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Hidden Markov Models

based on chapters from the book

Durbin, Eddy, Krogh and Mitchison

Biological Sequence Analysis

via Shamir’s lecture notes
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music recognition

deal with variations in

- pitch

- timing

- timbre

- …
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Stock Market Prediction

• Actual Value versus Forcasted Value for Tata Steel in 
Rupees over the period 5-9 2009 – 23-9 2011.

• Variations of value over time.

• From: A. Gupta, B. Dhingra, Stock Market Prediction 
Using Hidden Markov Models, 2011.
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application: gene finding

deal with variations in

- actual sound   → actual base (match/substitutions)

- timing   → insertions/deletions
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Basic Questions

Given:

• A sequence of “observations”

• A probabilistic model of our “domain”

Questions:

• Does the given sequence belong to a certain family?
– Markov chains

– Hidden Markov Models (HMMs)

• Can we say something about the internal structure of the 
sequence? (indirect observations)
– Hidden Markov Models (HMMs)
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Introduction Markov Chain Model

Characteristics

• Discrete time

• Discrete space

• No state History

– Present state only

• States and transitions

Notations:

P(X) probability for event X

P(X,Y) event X and event Y

P(X|Y) event X given event Y

A

C

B
0.4

0.3
0.3

0.2

0.81

Discrete   vs  Continuous
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Definition of Markov Chain Model

• A Markov chain[1] model is defined by

– a set of states

• some states emit symbols

• other states (e.g., the begin state) are silent

– a set of transitions with associated probabilities

• the transitions emanating from a given state define a distribution over 

the possible next states (i.e., all positive, and sum equals 1)

[1] Марков А. А., Распространение закона больших чисел на величины, зависящие друг 

от друга. — Известия физико-математического общества при Казанском 

университете. — 2-я серия. — Том 15. (1906) — С. 135—156
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Markov Model

Markov Model M = (Q,P,T), with

• Q the set of states

• P the set of initial probabilities px for each 
state x in Q

• T = (txy) the transition probabilities 
matrix/graph, with txy the probability of the 
transition from state x to state y.

This is a first order Markov Model: 

no history is modeled

An observation X is a sequence of states: 

X = x1x2 … xn

The probability of an observation X given the 
model M is equal to:

A

C

B

tAC

tAA
M:
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A Markov Chain Model Example

• Transition 

probabilities

– Pr(xi=a|xi-1=g)=0.16

– Pr(xi=c|xi-1=g)=0.34

– Pr(xi=g|xi-1=g)=0.38

– Pr(xi=t|xi-1=g)=0.12

  1)|Pr( 1 gxx ii

over all neighbors xi
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The Probability of a Sequence for a Markov Chain Model

Pr(CGGT)=Pr(C)Pr(G|C)Pr(G|G)Pr(T|G)
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Markov Chains: Another Example

A CB

0.7

0.3

0.2

0.8

0.6

0.4

A CB

0.6

0.4

0.3

0.6

0.5

0.50.1

AABBCCC

P( AABBCCC | M1 ) =

1·7·3·2·8·6·6·10-6 = 1.2 10-2

P( AABBCCC | M2 ) = 

1·6·4·3·6·5·5·10-6 = 1.1 10-2

unique starting state A

.7 .3  0
0 .2 .8

.4  0 .6
T = 

Q = { A, B, C }

P = ( 1, 0, 0 )

1 .7    .3     .2     .8     .6     .6

A        B        C

C
  
  
 B

  
  
 A

M1:

M2:
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Markov Models: Properties

Given some sequence x of length L, we can ask: 

How probable is the sequence x given our model M?

• For any probabilistic model of sequences, we can 

write this probability as

• key property of a (1st order) Markov chain: the 

probability of each xi depends only on the value of

xi-1
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Markov Model: Underflow Problem

A

C

B

tAC

tAA

small values: underflow

• initial state x0 fixed

~ initial probabilities

• final state    [not depicted]

0

t0A

t0C t0B

M:
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Markov Model: Comparing Models

M1

M2

Question: X best explained by which model?

P(X | M1)   vs.   P(X | M2)

P(M1 | X)   vs.   P(M2 | X)   !!

