Fundamentele Informatica 3

voorjaar 2019
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet
kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl
college 7, 25 maart 2019
9. Undecidable Problems
9.2. Reductions and the Halting Problem
9.3. More Decision Problems Involving Turing Machines

Huiswerkopgave, inleverdatum vandaag, 11:05 uur

A slide from lecture 6:

For general decision problem P and reasonable encoding e,

$$
\begin{aligned}
& Y(P)=\{e(I) \mid I \text { is yes-instance of } P\} \\
& N(P)=\{e(I) \mid I \text { is no-instance of } P\} \\
& E(P)=Y(P) \cup N(P)
\end{aligned}
$$

$E(P)$ must be recursive

A slide from lecture 6:

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ, we say that P is decidable if $Y(P)=\{e(I) \mid I$ is a yes-instance of $P\}$ is a recursive language.

A slide from lecture 6:
Definition 9.6. Reducing One Decision Problem to Another...

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1}
if and only if $F(I)$ is a yes-instance of P_{2}.

A slide from lecture 6:

Theorem 9.7.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

A slide from lecture 6:

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?
Halts: Given a TM T and a string w, does T halt on input w ?

A slide from lecture 6:

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...
2. Prove that Accepts \leq Halts ...

In context of decidability: decision problem $P \approx$ language $Y(P)$
Question
"is instance I of P a yes-instance ?"
is essentially the same as
"does string x represent yes-instance of P ?",
i.e.,
"is string $x \in Y(P)$?"

9.3. More Decision Problems Involving Turing Machines

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are ...

Halts: Given a TM T and a string x, does T halt on input x ? Instances are ...

Self-Accepting: Given a TM T, does T accept the string $e(T)$? Instances are...

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are ...

Halts: Given a TM T and a string x, does T halt on input x ? Instances are...

Self-Accepting: Given a TM T, does T accept the string $e(T)$? Instances are...

Now fix a TM T :
T-Accepts: Given a string x, does T accept x ?
Instances are ...
Decidable or undecidable ? (cf. Exercise 9.7.)

Exercise 9.7.

As discussed at the beginning of Section 9.3, there is at least one TM T such that the decision problem
"Given w, does T accept w ?"
is unsolvable.

Show that every TM accepting a nonrecursive language has this property.

Theorem 9.9. The following five decision problems are undecidable.

1. Accepts-^: Given a $T M T$, is $\Lambda \in L(T)$?

Proof.

1. Prove that Accepts \leq Accepts-^ . . .

Reduction from Accepts to Accepts-^.

Instance of Accepts is (T_{1}, x) for TM T_{1} and string x. Instance of Accepts- \wedge is $\mathrm{TM} T_{2}$.
$T_{2}=F\left(T_{1}, x\right)=$

$$
\text { Write }(x) \rightarrow T_{1}
$$

T_{2} accepts \wedge, if and only if T_{1} accepts x.

If we had an algorithm/TM A_{2} to solve Accepts- \wedge, then we would also have an algorithm/TM A_{1} to solve Accepts, as follows:
A_{1} :
Given instance $\left(T_{1}, x\right)$ of Accepts,

1. construct $T_{2}=F\left(T_{1}, x\right)$;
2. run A_{2} on T_{2}.
A_{1} answers 'yes' for ($\left.T_{1}, x\right)$,
if and only if A_{2} answers 'yes' for T_{2},
if and only T_{2} accepts \wedge,
if and only if T_{1} accepts x.

Exercise 9.8.

Show that for every $x \in \Sigma^{*}$, the problem Accepts can be reduced to the problem:

Given a TM T, does T accept x ?
(This shows that, just as Accepts-^ is unsolvable, so is Acceptsx, for every x.)

Theorem 9.9. The following five decision problems are undecidable.
2. AcceptsEverything:

Given a TM T with input alphabet Σ, is $L(T)=\Sigma^{*}$?
Proof.
2. Prove that Accepts-^ \leq AcceptsEverything ...

