
Proper Refinement of Datalog Clauses using

Primary Keys

Siegfried Nijssen Joost N. Kok

LIACS, Leiden University,
Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

{snijssen,joost}@liacs.nl

Abstract

Inductive Logic Programming (ILP) is frequently used to data mine in
multi-relational databases. However, most ILP algorithms disregard pri-
mary key information which is often available for such databases. This work
demonstrates several disadvantages of the mode refinement operator that
has been used in many multi-relational data mining algorithms in combi-
nation with both traditional subsumption and subsumption under Object
Identity. We show how primary key information can be incorporated in this
refinement operator and provide evidence that the resulting operator has
several desirable properties in comparison with the traditional approaches.
Especially, we will show that our refinement operator is proper.

1 Introduction

In multi-relational data mining research, much attention has been given to In-
ductive Logic Programming (ILP). A multi-relational database can be mapped
to a Datalog database straightforwardly: relations are mapped to predicates and
attributes to predicate arguments. ILP algorithms can be applied subsequently.

In this database-to-Datalog mapping, some information about databases is of-
ten disregarded: for most databases also primary keys and foreign keys of relations
are defined. These keys describe some restrictions on a database. Our observa-
tion is that it is useless to query databases for information that cannot be stored
according to the primary key information. Primary keys should therefore also be
used to restrict the queries that an ILP algorithm considers. We will formalize
this by defining a downward refinement operator which uses primary keys.

Every ILP algorithm traverses a search space of clauses of a certain language in
some structured way using a so-called refinement operator. A downward refinement
operator ρ is an operator that creates more specific clauses starting from very
general clauses. Given a language of clauses and a quasi-order on these clauses,
several desirable properties for refinement operators have been identified [6]:

(1) ρ should be locally finite: all refinements of a clause should be computable
within finite time;

1

(2) ρ should be complete: given a clause, every clause in the language which is
more specific according to the quasi-order should be obtainable by (repeat-
edly) applying the refinement operator;

(3) ρ should be proper: after refinement, according to the quasi-order the refined
clause should always be more specific than the original clause (and therefore
never equivalent).

If refinement operator ρ satisfies these properties, then this operator is called ideal.
In most ILP systems, the concepts of “more specific” and “general” are modeled

using a quasi-order called θ-subsumption. This choice has a major drawback: if a
refinement operator is finite and complete under θ-subsumption, it can be shown
that this operator can never be proper; as a result, it is possible that a clause is
infinitely refined without obtaining a more specific clause.

To face this problem, in [3] a different quasi-order based on subsumption was
defined: subsumption under Object Identity. Under Object Identity a clause is
evaluated in a different, more restricted way than is usual. Ideal refinement is
possible under Object Identity. The additional restrictions however appear to be
undesirable in many situations.

In this work, we will concentrate on a special downward refinement algorithm:
refinement using modes. Mode refinement has been applied in several data mining
algorithms [1, 2, 4, 5, 7, 8], and has shown its usefulness in these publications.

Our paper is organized as follows. In the second section, we will review both
traditional subsumption and the concept of Object Identity, and we will introduce
mode refinement. With several examples we will illustrate the problems which
occur when either traditional or OI subsumption is used.

In the third section, we will introduce a new quasi-order and an enhanced mode
refinement algorithm. As our new way of evaluating clauses is somewhere in the
middle between evaluation under Object Identity and ordinary clause evaluation,
we call our evaluation technique evaluation under weak Object Identity. Within our
setup, the weak-OI quasi-order has several parameters, among which the primary
keys. We will show that these parameters can be tuned in such a way that our
quasi-order reduces to full Object Identity; in this way, our setup is a generalization
of full OI. Using examples, we will show that one can also provide parameters for
the refinement algorithm such that the resulting clauses do not suffer from the
restrictions of full OI. Still, we will provide evidence that this refinement algorithm
has exactly the same desirable properties as mode refinement using full Object
Identity; more precisely, the refinement algorithm is finite and proper. Section
four concludes.