Bayes Rule: P(A|B) = P(B|A)P(A) / P(B)

P(M1|X)        P(X|M1)P(M1) 

P(M2|X)        P(X|M2)P(M2) 
=

Given:

We can calculate:

We want to know:
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motto

bases are not random
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Motivation for Markov Models in Computational Biology

• There are many cases in which we would like to 

represent the statistical regularities of some          

class of sequences

– genes

– various regulatory sites in DNA (e.g., where RNA

polymerase and transcription factors bind)

– proteins in a given family

• Markov models are well suited to this type of task
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Markov Chain: An Example Application

• CpG islands

– CG di-nucleotides are rarer in eukaryotic genomes than expected 

given the marginal probabilities of C and G

– but the regions upstream of genes (reading is from 5’ to 3’) are 

richer in CG di-nucleotides than elsewhere – so called CpG islands

– useful evidence for finding genes

• Application: Predict CpG islands with Markov chains

– a Markov chain to represent CpG islands

– a Markov chain to represent the rest of the genome
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Markov Chains for Discrimination

• Suppose we want to distinguish CpG islands 

from other sequence regions

• Given sequences from CpG islands, and 

sequences from other regions, we can construct

– a model to represent CpG islands

– a null model to represent the other regions

• We can then score a test sequence X by:

)|Pr(

)|Pr(
log)(

nullModelX

CpGModelX
Xscore 
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Markov Chains for Discrimination

Why can we use the scoring function: 

• According to Bayes’ rule we have:

• If we are not taking into account prior probabilities (Pr(CpG) and 

Pr(null)) of the two classes, then from Bayes’ rule it is clear that we 

just need to compare Pr(X|CpG) and Pr(X|null) as is done in our 

scoring function score().

)Pr(

)Pr()|Pr(
)|Pr(

X

CpGCpGX
XCpG 

)Pr(

)Pr()|Pr(
)|Pr(

X

nullnullX
Xnull 

)|Pr(

)|Pr(
log)(

nullModelX

CpGModelX
Xscore 
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Markov Chain Application: CpG islands

+ A C G T
A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.188
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

- A C G T
A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292A C

G T

In general consecutive CG pairs 

CG → CG are rare, although ‘islands’ 

Occur in signal (e.g.) promotor regions.

island

non island

observed

frequencies
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basic questions

 observation: DNA sequence

 model 1: CpG islands

 model 2: non-islands

• does this sequence belong to a certain family?

Markov chains

is this a CpG island (or not)?

• can we say something about the internal structure?

Markov Chains: windowing

where are the CpG islands?
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application: CpG islands

+    A C G     T
A  0.180 0.274 0.426 0.120
C  0.171 0.368 0.274 0.188
G  0.161 0.339 0.375 0.125
T  0.079 0.355 0.384 0.182

- A     C     G     T
A  0.300 0.205 0.285 0.210
C  0.322 0.298 0.078 0.302
G  0.248 0.246 0.298 0.208
T  0.177 0.239 0.292 0.292

score

island non island

X = ACGT        A->C   C->G    G->T

0.274 · 0.274 · 0.125

0.205 · 0.078 · 0.208
= 2.82

Note: A score > 1 is an 

Indication of a CpG island.
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application: CpG islands

log-score (log2)

X = ACGT

0.274 · 0.274 · 0.125

0.205 · 0.078 · 0.208
log2 = 0.42 + 1.81 – 0.73 = 1.50 

LLR A C G T
A -0.74 0.42 0.58 -0.80
C -0.91 0.30 1.81 -0.69
G -0.62 0.46 0.33 -0.73
T -1.17 0.57 0.39 -0.68‘bits’ (log2)

LLR = Log-Likelihood Ratio

log2(0.274/0.078) = 1.81
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CpG Log-Likelihood Ratio

LLR A C G T
A -0.74 0.42 0.58 -0.80
C -0.91 0.30 1.81 -0.69
G -0.62 0.46 0.33 -0.73
T -1.17 0.57 0.39 -0.68

LLR(ACGT) = 0.42+1.81–0.73 = 1.50

• is a (short) sequence a CpG island ?

compare with observed data  (normalized for length) 

• where (in long sequence) are CpG islands ?

first approach: sliding window

• ! What would be the length of window?

