatorname{AABBCCC} \mid \mathrm{M}_{1}\right)=$ $1 \cdot 7 \cdot 3 \cdot 2 \cdot 8 \cdot 6 \cdot 6 \cdot 10^{-6}=1.210^{-2}$
$P\left(\operatorname{AABBCCC} \mid \mathrm{M}_{2}\right)=$
$1 \cdot 6 \cdot 4 \cdot 3 \cdot 6 \cdot 5 \cdot 5 \cdot 10^{-6}=1.1^{11} 10^{-2}$

Markov Models: Properties

Given some sequence x of length L, we can ask: How probable is the sequence x given our model M ?

- For any probabilistic model of sequences, we can write this probability as

$$
\begin{aligned}
& \operatorname{Pr}(x)=\operatorname{Pr}\left(x_{L} x_{L-1} \ldots x_{1}\right) \\
& =\operatorname{Pr}\left(x_{L} \mid x_{L-1} \ldots x_{1}\right) \operatorname{Pr}\left(x_{L-1} \mid x_{L-2} \ldots x_{1}\right) \ldots \operatorname{Pr}\left(x_{1}\right)
\end{aligned}
$$

- key property of a ($1^{\text {st }}$ order) Markov chain: the probability of each X_{i} depends only on the value of

$$
\begin{aligned}
\mathrm{X}_{\mathrm{i}-1} \quad & \operatorname{Pr}(x)=\operatorname{Pr}\left(x_{L} \mid x_{L-1}\right) \operatorname{Pr}\left(x_{L-1} \mid x_{L-2}\right) \ldots \operatorname{Pr}\left(x_{2} \mid x_{1}\right) \operatorname{Pr}\left(x_{1}\right) \\
& =\operatorname{Pr}\left(x_{1}\right) \prod_{i=2}^{L} \operatorname{Pr}\left(x_{i} \mid x_{i-1}\right)
\end{aligned}
$$

Markov Model: Underflow Problem

- initial state x_{0} fixed
~ initial probabilities
- final state [not depicted]

$$
\begin{aligned}
& X=x_{1} x_{2} \ldots x_{n} \\
& P(X \mid M)=\prod_{i=1}^{n} t_{x_{i-1} x_{i}}
\end{aligned}
$$

small values: underflow

$$
t_{0 x}=p_{x}
$$

$$
\log P(X \mid M)=\sum_{i=1}^{n} \log t_{x_{i-1} x_{i}}
$$

Markov Model: Comparing Models

Given: $\quad X=x_{1} x_{2} \ldots x_{n}$

$$
P(X \mid M)=\prod_{i=1}^{n} t_{x_{i-1} x_{i}}
$$

Question: X best explained by which model?

We can calculate: $P\left(X \mid M_{1}\right)$ vs. $P\left(X \mid M_{2}\right)$

bases are not random

Motivation for Markov Models in Computational Biology

- There are many cases in which we would like to represent the statistical regularities of some class of sequences
- genes
- various regulatory sites in DNA (e.g., where RNA polymerase and transcription factors bind)
- proteins in a given family
- Markov models are well suited to this type of task

Markov Chain: An Example Application

- CpG islands
- CG di-nucleotides are rarer in eukaryotic genomes than expected given the marginal probabilities of C and G
- but the regions upstream of genes (reading is from 5^{\prime} to 3^{\prime}) are richer in CG di-nucleotides than elsewhere - so called CpG islands
- useful evidence for finding genes
- Application: Predict CpG islands with Markov chains
- a Markov chain to represent CpG islands
- a Markov chain to represent the rest of the genome

Markov Chains for Discrimination

- Suppose we want to distinguish CpG islands from other sequence regions
- Given sequences from CpG islands, and sequences from other regions, we can construct
- a model to represent CpG islands
- a null model to represent the other regions
- We can then score a test sequence X by:

$$
\operatorname{score}(X)=\log \frac{\operatorname{Pr}(X \mid \text { CpGModel })}{\operatorname{Pr}(X \mid \text { nullModel })}
$$

Markov Chains for Discrimination

Why can we use the scoring function:

$$
\operatorname{score}(X)=\log \frac{\operatorname{Pr}(X \mid \text { CpGModel })}{\operatorname{Pr}(X \mid \text { nullModel })}
$$

- According to Bayes' rule we have:

$$
\begin{aligned}
\operatorname{Pr}(C p G \mid X) & =\frac{\operatorname{Pr}(X \mid C p G) \operatorname{Pr}(C p G)}{\operatorname{Pr}(X)} \\
\operatorname{Pr}(\text { null } \mid X) & =\frac{\operatorname{Pr}(X \mid \text { null }) \operatorname{Pr}(\text { null })}{\operatorname{Pr}(X)}
\end{aligned}
$$

- If we are not taking into account prior probabilities $(\operatorname{Pr}(\mathrm{CpG})$ and $\operatorname{Pr}($ null $)$) of the two classes, then from Bayes' rule it is clear that we just need to compare $\operatorname{Pr}(\mathrm{X} \mid \mathrm{CpG})$ and $\operatorname{Pr}(\mathrm{X} \mid$ null $)$ as is done in our scoring function score().