2 Prerequisites and problem description

We will briefly review some terminology [6]. A (Datalog) atom p(t1, . . . , tn) consists
of a relation symbol p of arity n followed by n terms ti. A term is either a constant
or a variable. A substitution θ is a set of the form {v1/t1, . . . , vn/tn} where vi is
a variable and ti is a term. One can apply a substitution θ to an expression e,

yielding the expression eθ, by simultaneously replacing all variables vi by their
corresponding terms ti. An atom set is an unordered set of atoms; an ordered set
of atoms is an atom list. A clause is an expression of the form h ← S, where h
is an atom and S is an atom set. In this paper, without loss of generality, we
consider the head h of clauses to be a fixed atom; we only consider the bodies of
clauses. Previously, two kinds of subsumption have been defined:

• Traditional θ-subsumption: an atom set S1 θ-subsumes an atom set S2 (S2 �
S1) if there exists a substitution θ such that S1θ ⊆ S2.

• OI-subsumption: an atom set S1 OI-subsumes an atom set S2 (S2 �OI S1)
if there exists an injective substitution θ such that S1θ ⊆ S2 and θ does not
map any variable to a constant or variable already occurring in S1.

Under traditional θ-subsumption, two atom sets S1 and S2 are considered to be
equivalent (denoted by S1 ∼ S2) iff S1 � S2 and S2 � S1. This is reasonable as one
can show that: (∀S′(S′ � S1 → S′ � S2) ∧ ∀S′(S′ � S1 → S′ � S2))⇔ S1 ∼ S2;
or, in words: if every possible set of atoms either subsumes two atom sets, or does
not subsume any of these two, these atom sets are equivalent and must subsume
each other.

We will illustrate these subsumption operators using predicates that encode
directed, edge labeled graphs. The assumption is that we are interested in clauses
with predicates e(G, V1, V2, L) (which encodes that there is an edge from vertex
V1 to a vertex V2 with label L in graph G) and is(L,K) (which encodes that a
label L is a label in the class K). So, our language consists of the set of predicates
{e/4, is/2}; furthermore, we assume the set of constants {a, b}. The following
clauses can be expressed in this language:

C1 = p(G)← e(G, V1, V2, L1), is(L1, a), (1)

C2 = p(G)← e(G, V1, V2, L1), is(L1, a), e(G, V3, V4, L2), (2)

C3 = p(G)← e(G, V1, V2, L1), is(L1, a), e(G, V3, V4, L2), e(G, V4, V5, L3), (3)

C4 = p(G)← e(G, V1, V2, L1), is(L1, a), e(G, V4, V5, L3). (4)

Clause C1 states that a graph contains an edge of class a. Clause C3 states that a
graph contains an edge of class a and furthermore contains a vertex with at least
one incoming and one outgoing edge, independent of the label. Under traditional
subsumption, C1 ∼ C2 ∼ C4 and C3 � C1.

We will now introduce the bias of the (traditional) mode refinement algorithm.

Definition 2.1 A bias B is a tuple (T , C,P,M, h), where T is a finite set of
type symbols, C is a function that defines a finite set of constants for each type in
T ; P is a finite set of declarations of the form p(T1, . . . , Tn), where each Ti ∈ T
and a predicate p occurs at most once. Set M defines mode declarations, which
are declarations of the form p(c1, . . . , cn) and consist of a predicate symbol p with
arguments ci, each of which is either ‘+’ (input), ‘-’ (output) or ‘#’ (constant).
Set M may contain multiple modes for the same predicate symbol. h is an atom.

Note that we use types in our bias; this is not common practice in most pub-
lications. The mode refinement algorithm and the bias define a search space of
clauses, as follows.

Definition 2.2 Given a bias B the mode refinement operator ρ recursively defines
a search space L(B) as follows:

• ‘h←’ ∈ L(B);

• if C =‘h ← S’ ∈ L(B), then ρ(C) 3 C ′ =‘h ← S,A’ ∈ L(B), with A =
p(t1, . . . , tn), iff there is a mode M = p(c1, . . . , cn) ∈ M such that for every
1 ≤ i ≤ n:

– ti is a variable in var(C, Ti) and ci =‘+’, or

– ti is a variable not in ∪jvar(C, Tj) and ci=‘-’, or

– ti is a constant in C(Ti) and ci=‘#’.

Here, Ti is the type of argument position i, as given by P; var(C, T) is the
set of variables in C which occur at argument positions of type T .

An example bias is B = ({G, V, L,K}, {K → {a, b}}, {p(G), e(G, V, V, L), is(L,K)},
{e(+,−,−,−), e(+,+,−,−), is(+,#)}, p(G)), which encodes a search space of la-
beled forests. One can show that {C1, C2, C3, C4} ⊆ L(B).