( 0.37 ‘bits’ per base )

1.5/4 = 0,375
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empirical data

• is a (short) sequence a CpG island ?

compare with observed data  (normalized for length)

CpG islands
Non-CpG
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CpGplot

ACCGATACGATGAGAATGAGCAATGTAGTGAATCGTTTCAGCTACT
CTCTATCGTAGCATTACTATGCAGTCAGTGATGCGCGCTAGCCGCG
TAGCTCGCGGTCGCATCGCTGGCCGTAGCTGCGTACGATCTGCTGT
ACGCTGATCGGAGCGCTGCATCTCAACTGACTCATACTCATATGTC
TACATCATCATCATTCATGTCAGTCTAGCATACTATTATCGACGAC
TGATCGATCTGACTGCTAGTAGACGTACCGAGCCAGGCATACGACA
TCAGTCGACT

• where (in long sequence) are CpG islands ?

first approach: sliding window



27

CpGplot

observed vs. expected

percentage

putative islands

Islands of unusual CG composition 
EMBOSS_001 from 1 to 286 
Observed/Expected ratio > 0.60 
Percent C + Percent G > 50.00 
Length > 50 
Length 114 (51..164) 
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Some Notes on: Higher Order Markov Chains

• The Markov property specifies that the probability of a state depends only

on the probability of the previous state

• But we can build more “memory” into our states by using a higher order

Markov model

• In an n-th order Markov model

The probability of the current state depends on the previous n states.

),...,|Pr(),...,,|Pr( 1121 niiiiii xxxxxxx  
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Selecting the Order of a Markov Chain Model

• But the number of parameters we need to estimate for an    

n-th order Markov model grows exponentially with the order

– for modeling DNA we need parameters (# of state 

transitions) for an n-th order model

• The higher the order, the less reliable we can expect our

parameter estimates to be

– estimating the parameters of a 2nd order Markov chain from the 

complete genome of E. Coli (5.44 x 106 bases) , we would see each

(length 3) word ~ 85.000 times on average (divide by 43)

– estimating the parameters of a 9th order chain, we would see each 

(length 10) word ~ 5 times on average (divide by 410 ~ 106)

)4( 1nO
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Higher Order Markov Chains

• An n-th order Markov chain over some alphabet A is

equivalent to a first order Markov chain over the alphabet

of n-tuples:  An

• Example: a 2nd order Markov model for DNA can be

treated as a 1st order Markov model over alphabet

AA, AC, AG, AT

CA, CC, CG, CT

GA, GC, GG, GT

TA, TC, TG, TT

Transition probabilities:

P(A|AA) , P(A| AC), etc.
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A Fifth Order Markov Chain Equivalent

Pr(GCTACA)=Pr(GCTAC)Pr(A|GCTAC)
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hidden Markov model

Where (in long sequence) are CpG islands?

• first approach: Markov Chains + windowing

• second approach: hidden Markov model
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Hidden Markov Model: A Simple HMM

Given observed sequence AGGCT, which state emits 
which item?

Model 1 Model 2
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Another example: Eddy (2004)

An (toy) HMM for 5’ splice site recognition.

Figure from: What is a hidden Markov model?  

Sean R Eddy. Nature Biotechnology 22, 1315 - 1316 (2004) 

prob. of path

P( si=E | X)
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Example: weather

0.3

0.4

0.6 0.2

0.1

0.1

0.5

0.4

0.4

P(     )=0.1
P(     )=0.2
P(     )=0.7

H
P(     )=0.3
P(     )=0.4
P(     )=0.3

M

L P(     )=0.6
P(     )=0.3
P(     )=0.1

pH = 0.4
pM= 0.2
pL = 0.4

observed weather vs. pressure

emission

probabilities

transition

probabilitiesinitial

probabilities
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Example: weather

(    ,     ,     )
0.3

0.4

0.6 0.2

0.1

0.1

0.5

0.4

0.4

H M

L

pH = 0.4
pM= 0.2
pL = 0.4

(0.1, 0.2, 0.7)

(0.3, 0.4, 0.3)

(0.6, 0.3, 0.1)

( R, C, S )

P( RCCSS | HHHHH )   = 1·2·2·7·7 = 196  (x10-5)

P( RCCSS | MMMMM  ) = 3·4·4·3·3 = 432  (x10-5)

P( RCCSS, HHHHH )   = 4·1·6·2·6·2·6·7·6·7 = 1016  (x10-7)

P( RCCSS, MMMMM ) = 2·3·2·4·2·4·2·3·2·3 = 14  (x10-7)

Given path

Emissions

Emissions
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hidden Markov model

model M = (,Q,T)

• states  Q

• transition probabilities 

observation

observe states indirectly ‘hidden’

• emission probabilities

probability

observation given the model

? there may be many state seq’s  

A

C

B

tAC

tAA

x y

eAx

eAy

underlying process

what we see
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HMM main questions

tpq Given HMM M:

• probability of observation X?

