
Fundamentele Informatica 3

voorjaar 2019

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet
kamer 140 Snellius, tel. 071-527 2876

rvvliet(at)liacs(dot)nl

college 6, 18 maart 2019

8. Recursively Enumerable Languages
8.1. Recursively Enumerable and Recursive

8.5. Not Every Language is Recursively Enumerable
9. Undecidable Problems

9.1. A Language That Can’t Be Accepted,
and a Problem That Can’t Be Decided

9.2. Reductions and the Halting Problem

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Huiswerkopgave,
inleverdatum 25 maart 2019, 11:05 uur

2

A slide from lecture 4:

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

3

A slide from lecture 4:

Theorem 8.2.

Every recursive language is recursively enumerable.

Proof. . .

4

A slide from lecture 4:

Theorem 8.4. If L1 and L2 are both recursively enumerable

languages over Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursively

enumerable.

Proof. . .

5

For intersection: not just T1 → T2

6

An exercise from exercise class 4:

Exercise 8.1.

Show that if L1 and L2 are recursive languages,

then L1 ∪ L2 and L1 ∩ L2 are also.

7

Theorem 8.5. If L1 and L2 are both recursive languages over

Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursive.

Proof. Exercise 8.1.

8

Theorem 8.6. If L is a recursive language over Σ, then its

complement L′ is also recursive.

Proof. . .

9

Theorem 8.7. If L is a recursively enumerable language,

and its complement L′ is also recursively enumerable,

then L is recursive

(and therefore, by Theorem 8.6, L′ is recursive).

Proof. . .

10

Corollary.

Let L be a recursively enumerable language.

Then

L′ is recursively enumerable,

if and only

if L is recursive.

11

Corollary.

There exist languages that are not recursively enumerable,

if and only if

there exist languages that are not recursive.

12

8.5. Not Every Language
is Recursively Enumerable

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar

13

From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a

bijection f : N → A, or a list a0, a1, . . . of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

uncountable: not countable

14

Example 8.29. Languages Are Countable Sets

L ⊆ Σ∗ =
∞⋃

i=0

Σi

15

A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

16

A slide from lecture 4

Assumptions:

1. Names of the states are irrelevant.

2. Tape alphabet Γ of every Turing machine T is subset

of infinite set S = {a1, a2, a3, . . .}, where a1 = ∆.

17

A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.

18

A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0

19

Example 8.30. The Set of Turing Machines Is Countable

Let T (Σ) be set of Turing machines with input alphabet Σ

There is injective function e : T (Σ) → {0,1}∗

(e is encoding function)

Hence (. . .), set of recursively enumerable languages is countable

20

Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}

21

Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively

enumerable is uncountable.

22

(Not) Recursively enumerable

vs.

(Not) Countable

23

A slide from lecture 4:

Theorem 8.4. If L1 and L2 are both recursively enumerable

languages over Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursively

enumerable.

Proof. . .

24

Exercise 8.3.

Is the following statement true or false?

If L1, L2, . . . are any recursively enumerable subsets of Σ∗, then

∪∞
i=1Li is recursively enumerable.

Give reasons for your answer.

25

9. Undecidable Problems

9.1. A Language
That Can’t Be Accepted,
and a Problem That Can’t Be Decided

26

A slide from lecture 4

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

27

e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
.

28

e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
.

NSA 0 0 1 1 0 0 1 0 1 1 .

Hence, NSA is not recursively enumerable.

29

A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

30

Set-up of constructing language NSA that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely e(Ti))

2. Define another language NSA by:

e(Ti) ∈ NSA ⇐⇒ e(Ti) /∈ L(Ti)

3. Conclusion: for all i, NSA 6= L(Ti)

Hence, NSA is not RE

31

Set-up of constructing language that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

2. Define another language L by:

x ∈ L ⇐⇒ x /∈ (language that x is associated with)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

32

Set-up of constructing language L that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely xi)

2. Define another language L by:

xi ∈ L ⇐⇒ xi /∈ L(Ti)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

Every infinite list x0, x1, x2, . . . of different elements of {0,1}∗

yields language L that is not RE

33

Λ 0 1 00 01 10 11 000 001 010 . . .
L(T0) 1 0 1 0 0 1 0 0 0 1 . . .
L(T1) 0 1 1 1 0 0 0 0 1 0 . . .
L(T2) 1 0 0 1 0 0 1 0 0 0 . . .
L(T3) 0 0 0 0 0 0 0 0 0 0 . . .
L(T4) 0 0 0 0 1 0 0 0 0 0 . . .
L(T5) 0 0 1 1 0 1 0 1 0 0 . . .
L(T6) 0 0 0 0 0 0 0 0 1 0 . . .
L(T7) 1 1 1 1 1 1 1 1 1 1 . . .
L(T8) 0 1 0 1 0 1 0 1 0 1 . . .
L(T9) 0 0 0 0 0 0 0 0 0 0 . . .
.

newL 0 0 1 1 0 0 1 0 1 1 . . .

Hence, newL is not recursively enumerable.