It is clear that this refinement algorithm does not generate all clauses that
can be expressed using the given predicates and constants. Using traditional sub-
sumption as quasi-order, one can show that the operator is complete within the
sublanguage L(B). As an example, consider clause C3{V2/V3}, which is a spe-
cialization of C3. An equivalent clause, C3 ∪ (C3{Vi/Xi|i 6= 2}{V2/X3}), can be
constructed from C3, where Xi are variables not occurring in C3.

It is clear that for traditional subsumption, mode refinement is not proper
either. By adding new atoms in two steps, C3 can be obtained from C1. In
whatever order the last two atoms of C3 are added, however, each intermediate
clause is equivalent with C1: C2 ∼ C1 and C4 ∼ C1. If one would decide not to
allow a refinement from C1 to C2 or C3, the operator would not be complete: one
can show that C1 cannot be refined to C4 in that case.

If one applies OI-subsumption as quasi-order, the relations between clauses are
different: C3 �OI C2 �OI C1 and C3 �OI C4 �OI C1. For example, to C2 one
may not apply θ = {V3/V1, V4/V2, L2/L1} to obtain C1, as it maps variables to
variables already occurring in C2.

Under OI, mode refinement is always proper. This follows from the obser-
vation that under OI sets of atoms are always reduced [3]. Mode refinement is
not complete. With the example bias, clause C1 cannot be refined into C1 ∪
{e(G, V3, V1, L2)} ∈ L(B).

A different way of defining OI is to define it using traditional θ-subsumption.
We will follow this approach in this paper. Given a set of atoms S, we define
constr(S) to be the set of atoms

constr(S) = {(t1 6= t2)|t1 6= t2, t1, t2 ∈ terms(S)},

where 6= is a binary predicate denoted in infix notation, and terms(S) is the set
of all terms occurring in atom set S. For example:

constr({is(L1, a), is(L1,K1)}) =

{(L1 6= a), (L1 6= K1), (a 6= L1), (a 6= K1), (K1 6= L1), (K1 6= a)}.
The OI-subsumption can then equivalently be defined as:

S1 �OI S2 ⇔ S1 ∪ constr(S1) � S2 ∪ constr(S2).

When evaluating C3, it is clear now that {(V1 6= V2), (V2 6= V3), (V3 6= V4), (V4 6=
V5)} ⊂ constr(C3) and {(L1 6= L2), (L2 6= L3)} ⊂ constr(C3): the nodes must be
different, and also all labels must be different.

Assume now that one still wishes to find a theory for predicate p that allows
nodes to be equal, then this theory should contain several clauses under OI:

p(G) ← e(G, V1, V2, L1), is(L1, a), e(G, V3, V4, L2), (5)

p(G) ← e(G, V1, V1, L1), is(L1, a), e(G, V3, V4, L2), (6)

p(G) ← e(G, V1, V2, L1), is(L1, a), e(G, V1, V4, L2), (7)

p(G) ← e(G, V1, V2, L1), is(L1, a), e(G, V3, V1, L2), (8)

...

for a total of 15 clauses, each of which reflects some case of variable equality. For
C3 even 52 clauses are required. One can show that the number of clauses grows
exponentially in the number of variables. For theories in which one would like to
allow equality, Object Identity can therefore be very impractical.

In some situations, there are ad-hoc solutions to solve problems caused by OI.
Assume that one would like to express the following theory with only one clause:

p(G) ← e(G, V1, V2, L1), is(L1, a), e(G, V2, V3, L2), (9)

p(G) ← e(G, V1, V2, L1), is(L1, a), e(G, V2, V3, L1), (10)

then one could choose to use another predicate language. Consider a language
with predicate e/4 and a predicate ea(G, V1, V2) which is defined in terms of e and
is to express that there is an edge from V1 to V2 in label class a. The following
clause can then be expressed:

p(G)← ea(G, V1, V2), e(G, V2, V3, L2);

in this clause L2 can be the same label as the label between nodes V1 and V2.
However, this representation has an unwanted side effect:

p(G)← ea(G, V1, V2), e(G, V1, V2, L1);

according to OI-subsumption, this clause is not equivalent to any smaller clause,
but by the definition of ea we know that the last atom can be removed. We believe
therefore that this construction is undesirable too.