Accepts-^: Given a TM T, is $\wedge \in L(T)$?

Exercise 9.9.

Construct a reduction from Accepts-^ to Accepts-\{^\}:

Given a TM T , is $L(T)=\{\wedge\}$?

Theorem 9.9. The following five decision problems are undecidable.
3. Subset: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right) \subseteq L\left(T_{2}\right)$?

Proof.

3. Prove that AcceptsEverything \leq Subset ...

Theorem 9.9. The following five decision problems are undecidable.
4. Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Proof.

4. Prove that Subset \leq Equivalent . . .
‘The intersection of two Turing machines’

Theorem 9.9. The following five decision problems are undecidable.
4. Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Proof.

4. Prove that Subset \leq Equivalent . . .

Subset: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right) \subseteq L\left(T_{2}\right)$?

Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Exercise 9.10.
a. Given two sets A and B, find two sets C and D, defined in terms of A and B, such that $A=B$ if and only if $C \subseteq D$.
b. Show that the problem Equivalent can be reduced to the problem Subset.

AcceptsEverything:
Given a TM T with input alphabet Σ, is $L(T)=\Sigma^{*}$?

Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Exercise 9.11. Construct a reduction from AcceptsEverything to the problem Equivalent.

Accepts- \wedge : Given a TM T, is $\wedge \in L(T)$?

Theorem 9.9. The following five decision problems are undecidable.
5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts- $\wedge \leq$ WritesSymbol ...

AtLeast10MovesOn-^:
Given a TM T, does T make at least ten moves on input \wedge ?

WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input \wedge ?

Theorem 9.10.
The decision problem WritesNonblank is decidable.

Proof. . .

Definition 9.11. A Language Property of TMs
A property R of Turing machines is called a language property if, for every Turing machine T having property R, and every other TM T_{1} with $L\left(T_{1}\right)=L(T), T_{1}$ also has property R.

A language property of TMs is nontrivial if there is at least one $T M$ that has the property and at least one that doesn't.

In fact, a language property is a property of the languages accepted by TMs.

Theorem 9.12. Rice's Theorem

If R is a nontrivial language property of TMs, then the decision problem

$$
P_{R}: \text { Given a TM } T \text {, does } T \text { have property } R \text { ? }
$$

is undecidable.

Proof. . .

Prove that Accepts- $\wedge \leq P_{R} \ldots$
(or that Accepts- $\wedge \leq P_{\text {not-R }} \ldots$..)

Examples of decision problems to which Rice's theorem can be applied:

1. Accepts- L : Given a TM T, is $L(T)=L$? (assuming ...)
2. AcceptsSomething:

Given a TM T, is there at least one string in $L(T)$?
3. AcceptsTwoOrMore:

Given a TM T, does $L(T)$ have at least two elements ?
4. AcceptsFinite: Given a TM T, is $L(T)$ finite ?
5. AcceptsRecursive:

Given a TM T, is $L(T)$ recursive ? (note that ...)

All these problems are undecidable.

Rice's theorem cannot be applied (directly)

- if the decision problem does not involve just one TM Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Rice's theorem cannot be applied (directly)

- if the decision problem does not involve just one TM Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$
- if the decision problem involves the operation of the TM WritesSymbol: Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ? WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input \wedge ?
- if the decision problem involves a trivial property Accepts-NSA: Given a TM T, is $L(T)=$ NSA ?

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.
a. Given a TM T, does it ever reach a nonhalting state other than its initial state if it starts with a blank tape?

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.
b. Given a TM T and a nonhalting state q of T, does T ever enter state q when it begins with a blank tape?
e. Given a TM T, is there a string it accepts in an even number of moves?
j. Given a TM T, does T halt within ten moves on every string?
I. Given a TM T, does T eventually enter every one of its nonhalting states if it begins with a blank tape?