Markov Chain Application: CpG islands

observed	island	+		A	C	G	T
frequencies		A	0.180	0.274	0.426	0.120	
		C	0.171	0.368	0.274	0.188	
		G	0.161	0.339	0.375	0.125	
		T	0.079	0.355	0.384	0.182	

non island -
A
C
G
T

A	C	G	T
0.300	0.205	0.285	0.210
0.322	0.298	0.078	0.302
0.248	0.246	0.298	0.208
0.177	0.239	0.292	0.292

In general consecutive CG pairs CG \rightarrow CG are rare, although 'islands'
Occur in signal (e.g.) promotor regions.

basic questions

- observation: DNA sequence
- model 1: CpG islands
- model 2: non-islands
- does this sequence belong to a certain family?

Markov chains
is this a CpG island (or not)?

- can we say something about the internal structure?

Markov Chains: windowing where are the CpG islands?

application: CpG islands

score

$$
\frac{P(X \mid \text { island })}{P(X \mid \text { non })}=\frac{\prod_{i=1}^{n} t_{x_{i-1} x_{i}}^{+}}{\prod_{i=1}^{n} t_{x_{i-1} x_{i}}^{-}}
$$

$X=A C G T \quad A->C \quad C->G \quad G->T$

$$
\frac{0.274 \cdot 0.274 \cdot 0.125}{0.205 \cdot 0.078 \cdot 0.208}=2.82
$$

application: CpG islands

LLR $=$ Log-Likelihood Ratio
$\log \left(t_{x y}^{+} / t_{x y}^{-}\right)$

\[

\]

log-score $\left(\log _{2}\right)$
$\log \frac{P(X \mid \text { island })}{P(X \mid \text { non })}=\log \frac{\prod_{i=1}^{n} t_{x_{i-1} x_{i}}^{+}}{\prod_{i=1}^{n} t_{x_{i-1} x_{i}}^{-}}=\sum_{i=1}^{n} \log \left(\frac{t_{x_{i-1} x_{i}}^{+}}{t_{x_{i-1} x_{i}}^{-}}\right)$
$X=A C G T$

$$
\log _{2} \frac{0.274 \cdot 0.274 \cdot 0.125}{0.205 \cdot 0.078 \cdot 0.208}=0.42+1.81-0.73=1.50
$$

CpG Log-Likelihood Ratio

$$
\begin{array}{llllll}
\log \left(t_{x y}^{+} / t_{x y}^{-}\right) & \text {LLR } & \mathrm{A} & \mathrm{C} & \mathrm{G} & \mathrm{~T} \\
& \mathrm{~A} & -0.74 & 0.42 & 0.58 & -0.80 \\
& \mathrm{C} & -0.91 & 0.30 & 1.81 & -0.69 \\
& \mathrm{G} & -0.62 & 0.46 & 0.33 & -0.73 \\
& \mathrm{~T} & -1.17 & 0.57 & 0.39 & -0.68
\end{array}
$$

$\operatorname{LLR}(\mathrm{ACGT})=0.42+1.81-0.73=1.50$ (0.37 'bits' per base)

$$
1.5 / 4=0,375
$$

- is a (short) sequence a CpG island? compare with observed data (normalized for length)
- where (in long sequence) are CpG islands ?
first approach: sliding window
- ! What would be the length of window?

empirical data

- is a (short) sequence a CpG island?
compare with observed data (normalized for length)

Figure 3.2 The histogram of the length-normalised scores for all the sequences. CpG islands are shown with dark grey and non-CpG with light grey.

- where (in long sequence) are CpG islands ? first approach: sliding window

CpGplot

observed vs. expected

putative islands

Some Notes on: Higher Order Markov Chains

- The Markov property specifies that the probability of a state depends only on the probability of the previous state
- But we can build more "memory" into our states by using a higher order Markov model
- In an n-th order Markov model

$$
\operatorname{Pr}\left(x_{i} \mid x_{i-1}, x_{i-2}, \ldots, x_{1}\right)=\operatorname{Pr}\left(x_{i} \mid x_{i-1}, \ldots, x_{i-n}\right)
$$

The probability of the current state depends on the previous n states.