From our point of view, the best solution would be to force Object Identity
constraints only to some variables in a clause. The question is how this can be
done without loosing the desirable, ideal properties of OI. In the next section we
will provide an answer to this question.

3 Weak Object Identity using Primary Keys

We will first formally define the bias of a language with primary keys. Immediately
after the definitions, we will illustrate their meaning using examples.

Definition 3.1 A bias with primary keys BK is a tuple (T , C,P,M, h,K, OI),
where B = (T , C,P,M, h) is a simple bias as given in Definition 2.1 and K is a
function which defines a set of primary keys for each predicate p ∈ P. A primary
key is a subset of {1, . . . , arity(p)}. Set OI is a subset of the types, OI ⊆ T .

Definition 3.2 An atom set S is constrained by a primary key K ∈ K(p) iff:

∀A1 = p(t11, . . . , t1n), A2 = p(t21, . . . , t2n) ∈ S : (∀i ∈ K : t1i = t2i)⇒ A1 = A2.

Definition 3.3 A clause C = ‘h← S’ is part of the language LK(BK) defined by
a bias BK iff:

• C ∈ L(B), where B is the simple part of BK and L(B) is defined according
to Definition 2.2.

• S is constrained by each primary key in K(p)∪Kt(p), for every predicate p.
With Kt(p) we denote the trivial key of a predicate p, {1, . . . , arity(p)}.

Furthermore C ′ is a key mode refinement of C, denoted by C ′ ∈ ρK(C) (for
C ∈ LK(BK)), iff C ′ ∈ ρ(C) and C ′ is constrained by every primary key.

We will continue with our graph example (not restricted to trees). Assume that we
know that in the database under consideration between each pair of nodes there is
at most one edge in each direction, and that an edge always has exactly one label,
then we can express this knowledge using a primary key:

K(e)→ {{1, 2, 3}},

as this states that an edge can be identified uniquely by giving a graph and two
vertices. If this primary key is part of a bias BK , then L(BK) does not contain
the following clause in any case:

p(G)← e(G, V1, V2, a), e(G, V1, V2, b);

this expression can never be true given our knowledge about the graph data. As
we believe that for most relational databases primary key information is available,
we believe that this restriction of a full clausal language is important. Because
it reduces the number of clauses that an Inductive Logic Programming algorithm
has to consider, we believe that this strategy could yield significant efficiency
improvements in many algorithms.

Definition 3.4 Given two clauses C1 = ‘h1 ← S1’ ∈ LK(BK), C2 =‘h2 ←
S2’ ∈ LK(BK), S1 BK-OI-subsumes S2, denoted by S2 �BK−OI S1, iff S2 ∪
constrBK (S2) � S1 ∪ constrBK (S1), where constrBK (S) = {(t1 6= t2)|t1, t2 ∈
OI-termsBK (S), t1 6= t2} and OI-termsBK (S) is the set of terms occurring in S at
argument positions i of predicates p for which Ti ∈ OI ∈ BK .

The main difference with traditional OI-subsumption is that using types, OI
constraints are only forced to some variables in a clause. As an example, con-
sider the bias BK = ({G, V, L,K}, {K → {a, b}}, {p(G), e(G, V, V, L), is(L,K)},
{e(+,−,−,−), e(+,+,−,−), e(+,−,+,−), e(+,−,−,+), is(+,#)}, p(G),
{e→ {{1, 2, 3}}}, {G, V }). The following clauses are part of LK(BK):

C2 = p(G)← e(G, V1, V2, L1), is(L1, a), e(G, V3, V4, L2), (11)

C5 = p(G)← e(G, V1, V2, L1), is(L1, a), e(G, V3, V4, L1), (12)

then C5 �BK−OI C2 while C5 6�OI C2. In comparison with traditional OI, (L1 6=
L2) 6∈ constrBK (C2).

A special case arises when OI = T and K = ∅: all types are subject to
Object Identity constraints such that our weak subsumption operator reduces to
full Object Identity. Furthermore, by the absence of keys, no key constraints are
effective. One can easily see that our refinement operator reduces to a traditional
mode refinement operator with traditional OI as quasi-order. This shows that our
formalism is a generalization of full OI.