• most probable state sequence?

• how to find the parameters of    

the model M? training

observation   X*
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probability …  !

Given sequence X: most probable state   vs.   optimal path

* most probable state (over all state sequences)

posterior decoding

using forward & backward probabilities

* most probable path (= single state sequence)

Viterbi

1

0.4

0.6

0.7

0.3

1

0.4

0.6

0.5

0.5

1
1

1

probability of state
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probability of observation X

xi

dynamic programming: probability ending in state q emitting symbol xi

%

%

%

A

B

C

x1 xi-1xi-2

state
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probability of observation X 

probability observing x1, …, xi and ending in state q:

‘forward’ probability

* = end-state
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Probability of observation:

weather

(    ,     ,     )
0.3

0.4

0.6 0.2

0.1

0.1

0.5

0.4

0.4

H M

L

pH = 0.4
pM= 0.2
pL = 0.4

(0.1, 0.2, 0.7)

(0.3, 0.4, 0.3)

(0.6, 0.3, 0.1)

( R, C, S )

1:R              2:C   
H  0  4·1 =  4  (4·6 +6·4 +24·1)·2 = 144 (x10-4)

M  0  2·3 =  6  (4·3 +6·2 +24·5)·4 = 576 (x10-4)

L  0  4·6 = 24  (4·1 +6·4 +24·4)·3 = 372 (x10-4)

0 1

Initial state:

• Remain in H

• Coming from M

• Coming from L

P( RCCSS ) = P( RC… )

Transitions:

Start:
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posterior decoding

%A

B

i

forward backward

i-th state equals q

=>
P(X)
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HMM main questions

tpq

• probability of this observation?

• most probable state sequence?

• how to find the model? training

observation X*

again:

We cannot try all possibilities

Viterbi

 most probable state sequence

X:
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Viterbi algorithm

xi

most probable state sequence for observation X

(1) dynamic programming: vq(i) probability ending in state q and emitting xi

%

%

%

A

B

C

vq(i)

State:
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Viterbi algorithm

xL

(2) traceback: most probable state sequence

start with final maximum

A

B

C
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HMM Example: CpG islands 

+ A C G T
A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.188
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

- A C G T
A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292

8 states A+ vs A-

unique observation each state
0.999

0.001 0.00001

0.99999

estimates

A C

G T

Transition Matrix
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HMM for Hidden Coin Tossing

H
T

T

T T

T

H

T

……… H H T T H T H H T T H
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dishonest casino dealer
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dishonest casino dealer
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dishonest casino dealer

Observation
366163666466232534413661661163252562462255265252266435353336

Viterbi 
LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Compare to:

Forward 
FFLLLLLLLLLLLLFFFFFFFFLFLLLFLLFFFFFFFFFFFFFFFFFFFFLFFFFFFFFF

Posterior (total) 
LLLLLLLLLLLLFFFFFFFFFLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
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Sketch: Parameter estimation

training sequences X(i)

optimize score                                   for model Θ.

Markov Chain: state sequences known

 count transitions  pq

 count emissions  b in  p

divide by 

 total transitions in p

 emissions in q

Laplace correction
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Baum-Welch

HMM: state sequences unknown

Baum-Welch training

based on model

expected number of transitions, emissions

build new (better) model & iterate

sum over all training sequences X

sum over all positions i

sum over all training sequences X

sum over all positions i with xi=b
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Baum-Welch training

concerns:

• guaranteed to converge

target score, not Θ

• unstable solutions !

• local maximum

tips:

• repeat for several initial Θ

• start with meaningful Θ
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Viterbi training

Viterbi training (sketch):

• determine optimal paths

• re-compute as if paths are known

• score may decrease!
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Important Papers on HMM

L.R. Rabiner, A Tutorial on Hidden Markov Models and 

Selected Applications in Speech Recognition,

Proceeding of the IEEE, Vol. 77, No. 22, February 1989.

Krogh, I. Saira Mian, D. Haussler, A Hidden Markov Model 

that finds genes in E. coli DNA, Nucleid Acids Research, 

Vol. 22 (1994), pp 4768-4778

Furthermore:

R. Hassan, A combination of hidden Markov model and fuzzy 

model for stock market    forecasting, Neurocomputing 

archive, Vol. 72 ,  Issue 16-18, pp 3439-3446, October 

2009.


