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Objectives
Discuss the following topics: 

• Data Compression and Huffman Codes



Data Compression and Huffman Codes
• Encoding symbols using bits

– Ultimately computers operate on sequences of bits �

need encoding schemes that take a rich alphabet and 

converts into bits

• Simplest scheme: use a fixed number of bits for each 

symbol in the alphabet, and then just concatenate 

bit strings for each symbol in the text. 

• Example of encoding with fixed number of bits: 26 

letters, space (to separate words), comma, period, 

question mark, exclamation mark, and apostrophe; 

total 32 symbols, can do with 5 bits.



Data Compression and Huffman Codes
• Ascii works similarly 

• Can you do better for the case of 32 symbols? Can’t 

do with 4 bits – can only distinguish 16 items

• BUT: maybe over large stretches of text we can 

spend on average less than 5 bits per symbol? e, t, a, 

o, i, n get to be use much more frequently in English 

than q,j,x,z (more than an order of magnitude)

• Could use a small number of bits for the frequent 

letters, and a large number of bits for the less 

frequent ones – hopefully on average less than 5 bits 

on a long string of text

• Reduce average number of bits per letter: 

fundamental problem in Datacompression



Data Compression and Huffman Codes
• How do you construct an encoding which in optimal

way takes advantage of nonuniform frequencies of 

letters?

• Discussion of message transfer

• Morse Code 

• Prefix Codes

• Ambiguity in Morse code: pairs of letters where the 

bit string that encodes one letter is a prefix of the bit 

string that encodes another

• Map letters to bitstrings so no encoding is prefix of 

any other



Data Compression and Huffman Codes
• A prefix code for a set S of letters is function γ that 

maps each letter x ∈ S to some sequence of zeros 

and ones such that for different   y, x ∈ S, the 

sequence γ(x) is not a prefix of γ(y). 

• Works: consider a text consisting of a sequence of 

letters x1x2x3…xn. Convert this to a sequence of bits 

by simply encoding each letter using γ and then 

concatenating this: γ (x1) γ (x2) γ (x3)… γ (xn). 



Data Compression and Huffman Codes
• Decoding?

– Scan bits from left to right

– As soon as you see enough bits to match encoding of some 

letter, output this letter as the first letter of the text  --

must be correct! No shorter or longer prefix could encode 

any other letter

– Delete corresponding set of bits from the front of the 

message and iterate 

• No need for pauses etc



Data Compression and Huffman Codes
• For prefix code we have

– Each code word corresponds to exactly one symbol

– No look ahead is required

• Example 1: S = {A, B, C}

– Code1:  γ1(A)=1; γ1(B)=0; γ1(C)=10.

– Code2:  γ2(A)=1; γ2(B)=00; γ2(C)=10.

– Code3:  γ3(A)=11; γ3(B)=10; γ3(C)=01.

• Requirements:

• Each code word corresponds to exactly one symbol

• No look ahead is required

• Length of a codeword for a given symbol mj should 

not exceed the length of the codeword of a less 

probable symbol mi: P(mi) ≤ P(mj) ⇒ length(mi)≥

length(mj)



Data Compression and Huffman Codes
• Length of a codeword for a given symbol mj should 

not exceed the length of the codeword of a less 

probable symbol mi: P(mi) ≤ P(mj) ⇒ length(mi)≥

length(mj)

• In optimal encoding system, no unused short 

codewords either as stand-alone encodings or as 

prefixes of longer codewords (means longer 

codewords were created unnecessarily)

• Example: 01,000,001,100,101 for a certain set of 5 

symbols: 11 is not used; � optimal coding: 

01,10,11,000,001.



Data Compression and Huffman Codes
• Another example of prefix code:  

S={a,b,c,d,e}.γ1(a)=11; γ1(b)=01; γ1(c)=001; γ1(d)=10; 

γ1(e)=000; cecab � 0010000011101

If recipient knows γ1, then can decode unambiguously. 

• Towards Optimal Prefix Codes Suppose for each x∈S

there is a frequency fx, representing the fraction of 

the letter in the text that are equal to x. (Total 

number of letters  in the text is n, then  nfx of these 

letters equal x). We have: ∑ x∈S fx= 1. 

• Encoding length of a given text using encoding γ

(|γ(x)| denotes the length of γ(x) ): 

• encoding length=∑∑∑∑ x∈∈∈∈S nfx |γ(x)|=  n∑∑∑∑ x∈∈∈∈S fx |γ(x)|.

• average number of bits per letter = ∑∑∑∑ x∈∈∈∈S fx |γ(x)|.



Data Compression and Huffman Codes
• Our earlier example of prefix code:  

S={a,b,c,d,e}.γ1(a)=11; γ1(b)=01; γ1(c)=001; γ1(d)=10; 

γ1(e)=000;

Their frequencies: fa=0.32; fb=0.25; fc=0.20; fd=0.18; 

fe=0.05;

Average number of bits per letter using prefix code γ1

is: 

0.32∙2+ 0.25∙2 +0.20∙3+ 0.18∙2+ 0.05∙3 = 2.25

γ1 is not the best:

γ2(a)=11; γ2(b)=10; γ2(c)=01; γ2(d)=001; γ2(e)=000; is 

better 

0.32∙2+ 0.25∙2 +0.20∙2+ 0.18∙3+ 0.05∙3 = 2.23



Data Compression and Huffman Codes

Problem:

• Given an alphabet S and a set of 

frequencies for the letters, produce a 

prefix code γ such that average 

number of bits 

ABL(γ ) = ∑∑∑∑ x∈∈∈∈S fx |γ(x)|

is as small as possible. 