Now temporarily assume that is(+,−) would be part of M in BK . The fol-
lowing clauses would both be part of LK(BK):

C6 = p(G)← e(G, V1, V2, L1), is(L1,K1), (13)

C7 = p(G)← e(G, V1, V2, L1), is(L1,K1), is(L1,K2); (14)

however, C6 ∼BK−OI C7; our mode refinement operator would not be proper. If
we however assume that {is → {{1}}} ⊆ K ∈ BK , then C7 6∈ LK(BK), as the
unproper refinement is not allowed.

Theorem 3.5 Given a bias BK , mode refinement as given in Definition 3.3 is
proper if for every M = p(c1, . . . , cn) ∈M ∈ BK there is a key K = {i1, . . . , in} ∈
K(p) ∪Kt(p) such that for every ij ∈ K one of the following holds:

• Tij , the type of the ijth argument, is included into OI ∈ BK ;

• cij =‘+’ or cij =‘#’.

Proof Outline We will provide a proof by contradiction. Assume that clause
C ∼BK−OI C ′ ∈ ρK(C) and (without loss of generality) that C is not equivalent
with any smaller clause. In this case, there is a weak OI substitution θ which maps
one atom in C ′ onto another atom in C ′, resulting in C. Note that |C ′| = |C|+ 1;
we may therefore assume that θ only affects one atom A ∈ C ′. As a clause must
be key constrained, at least one term in every primary key of this atom is different
from the corresponding term in Aθ. As θ substitutes a variable with a term
already occurring in C ′, each such different term must be a variable of a type not
in OI ∈ BK . We may therefore conclude that a variable not in OI is part of every
key, and that A is the only atom in which these variables occurs. At the other
hand, our theorem states that a variable must be marked with ‘+’ in a mode if it
is not of a type in OI. According to the definition of ‘+’, there must be another
atom which contains this variable, so we derive a contradiction.

4 Conclusions
We have shown that mode refinement in combination with both traditional sub-
sumption and Object Identity subsumption has undesirable properties. While for
traditional subsumption no proper refinement operator exists, Object Identity re-
stricts the expressiveness of single clauses too much to obtain properness. We
propose to reduce the disadvantages of OI by only considering search spaces that
do not violate primary key constraints. In most situations, this is a very desirable
restriction as it restricts the full clausal language to expressions that make sense
from a human user point of view. For these more restricted languages, we have
given an outline of a proof which convinces us that, using a weak subsumption
operator, it is not necessary to force Object Identity to all variables in order to
obtain a proper mode refinement operator; this allows single clauses to express
more interesting patterns.

We have implemented primary keys, weak Object Identity and mode refinement
in our multi-relational data mining algorithm Farmer [8]. In experiments with
a graph database, these features allowed us to restrict the search space to clauses
that represent graphs with single labels on the edges. This reduced the number of
clauses that Farmer had to consider, and resulted in significant speed-ups.

As our restricted language can be as large as a full clausal language —in this
case our weak OI subsumption becomes full OI subsumption— our setup is a
generalization of Object Identity. Weak subsumption is exactly in the middle
between traditional subsumption and OI subsumption.

References

[1] H. Blockeel and L. De Raedt. Top-down Induction of Logical Decision Trees.
1997.

[2] L. Dehaspe and H. Toivonen. Discovery of frequent Datalog patterns. In: Data
Mining and Knowledge Discovery 3, no. 1, pages 7–36, 1999.

[3] F. Esposito, N. Fanizzi, S. Ferilli and G. Semeraro. A generalization model
based on OI-implication for ideal theory refinement. In: Fundamenta Infor-
maticae, 47, pages 15-33, 2001.

[4] F.A. Lisi and D. Malerba. Towards Object-Relational Data Mining. In: Atti
dell’Undicesimo Convegno Nazionale su Sistemi Evoluti per Basi di Dati, pages
269–280, Rubbettino Editory, Italy, 2003.

[5] S. Muggleton. Inverse entailment and Progol. In: New Generation Computing,
13, pages 245–286. 1995.

[6] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Pro-
gramming. LNAI 1228. Springer, 1997.

[7] S. Nijssen and J.N. Kok. Faster Association Rules for Multiple Relations. In:
IJCAI-01, pages 891–896, 2001.

[8] S. Nijssen and J.N. Kok. Efficient Frequent Query Discovery in Farmer. In:
PKDD-2003, 2003.

