
Data Structures

November 16

2

Objectives
Discuss the following topics:

• Data Compression and Huffman Codes

Data Compression and Huffman Codes
• Encoding symbols using bits

– Ultimately computers operate on sequences of bits �

need encoding schemes that take a rich alphabet and

converts into bits

• Simplest scheme: use a fixed number of bits for each

symbol in the alphabet, and then just concatenate

bit strings for each symbol in the text.

• Example of encoding with fixed number of bits: 26

letters, space (to separate words), comma, period,

question mark, exclamation mark, and apostrophe;

total 32 symbols, can do with 5 bits.

Data Compression and Huffman Codes
• Ascii works similarly

• Can you do better for the case of 32 symbols? Can’t

do with 4 bits – can only distinguish 16 items

• BUT: maybe over large stretches of text we can

spend on average less than 5 bits per symbol? e, t, a,

o, i, n get to be use much more frequently in English

than q,j,x,z (more than an order of magnitude)

• Could use a small number of bits for the frequent

letters, and a large number of bits for the less

frequent ones – hopefully on average less than 5 bits

on a long string of text

• Reduce average number of bits per letter:

fundamental problem in Datacompression

Data Compression and Huffman Codes
• How do you construct an encoding which in optimal

way takes advantage of nonuniform frequencies of

letters?

• Discussion of message transfer

• Morse Code

• Prefix Codes

• Ambiguity in Morse code: pairs of letters where the

bit string that encodes one letter is a prefix of the bit

string that encodes another

• Map letters to bitstrings so no encoding is prefix of

any other

Data Compression and Huffman Codes
• A prefix code for a set S of letters is function γ that

maps each letter x ∈ S to some sequence of zeros

and ones such that for different y, x ∈ S, the

sequence γ(x) is not a prefix of γ(y).

• Works: consider a text consisting of a sequence of

letters x1x2x3…xn. Convert this to a sequence of bits

by simply encoding each letter using γ and then

concatenating this: γ (x1) γ (x2) γ (x3)… γ (xn).

Data Compression and Huffman Codes
• Decoding?

– Scan bits from left to right

– As soon as you see enough bits to match encoding of some

letter, output this letter as the first letter of the text --

must be correct! No shorter or longer prefix could encode

any other letter

– Delete corresponding set of bits from the front of the

message and iterate

• No need for pauses etc

Data Compression and Huffman Codes
• For prefix code we have

– Each code word corresponds to exactly one symbol

– No look ahead is required

• Example 1: S = {A, B, C}

– Code1: γ1(A)=1; γ1(B)=0; γ1(C)=10.

– Code2: γ2(A)=1; γ2(B)=00; γ2(C)=10.

– Code3: γ3(A)=11; γ3(B)=10; γ3(C)=01.

• Requirements:

• Each code word corresponds to exactly one symbol

• No look ahead is required

• Length of a codeword for a given symbol mj should

not exceed the length of the codeword of a less

probable symbol mi: P(mi) ≤ P(mj) ⇒ length(mi)≥

length(mj)

Data Compression and Huffman Codes
• Length of a codeword for a given symbol mj should

not exceed the length of the codeword of a less

probable symbol mi: P(mi) ≤ P(mj) ⇒ length(mi)≥

length(mj)

• In optimal encoding system, no unused short

codewords either as stand-alone encodings or as

prefixes of longer codewords (means longer

codewords were created unnecessarily)

• Example: 01,000,001,100,101 for a certain set of 5

symbols: 11 is not used; � optimal coding:

01,10,11,000,001.

Data Compression and Huffman Codes
• Another example of prefix code:

S={a,b,c,d,e}.γ1(a)=11; γ1(b)=01; γ1(c)=001; γ1(d)=10;

γ1(e)=000; cecab � 0010000011101

If recipient knows γ1, then can decode unambiguously.

• Towards Optimal Prefix Codes Suppose for each x∈S

there is a frequency fx, representing the fraction of

the letter in the text that are equal to x. (Total

number of letters in the text is n, then nfx of these

letters equal x). We have: ∑ x∈S fx= 1.

• Encoding length of a given text using encoding γ

(|γ(x)| denotes the length of γ(x)):

• encoding length=∑∑∑∑ x∈∈∈∈S nfx |γ(x)|= n∑∑∑∑ x∈∈∈∈S fx |γ(x)|.

• average number of bits per letter = ∑∑∑∑ x∈∈∈∈S fx |γ(x)|.

Data Compression and Huffman Codes
• Our earlier example of prefix code:

S={a,b,c,d,e}.γ1(a)=11; γ1(b)=01; γ1(c)=001; γ1(d)=10;

γ1(e)=000;

Their frequencies: fa=0.32; fb=0.25; fc=0.20; fd=0.18;

fe=0.05;

Average number of bits per letter using prefix code γ1

is:

0.32∙2+ 0.25∙2 +0.20∙3+ 0.18∙2+ 0.05∙3 = 2.25

γ1 is not the best:

γ2(a)=11; γ2(b)=10; γ2(c)=01; γ2(d)=001; γ2(e)=000; is

better

0.32∙2+ 0.25∙2 +0.20∙2+ 0.18∙3+ 0.05∙3 = 2.23

Data Compression and Huffman Codes

Problem:

• Given an alphabet S and a set of

frequencies for the letters, produce a

prefix code γ such that average

number of bits

ABL(γ) = ∑∑∑∑ x∈∈∈∈S fx |γ(x)|

is as small as possible.