34

Set-up of constructing language NSA that is not RE:

1. Start with collection of RE languages over {0,1}

(which are subsets of {0,1}∗): {L(T) | TM T}

each one associated with specific element of {0,1}∗

(namely e(T))

2. Define another language NSA by:

e(T) ∈ NSA ⇐⇒ e(T) /∈ L(T)

3. Conclusion: for all TM T , NSA 6= L(T)

Hence, NSA is not RE

35

Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T) | T is a TM, and e(T) /∈ L(T)}

SA = {e(T) | T is a TM, and e(T) ∈ L(T)}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)

36

A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

37

Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. . .

38

Exercise 9.2.

Describe how a universal Turing machine could be used in the

proof that SA is recursively enumerable.

39

Given a TM T , does T accept the string e(T)?

40

Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

Given an undirected graph G = (V,E),

does G contain a Hamiltonian path?

Given a list of integers x1, x2, . . . , xn,

is the list sorted?

Self-Accepting: Given a TM T , does T accept the string

e(T)?

41

Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

yes-instances of a decision problem:

instances for which the answer is ‘yes’

no-instances of a decision problem:

instances for which the answer is ‘no’

42

Self-Accepting: Given a TM T , does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. . . .

43

Self-Accepting: Given a TM T , does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E′: strings not representing instances

44

For general decision problem P ,

an encoding e of instances I as strings e(I) over alphabet Σ

is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding e(I)

2. e is injective

3. string e(I) can be decoded

45

A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

46

For general decision problem P and reasonable encoding e,

Y (P) = {e(I) | I is yes-instance of P}

N(P) = {e(I) | I is no-instance of P}

E(P) = Y (P) ∪N(P)

E(P) must be recursive

47

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P) = {e(I) | I is a yes-instance of P} is a recursive language.

48

Theorem 9.4. The decision problem Self-Accepting is undecid-

able.

Proof. . .

49

For every decision problem, there is complementary problem P ′,

obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:

Given a TM T , does T fail to accept e(T) ?

50

Theorem 9.5. For every decision problem P , P is decidable if

and only if the complementary problem P ′ is decidable.

Proof. . .

51

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

52

9.2. Reductions and the Halting Problem

53

(Informal) Examples of reductions

1. Recursive algorithms

2. Given NFA M and string x, is x ∈ L(M) ?

3. Given FAs M1 and M2, is L(M1) ⊆ L(M2) ?

54

Theorem 2.15.

Suppose M1 = (Q1,Σ, q1, A1, δ1) and M2 = (Q2,Σ, q2, A2, δ2)
are finite automata accepting L1 and L2, respectively.

Let M be the FA (Q,Σ, q0, A, δ), where

Q = Q1 ×Q2

q0 = (q1, q2)
and the transition function δ is defined by the formula

δ((p, q), σ) = (δ1(p, σ), δ2(q, σ))
for every p ∈ Q1, every q ∈ Q2, and every σ ∈ Σ.

Then

1. If A = {(p, q)| p ∈ A1 or q ∈ A2},
M accepts the language L1 ∪ L2.

2. If A = {(p, q)| p ∈ A1 and q ∈ A2},
M accepts the language L1 ∩ L2.

3. If A = {(p, q)| p ∈ A1 and q /∈ A2},
M accepts the language L1 − L2.

55

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P1

if and only if F (I) is a yes-instance of P2.

. . .

56

Theorem 9.7.

. . .

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

57

Two more decision problems:

Accepts: Given a TM T and a string w, is w ∈ L(T) ?

Halts: Given a TM T and a string w, does T halt on input w ?

58

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

59

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

2. Prove that Accepts ≤ Halts . . .

60

Application:

n = 4;

while (n is the sum of two primes)

n = n+2;

This program loops forever, if and only if Goldbach’s conjecture

is true.

61

Exercise 9.5.

Fermat’s last theorem, until recently one of the most famous

unproved statements in mathematics, asserts that there are no

integer solutions (x, y, z, n) to the equation xn+yn = zn satisfying

x, y > 0 and n > 2.

Ignoring the fact that the theorem has now been proved, ex-

plain how a solution to the halting problem would allow you to

determine the truth or falsity of the statement.

62

Theorem 9.7.

. . .

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

Order P1 ≤ P2

Proof. . .

63

Exercise 9.1.

Show that the relation ≤ on the set of decision problems is

reflexive and transitive.

Give an example to show that it is not symmetric.

64

Wat?

• De Nationale Studenten Enquête

Waarom?

• Omdat je graag je mening wilt geven & wilt meehelpen je opleiding te verbeteren

• Omdat bij 25% respons studenten koeken krijgen

• Omdat er per ingevulde enquête 25 cent wordt gedoneerd aan stichting vluchteling � student (UAF)
• Omdat de studievereniging met de hoogste respons een gratis sportactiviteit mag organiseren

Hoe?

• Via de persoonlijke link in de uitnodigingsmail

• Link kwijt? Vul je uMail � ibox e � mailadres in op www.nse.nl

Gemakkelijk via je telefoon!

65

