Universiteit Leiden

Proper Refinement of Datalog Clauses using Primary Keys

Siegfried Nijssen and Joost N. Kok

BNAIC-2003, Nijmegen

Introduction

- Inductive Logic Programming algorithm:

C: Set of Datalog clauses, initially empty
D: Database of facts (Knowledge base)

repeat

2. make clauses in C more specific (downward refinement) 1. evaluate C against D

Database of Facts

- $\left\{e\left(g_{1}, n_{1}, n_{2}, a\right), e\left(g_{1}, n_{2}, n_{1}, a\right), e\left(g_{1}, n_{2}, n_{3}, a\right)\right.$,

$$
\begin{aligned}
& e\left(g_{1}, n_{3}, n_{1}, b\right), e\left(g_{1}, n_{3}, n_{4}, b\right), e\left(g_{1}, n_{3}, n_{5}, c\right), \\
& \left.e\left(g_{2}, n_{6}, n_{7}, b\right)\right\}
\end{aligned}
$$

Clause

- $k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), e\left(G, N_{2}, N_{3}, a\right)$, $e\left(G, N_{1}, N_{4}, a\right), e\left(G, N_{4}, N_{5}, b\right)$

Evaluation of a clause

- θ-subsumption: $D \vDash C$ iff there is a substitution $\theta,(C \theta) \subseteq D$
- Database $D: \theta=\left\{G / g_{1}, N_{1} / n_{2}, N_{2} / n_{1}, N_{3} / n_{2}, N_{4} / n_{3}, N_{s} / n_{1}\right\}$

$$
\left\{e\left(g_{1}, n_{1}, n_{2}, a\right), e\left(g_{1}, n_{2,}, n_{1}, a\right), e\left(g_{1}, n_{2}, n_{3}, a\right),\right.
$$

$$
e\left(g_{1}, n_{3}, q_{1}, b\right), e\left(g_{1}, n_{3}, n_{4}, b\right), e\left(g_{1}, n_{3}, n_{5}, c\right),
$$

$$
e\left(g_{2}, n_{6}, n_{7}, b / \Gamma\right.
$$

- Clause C:

$$
k(G) \leftarrow e\left(G, N_{\infty} A_{2}, a\right), e\left(G, N_{2} N_{3}, a\right),
$$

Evaluation of a clause

g_{2}

Evaluation of a clause

Evaluation of a clause

$$
\begin{array}{r}
k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right) \quad k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), \\
e\left(G, N_{1}, N_{3}, a\right)
\end{array}
$$

Evaluation of a clause

- Ol-subsumption: $D \vDash C$ iff there is a substitution $\theta,(C \theta) \subseteq D$, while:
$-\theta$ is injective
- θ does not map to constants in C

Clause Refinement - modes

- User defined Refinement using modes [Progol,Aleph, Warmr,Tilde,Farmer]
+ old variable
- new variable \# constant
- $T=\{k(G), e(G, N, N, L)\} M=\{e(+,-,-, \#), e(+,+,-, \#)\}$
- $k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), e\left(G, N_{q}, N_{3}, a\right)$

Using M only edge labeled trees can be constructed!

Clause Refinement - modes

- $k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right)$
$k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), e\left(G, N_{1}, N_{3}, a\right)$
- $k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), e\left(G, N_{1}, N_{3}, a\right)$, $e\left(G, N_{2}, N_{4}, a\right), e\left(G, N_{3}, N_{5}, b\right)$

- Complete \& proper refinement is possible with ocoorel 4 -sububsummption, not with θ-subsumption.

Refinement using Primary Keys

- Assume we know: between a pair of nodes there is at most one edge with one label
- How to incorporate this knowledge in the refinement operator?
- $M=\{e(+,-,-, \#), e(+,+,-, \#), e(+,+,+, \#)\}$
- These modes allow:

$$
\begin{aligned}
& -k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), e\left(G, N_{1}, N_{2}, b\right) \\
& -k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), e\left(G, N_{1}, N_{2}, L_{1}\right)
\end{aligned}
$$

- Primary key: $\{1,2,3\}$ (first 3 arguments of e)

Expressiveness

OI vs θ-subsumption

- $k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), e\left(G, N_{2}, N_{3}, L\right), e\left(G, N_{3}, N_{4}, b\right)$
- For proper and complete refinement:

Ol is required

- Under OI: $L \neq a, L \neq b$

In an ideal situation...

- We have complete \& proper refinement
- We are not required to use OI for all types (weak Object Identity)

Proper refinement using Primary Keys

- In many cases, this ideal situation exists for refinement using primary keys!
- $k(G) \leftarrow e\left(G, N_{1}, N_{2}, a\right), e\left(G, N_{2}, N_{3}, L\right), e\left(G, N_{3}, N_{4}, b\right)$

Proper refinement using Primary Keys

- $T=\{k(G), e(G, N, N, L), t(L, C)\}$ $M=\{e(+,-,-,-), e(+,+,-,-), t(+, \#)\}$
$K(p)=\{1,2,3\} K(t)=\{1,2\}$
$\mathrm{Ol}=\{G, N\}$
- $k(G) \leftarrow e\left(G, N_{1}, N_{2}, L_{1}\right), t\left(L_{1}, a\right)$,

$$
e\left(G, N_{1}, N_{3}, L_{2}\right), t\left(L_{2}, a\right)
$$

Proper refinement using Primary Keys

- Given predicates, types, modes, primary keys and a partition of types into Ol and non-OI
- We prove refinement is proper and complete if for every mode there is a primary key which does not include any non-OI output.

Conclusions

- Higher performance for ILP algorithms
- primary keys restrict the search space efficiently
- refinement is proper
- Higher flexibility
- weak $O l$ is more flexible than full $O I$

Clause refinement other representation better?

Background knowledge:
$a\left(G, N_{1}, N_{2}\right) \leftarrow e\left(G, N_{1}, N_{2}, a\right)$
$b\left(G, N_{1}, N_{2}\right) \leftarrow e\left(G, N_{1}, N_{2}, b\right)$
$e\left(G, N_{1}, N_{2}\right) \leftarrow e\left(G, N_{1}, N_{2}, L\right)$

- $k(G) \leftarrow a\left(G, N_{1}, N_{2}\right), e\left(G, N_{2}, N_{3}\right), b\left(G, N_{3}, N_{4}\right)$
- $k(G) \leftarrow a\left(G, N_{1}, N_{2}\right), e\left(G, N_{1}, N_{2}\right)$