• Such a code is called optimal

Data Compression and Huffman Codes

Representing prefix codes using

binary trees
Consider a (rooted) binary tree T such that the number

of leaves is equal to the size of the alphabet S, label

each leaf with a distinct letter in S.

Such a T naturally describes a prefix code: for each

letter x ∈ S follow the path from the root to the leaf

labeled with x; each time you go from a node to its

left child write down a 0 and in case you go to the

right, write down a 1.

The encoding of S constructed from T is a prefix code

Data Compression and Huffman Codes

Representing prefix codes using

binary trees
Can also go in the other direction: given a prefix code γ

we can build a binary tree T which “stores” the prefix

code recursively as follows:

We start with a root; all letters x ∈ S whose encodings

start with a 0 will be leaves in the left subtree of the

root; all letters y ∈ S whose encodings start with a 1

will be leaves in the right subtree of the root;

a

e d c b

a

e d c b

γ0(a)=1;
γ0(b)=011;
γ0(c)=010;
γ0(d)=001;
γ0(e)=000;

e c

b d a

e c

b d a

γ1(a)=11;
γ1(b)=01;
γ1(c)=001;
γ1(d)=10;
γ1(e)=000;

e d

c b a

e c

b d a

γ2(a)=11;
γ2(b)=10;
γ2(c)=01;
γ2(d)=001;
γ2(e)=000;

Data Compression and Huffman Codes

• The search for an optimal prefix code can be

viewed as the search for a binary tree T,

together with a labelling of the leaves of T,

that minimizes the average number of bits per

letter.

• Note: the length of encoding of a letter x ∈ S

is the length of the path from the root to the

leaf labeled with x

• Length of the path from root to leaf v is called

the depth of the leaf, notation: depthT(v); ((
recall depthT(v) = (level of v) – 1))

Data Compression and Huffman Codes

• Searching for: labeled binary tree that

minimizes the weighted average of the depths

of the leaves, where the average is weighted

by the frequencies of the letters that label the

leaves: ∑∑∑∑ x∈∈∈∈S fx depthT(x), denote this quantity

by ABL(T)

• Claim: The binary tree corresponding to the

optimal prefix code is full. (full = each node

has two children)

Data Compression and Huffman Codes

• Discussion of Shannon-Fano codes

• Example: S={a,b,c,d,e} frequencies: fa=0.32;

fb=0.25; fc=0.20; fd=0.18; fe=0.05;

• Resulting code is γ1 (which we know not to be

optimal)

Data Compression and Huffman Codes

• Claim: Suppose T* is a binary tree

corresponding to an optimal prefix code. Let u

and v be leaves of T* such that depth(u) <

depth(v). Suppose further that leaf u is

labeled with y ∈ S and leaf v is labeled with x

∈ S. Then fy ≥ fz.

• If somebody gave you the structure of T*

without the labeling, you would be able to

label it in an optimal way

Data Compression and Huffman Codes
• Claim: Consider T* is a binary tree

corresponding to an optimal prefix code. Let v

be a leaf in T* whose depth is as large as

possible. Leaf v has a parent u (we exclude the

trivial case of alphabets with one letter), we know that

T* is full binary tree , u has another child w.

This child, w, is a leaf of T*. (we will refer to w

and v as siblings)

• Claim: There is an optimal prefix code, with

corresponding tree T*, in which the lowest-

frequency letters are assigned to leaves that

are siblings in T*

Data Compression and Huffman Codes

An Algorithm to Construct an Optimal Prefix

Code:

• Suppose y* and z* are letters in S with the

two lowest frequencies (can break ties

arbitrarily). Previous claim tells where y* and

z* go (can go) in an optimal solution: they end

up as sibling leaves below a common parent.

This common parent acts like a “meta-letter”

whose frequencey is the sum of the

frequencies of y* and z*

Data Compression and Huffman Codes

An Algorithm to Construct an Optimal Prefix

Code:

• Algo: replace y* and z* with with this meta-

letter, obtaining an alphabet which is one

letter smaller. We recursively find prefix code

for the smaller alphabet, and then “unwrap”

the metaletter back into y* and z* to obtain

prefix code for S:

Data Compression and Huffman Codes
To construct a prefix code for an alphabet S with given frequencies:

if S has two letters then

encode one letter using 0 and the other using 1

else

let y* and z* be the two lowest-frequency letters

form a new alphabet S’ by deleting y* and z* and replacing

them with a new letter ω of frequency fy*+fz*.

recursively construct a prefix code γ’ for S’, with tree T’

Define a prefix code for S as follows:

Start with T’

Take the leaf ω and add two children below it labeled

y* and z*

endif

Data Compression and Huffman Codes

• Claim: ABL(T’) = ABL(T) – fω.

• Claim: the Huffman code for a given alphabet achieves the

minimum number of bits per letter of any prefix code.

• Implementation: without thought it is O(k2) where k is the

number of letters in the alphabet; using priority queues we

get O(k log(k)).

• extensions