• Such a code is called optimal



Data Compression and Huffman Codes

Representing prefix codes using 

binary trees
Consider a (rooted) binary tree T such that the number 

of leaves is equal to the size of the alphabet S, label 

each leaf with a distinct letter in S.

Such a T naturally describes a prefix code: for each 

letter x ∈ S follow the path from the root to the leaf 

labeled with x; each time you go from a node to its 

left child write down a 0 and in case you go to the 

right, write down a 1.

The encoding of S constructed from T is a prefix code



Data Compression and Huffman Codes

Representing prefix codes using 

binary trees
Can also go in the other direction: given a prefix code γ

we can build a binary tree T which “stores” the prefix 

code recursively as follows:

We start with a root; all letters x ∈ S  whose encodings 

start with a 0 will be leaves in the left subtree of the 

root; all letters y ∈ S  whose encodings start with a 1 

will be leaves in the right subtree of the root; 
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e d c b

γ0(a)=1; 
γ0(b)=011;
γ0(c)=010;
γ0(d)=001; 
γ0(e)=000;
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γ1(a)=11; 
γ1(b)=01;
γ1(c)=001;
γ1(d)=10; 
γ1(e)=000;
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b d a

γ2(a)=11; 
γ2(b)=10;
γ2(c)=01;
γ2(d)=001; 
γ2(e)=000;



Data Compression and Huffman Codes

• The search for an optimal prefix code can be 

viewed as the search for a binary tree T, 

together with a labelling of the leaves of T, 

that minimizes the average number of bits per 

letter.

• Note: the length of encoding of a letter x ∈ S 

is the length of the path from the root to the 

leaf labeled with x 

• Length of the path from root to leaf v is called 

the depth of the leaf, notation: depthT(v); (( 
recall depthT(v) = (level of v) – 1 ))



Data Compression and Huffman Codes

• Searching for: labeled binary tree that 

minimizes the weighted average of the depths 

of the leaves, where the average is weighted 

by the frequencies of the letters that label the 

leaves: ∑∑∑∑ x∈∈∈∈S fx depthT(x), denote this quantity 

by ABL(T)

• Claim: The binary tree corresponding to the 

optimal prefix code is full. (full = each node 

has two children)



Data Compression and Huffman Codes

• Discussion of Shannon-Fano codes

• Example: S={a,b,c,d,e} frequencies:  fa=0.32; 

fb=0.25; fc=0.20; fd=0.18; fe=0.05;

• Resulting code is γ1 (which we know not to be 

optimal)



Data Compression and Huffman Codes

• Claim: Suppose T* is a binary tree 

corresponding to an optimal prefix code. Let u 

and v be leaves of T* such that depth(u) < 

depth(v). Suppose further that leaf u is 

labeled with y ∈ S and leaf v is labeled with x 

∈ S. Then  fy ≥ fz.

• If somebody gave you the structure of T* 

without the labeling, you would be able to 

label it in an optimal way



Data Compression and Huffman Codes
• Claim: Consider T* is a binary tree 

corresponding to an optimal prefix code. Let v 

be a leaf in T* whose depth is as large as 

possible. Leaf v has a parent u  (we exclude the 

trivial case of alphabets with one letter), we know that 

T* is full binary tree , u has another child w. 

This child, w, is a leaf of T*. (we will refer to w 

and v as siblings)

• Claim: There is an optimal prefix code, with 

corresponding tree T*, in which the lowest-

frequency letters are assigned to leaves that 

are siblings in T*



Data Compression and Huffman Codes

An Algorithm to Construct an Optimal Prefix 

Code:

• Suppose y* and z* are letters in S with the 

two lowest frequencies (can break ties 

arbitrarily).  Previous claim tells where y* and 

z* go (can go) in an optimal solution: they end 

up as sibling leaves below a common parent. 

This common parent acts like a “meta-letter”

whose frequencey is the sum of the 

frequencies of y* and z*



Data Compression and Huffman Codes

An Algorithm to Construct an Optimal Prefix 

Code:

• Algo: replace y* and z* with with this meta-

letter, obtaining an alphabet which is one 

letter smaller. We recursively find prefix code 

for the smaller alphabet, and then “unwrap”

the metaletter back into y* and z* to obtain 

prefix code for S:



Data Compression and Huffman Codes
To construct a prefix code for an alphabet S with given frequencies:

if S has two letters then 

encode one letter using 0 and the other using 1

else

let y* and z* be the two lowest-frequency letters

form a new alphabet S’ by deleting y* and z* and replacing 

them with a new letter ω of frequency fy*+fz*.

recursively construct a prefix code γ’ for S’, with tree T’

Define a prefix code for S as follows:

Start with T’

Take the leaf ω and add two children below it labeled

y* and z*

endif



Data Compression and Huffman Codes

• Claim:  ABL(T’) = ABL(T) – fω.

• Claim: the Huffman code for a given alphabet achieves the 

minimum number of bits per letter of any prefix code.

• Implementation: without thought it is O(k2) where k is the 

number of letters in the alphabet; using priority queues we 

get O(k log(k)). 

• extensions