Selecting the Order of a Markov Chain Model

- But the number of parameters we need to estimate for an n-th order Markov model grows exponentially with the order
- for modeling DNA we need $O\left(4^{n+1}\right)$ parameters (\# of state transitions) for an n-th order model
- The higher the order, the less reliable we can expect our parameter estimates to be
- estimating the parameters of a $2^{\text {nd }}$ order Markov chain from the complete genome of E. Coli (5.44 x 10^{6} bases), we would see each (length 3) word ~ 85.000 times on average (divide by 4^{3})
- estimating the parameters of a $9^{\text {th }}$ order chain, we would see each (length 10) word ~ 5 times on average (divide by $4^{10} \sim 10^{6}$)

Higher Order Markov Chains

- An n-th order Markov chain over some alphabet A is equivalent to a first order Markov chain over the alphabet of n-tuples: A^{n}
- Example: a $2^{\text {nd }}$ order Markov model for DNA can be treated as a $1^{\text {st }}$ order Markov model over alphabet

$$
\mathrm{AA}, \mathrm{AC}, \mathrm{AG}, \mathrm{AT}
$$
$$
\mathrm{CA}, \mathrm{CC}, \mathrm{CG}, \mathrm{CT}
$$
GA, GC, GG, GT
TA, TC, TG, TT

Transition probabilities:
$P(A \mid A A), P(A \mid A C)$, etc.

A Fifth Order Markov Chain Equivalent

TTTTT
$\operatorname{Pr}(G C T A C A)=\operatorname{Pr}(G C T A C) \operatorname{Pr}(A \mid G C T A C)$

hidden Markov model

Where (in long sequence) are CpG islands?

- first approach: Markov Chains + windowing
- second approach: hidden Markov model

Hidden Markov Model: A Simple HMM

Given observed sequence AGGCT, which state emits which item?

Another example: Eddy (2004)

Sequence: CTTCATGTGAAAGCAGACGTAAGTCA

An (toy) HMM for 5’ splice site recognition. Figure from: What is a hidden Markov model?
Sean R Eddy. Nature Biotechnology 22, 1315-1316 (2004)
emission
probabilities
initial
probabilities

$$
\left(\begin{array}{l}
\mathrm{p}_{\mathrm{H}}=0.4 \\
\mathrm{p}_{\mathrm{M}}=0.2 \\
\mathrm{p}_{\mathrm{L}}=0.4
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{P}\left(\operatorname{gog}_{888}\right)=0.3 \\
& \mathrm{P}\left(\xi_{3}\right)=0.4 \\
& \mathrm{P}\left(\mathrm{~m}_{3}\right)=0.3
\end{aligned}
$$

Example: weather

 (R, C, S)

Emissions

$\mathrm{p}_{\mathrm{H}}=0.4$
$\mathrm{p}_{\mathrm{M}}=0.2$
$\mathrm{p}_{\mathrm{L}}=0.4$
Emissions

(0.3, 0.4, 0.3)
$P($ RCCSS $\mid \mathrm{HHHHH})=1 \cdot 2 \cdot 2 \cdot 7 \cdot 7=196\left(\times 10^{-5}\right)$
$\mathrm{P}($ RCCSS $\mid \mathrm{MMMMM})=3 \cdot 4 \cdot 4 \cdot 3 \cdot 3=432\left(\times 10^{-5}\right)$
$P($ RCCSS, $H H H H H)=4 \cdot 1 \cdot 6 \cdot 2 \cdot 6 \cdot 2 \cdot 6 \cdot 7 \cdot 6 \cdot 7=1016\left(\times 10^{-7}\right)$
$P($ RCCSS, MMMMM $)=2 \cdot 3 \cdot 2 \cdot 4 \cdot 2 \cdot 4 \cdot 2 \cdot 3 \cdot 2 \cdot 3=14\left(\times 10^{-7}\right)$

hidden Markov model

what we see

model $\mathrm{M}=(\Sigma, \mathrm{Q}, \mathrm{T})$

- states Q
- transition probabilities $t_{p q}, p, q \in Q$
observation $X=x_{1} x_{2} \ldots x_{n} \in \Sigma^{*}$ observe states indirectly 'hidden'
- emission probabilities

$$
e_{p x}, p \in Q, x \in \Sigma \quad e_{p}(x)
$$

probability

observation given the model
? there may be many state seq's
underlying process

HMM main questions

observation $X \in \Sigma^{*}$

probability ... !

