Fundamentele Informatica 3

voorjaar 2019

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl

college 7, 25 maart 2019

9. Undecidable Problems
 9.2. Reductions and the Halting Problem
 9.3. More Decision Problems Involving Turing Machines

Huiswerkopgave, inleverdatum vandaag, 11:05 uur

For general decision problem P and reasonable encoding e,

$$Y(P) = \{e(I) \mid I \text{ is yes-instance of } P\}$$

$$N(P) = \{e(I) \mid I \text{ is no-instance of } P\}$$

$$E(P) = Y(P) \cup N(P)$$

E(P) must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ , we say that P is *decidable* if $Y(P) = \{e(I) \mid I \text{ is a yes-instance of } P\}$ is a recursive language.

Definition 9.6. Reducing One Decision Problem to Another ...

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 ($P_1 \leq P_2$)

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that

. . .

for every I the answers for the two instances are the same, or I is a yes-instance of P_1

if and only if F(I) is a yes-instance of P_2 .

Theorem 9.7.

. . .

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w?

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

- 1. Prove that Self-Accepting \leq Accepts ...
- 2. Prove that $Accepts \leq Halts \dots$

In context of decidability: decision problem $P \approx$ language Y(P)

Question

"is instance I of P a yes-instance ?"

is essentially the same as

"does string x represent yes-instance of P?",

i.e.,

"is string $x \in Y(P)$?"

9.3. More Decision Problems Involving Turing Machines

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x? Instances are . . .

Self-Accepting: Given a TM T, does T accept the string e(T)? Instances are ... Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x? Instances are . . .

Self-Accepting: Given a TM T, does T accept the string e(T)? Instances are ...

Now fix a TM T: T-Accepts: Given a string x, does T accept x ? Instances are ... Decidable or undecidable ? (cf. **Exercise 9.7.**)

Exercise 9.7.

As discussed at the beginning of Section 9.3, there is at least one TM T such that the decision problem

"Given w, does T accept w?"

is unsolvable.

Show that every TM accepting a nonrecursive language has this property.

Theorem 9.9. The following five decision problems are undecidable.

1. Accepts-A: Given a TM T, is $\Lambda \in L(T)$?

Proof.

1. Prove that $Accepts \leq Accepts - \Lambda$. . .

Reduction from *Accepts* to *Accepts*- Λ .

Instance of *Accepts* is (T_1, x) for TM T_1 and string x. Instance of *Accepts*- Λ is TM T_2 .

 $T_2 = F(T_1, x) =$ $Write(x) \rightarrow T_1$

 T_2 accepts Λ , if and only if T_1 accepts x.

If we had an algorithm/TM A_2 to solve Accepts- Λ , then we would also have an algorithm/TM A_1 to solve Accepts, as follows:

```
A<sub>1</sub>:
Given instance (T_1, x) of Accepts,
1. construct T_2 = F(T_1, x);
2. run A<sub>2</sub> on T<sub>2</sub>.
```

```
A_1 answers 'yes' for (T_1, x),
if and only if A_2 answers 'yes' for T_2,
if and only T_2 accepts \Lambda,
if and only if T_1 accepts x.
```

Exercise 9.8.

Show that for every $x \in \Sigma^*$, the problem *Accepts* can be reduced to the problem:

Given a TM T, does T accept x?

(This shows that, just as Accepts- Λ is unsolvable, so is Accepts-x, for every x.)

Theorem 9.9. The following five decision problems are undecidable.

2. AcceptsEverything: Given a TM T with input alphabet Σ , is $L(T) = \Sigma^*$?

Proof.

2. Prove that Accepts- $\Lambda \leq AcceptsEverything \dots$

Accepts-A: Given a TM T, is $\Lambda \in L(T)$?

Exercise 9.9.

Construct a reduction from Accepts- Λ to Accepts- $\{\Lambda\}$:

Given a TM T, is $L(T) = \{\Lambda\}$?

Theorem 9.9. The following five decision problems are undecidable.

3. Subset: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?

Proof.

3. Prove that $AcceptsEverything \leq Subset \dots$

Theorem 9.9. The following five decision problems are undecidable.

4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Proof.

4. Prove that $Subset \leq Equivalent \dots$

'The intersection of two Turing machines'

Theorem 9.9. The following five decision problems are undecidable.

4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Proof.

4. Prove that $Subset \leq Equivalent \dots$

Subset: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?

Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Exercise 9.10.

a. Given two sets A and B, find two sets C and D, defined in terms of A and B, such that A = B if and only if $C \subseteq D$.

b. Show that the problem *Equivalent* can be reduced to the problem *Subset*.

AcceptsEverything:

Given a TM T with input alphabet Σ , is $L(T) = \Sigma^*$?

Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Exercise 9.11. Construct a reduction from *AcceptsEverything* to the problem *Equivalent*.

Accepts-A: Given a TM T, is $\Lambda \in L(T)$?

Theorem 9.9. The following five decision problems are undecidable.

5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts- $\Lambda \leq WritesSymbol \dots$

AtLeast10MovesOn- Λ : Given a TM T, does T make at least ten moves on input Λ ?

WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input Λ ?

Theorem 9.10.

The decision problem *WritesNonblank* is decidable.

Proof...

Definition 9.11. A Language Property of TMs

A property R of Turing machines is called a *language property* if, for every Turing machine T having property R, and every other TM T_1 with $L(T_1) = L(T)$, T_1 also has property R.

A language property of TMs is *nontrivial* if there is at least one TM that has the property and at least one that doesn't.

In fact, a language property is a property of the languages accepted by TMs.

Theorem 9.12. Rice's Theorem

If R is a nontrivial language property of TMs, then the decision problem

 P_R : Given a TM T, does T have property R ?

is undecidable.

Proof...

Prove that Accepts- $\Lambda \leq P_R \ldots$

```
(or that Accepts-\Lambda \leq P_{not-R} \dots)
```

Examples of decision problems to which Rice's theorem can be applied:

- 1. Accepts-L: Given a TM T, is L(T) = L? (assuming ...)
- 2. AcceptsSomething: Given a TM T, is there at least one string in L(T) ?
- 3. AcceptsTwoOrMore: Given a TM T, does L(T) have at least two elements ?
- 4. AcceptsFinite: Given a TM T, is L(T) finite?
- 5. *AcceptsRecursive*:

Given a TM T, is L(T) recursive ? (note that ...)

All these problems are undecidable.

Rice's theorem cannot be applied (directly)

• if the decision problem does not involve just one TM *Equivalent*: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$ Rice's theorem cannot be applied (directly)

• if the decision problem does not involve just one TM Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

• if the decision problem involves the *operation* of the TM *WritesSymbol*: Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ? *WritesNonblank*: Given a TM T, does T ever write a nonblank symbol on input Λ ?

• if the decision problem involves a *trivial* property Accepts-NSA: Given a TM T, is L(T) = NSA?

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.

a. Given a TM T, does it ever reach a nonhalting state other than its initial state if it starts with a blank tape?

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.

b. Given a TM T and a nonhalting state q of T, does T ever enter state q when it begins with a blank tape?

e. Given a TM T, is there a string it accepts in an even number of moves?

j. Given a TM T, does T halt within ten moves on every string?

I. Given a TM T, does T eventually enter every one of its nonhalting states if it begins with a blank tape?