Given sequence X : most probable state vs. optimal path

* most probable state (over all state sequences) posterior decoding using forward \& backward probabilities
* most probable path (= single state sequence)

Viterbi

probability of observation X

dynamic programming: probability ending in state q emitting symbol x_{i}

probability of observation X

probability observing x_{1}, \ldots, x_{i} and ending in state q :

$$
f_{q}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=q\right)
$$

$$
f_{q}(i)=\sum_{p \in Q} f_{p}(i-1) t_{p q} e_{q}\left(x_{i}\right)
$$

'forward' probability

$$
P(X)=\sum_{p \in Q} f_{p}(n) t_{p *} \quad *=\text { end-state }
$$

Probability of observation: weather

posterior decoding

$P\left(\pi_{i}=\underset{\mathrm{i}}{q \mid X}\right) \mathrm{i}$-th state equals q

$$
\begin{gathered}
f_{q}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=q\right) \\
\text { forward }
\end{gathered} \quad \begin{aligned}
& b_{q}(i)=P\left(x_{i+1} \ldots x_{n} \mid \pi_{i}=q\right) \\
& \text { backward }
\end{aligned}
$$

$$
P\left(X, \pi_{i}=q\right)=f_{q}(i) b_{q}(i) \quad \Rightarrow \quad P\left(\pi_{i}=q \mid X\right)=\frac{f_{q}(i) b_{q}(i)}{P(X)}
$$

HMM main questions

observation $X \in \Sigma^{*} \Rightarrow$ most probable state sequence

Viterbi algorithm

most probable state sequence for observation X
(1) dynamic programming: $v_{q}(i)$ probability ending in state q and emitting x_{i}

Viterbi algorithm

(2) traceback: most probable state sequence start with final maximum

HMM Example: CpG islands

8 states A^{+}vs A^{-}

HMM for Hidden Coin Tossing

(a)

(b)

$P(H)=P_{1} \quad P(H)=P_{2}$ $P(T)=1-P_{1} \quad P(T)=1-P_{2}$
$0=$ HHTTHTHHTTH...
$S=11221211221 \ldots$

O = HHTTHTHHTTH... $S=21122212212 \ldots$
(c)

STATE

$$
\begin{array}{lccc}
P(H) & \frac{1}{P_{1}} & \frac{2}{P_{2}} & \frac{3}{P_{3}} \\
P(T) & 1-P_{1} & 1-P_{2} & 1-P_{3}
\end{array}
$$

Fig. 2. Three possible Markov models which can account for the results of hidden coin tossing experiments. (a) 1-coin model. (b) 2 -coins model. (c) 3 -coins model.

dishonest casino dealer

Rolls	31511624644664424321131631164152133625144543631656626566666
Die	FFFLLLLLLLLLLLLLLL
Viterbi	FFLLLLLLLLLLLL
Rolls	651166453132651245636664631636663162326455235266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls	22255544166656663564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL
Viterbi	FFFL
Rolls	3661636664662325441366166116325256246225526525266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFFF
Rolls	233121625364414432351632436366566246662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

dishonest casino dealer

Observation
366163666466232534413661661163252562462255265252266435353336 Viterbi
LLLLLLLLLLLLFF
Compare to:

```
    Forward
FFLLLLLLLLLLLLFFFFFFFFLFLLLFLLFFFFFFFFFFFFFFFFFFFFLFFFFFFFFF
    Posterior (total)
LLLLLLLLLLLLFFFFFFFFFLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
```


Sketch: Parameter estimation

training sequences $\mathrm{X}^{(\mathrm{i})}$
optimize score $\prod_{i=1}^{n} P\left(X^{(i)} \mid \Theta\right)$ for model Θ.
Markov Chain: state sequences known

- count transitions pq $\quad A_{p q}$
- count emissions b in $p \quad E_{p}(b)$
divide by
- total transitions in p
- emissions in q

Laplace correction

Baum-Welch

HMM: state sequences unknown

Baum-Welch training

based on model
expected number of transitions, emissions build new (better) model \& iterate

$$
\begin{aligned}
& P\left(\pi_{i}=p, \pi_{i+1}=q \mid X, \Theta\right)= \\
& \frac{f_{p}(i) \cdot t_{p q} \cdot e_{q}\left(x_{i+1}\right) \cdot b_{q}(i+1)}{P(X)}
\end{aligned}
$$

$A_{p q} \quad$ sum over all training sequences X sum over all positions i
$E_{p}(b)$ sum over all training sequences X sum over all positions i with $\mathrm{x}_{\mathrm{i}}=\mathrm{b}$

Baum-Welch training

concerns:

- guaranteed to converge target score, not Θ
- unstable solutions !
- local maximum
tips:
- repeat for several initial Θ
- start with meaningful Θ

Viterbi training

Viterbi training (sketch):

- determine optimal paths
- re-compute as if paths are known
- score may decrease!

Important Papers on HMM

L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceeding of the IEEE, Vol. 77, No. 22, February 1989.

Krogh, I. Saira Mian, D. Haussler, A Hidden Markov Model that finds genes in E. coli DNA, Nucleid Acids Research, Vol. 22 (1994), pp 4768-4778

Furthermore:
R. Hassan, A combination of hidden Markov model and fuzzy model for stock market forecasting, Neurocomputing archive, Vol. 72, Issue 16-18, pp 3439-3446, October 2009.

