Fundamentele Informatica 3

voorjaar 2019
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/
Rudy van Vliet
kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl
college 6, 18 maart 2019
8. Recursively Enumerable Languages
8.1. Recursively Enumerable and Recursive
8.5. Not Every Language is Recursively Enumerable 9. Undecidable Problems
9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided
9.2. Reductions and the Halting Problem

Huiswerkopgave, inleverdatum 25 maart 2019, 11:05 uur

A slide from lecture 4:
Definition 8.1. Accepting a Language and Deciding a Language
A Turing machine T with input alphabet Σ accepts a language
$L \subseteq \Sigma^{*}$,
if $L(T)=L$.
T decides L,
if T computes the characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$
A language L is recursively enumerable, if there is a TM that accepts L,
and L is recursive,
if there is a TM that decides L.

A slide from lecture 4:

Theorem 8.2.
Every recursive language is recursively enumerable.

Proof. . .

A slide from lecture 4:

Theorem 8.4. If L_{1} and L_{2} are both recursively enumerable languages over Σ, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also recursively enumerable.

Proof. . .

For intersection: not just $T_{1} \rightarrow T_{2}$

An exercise from exercise class 4:

Exercise 8.1.

Show that if L_{1} and L_{2} are recursive languages, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also.

Theorem 8.5. If L_{1} and L_{2} are both recursive languages over Σ, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also recursive.

Proof. Exercise 8.1.

Theorem 8.6. If L is a recursive language over Σ, then its complement L^{\prime} is also recursive.

Proof. . .

Theorem 8.7. If L is a recursively enumerable language, and its complement L^{\prime} is also recursively enumerable, then L is recursive
(and therefore, by Theorem 8.6, L^{\prime} is recursive).
Proof. . .

Corollary.

Let L be a recursively enumerable language.
Then
L^{\prime} is recursively enumerable,
if and only
if L is recursive.

Corollary.

There exist languages that are not recursively enumerable, if and only if there exist languages that are not recursive.

8.5. Not Every Language is Recursively Enumerable

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
cs. languages	LBA	cs. grammar	
re. languages	TM	unrestr. grammar	

From Fundamentele Informatica 1:

Definition 8.24.
Countably Infinite and Countable Sets

A set A is countably infinite (the same size as \mathbb{N}) if there is a bijection $f: \mathbb{N} \rightarrow A$, or a list a_{0}, a_{1}, \ldots of elements of A such that every element of A appears exactly once in the list.
A is countable if A is either finite or countably infinite.
uncountable: not countable

Example 8.29. Languages Are Countable Sets

$$
L \subseteq \Sigma^{*}=\bigcup_{i=0}^{\infty} \Sigma^{i}
$$

A slide from lecture 4

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with
a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

A slide from lecture 4

Assumptions:

1. Names of the states are irrelevant.
2. Tape alphabet Γ of every Turing machine T is subset of infinite set $\mathcal{S}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, where $a_{1}=\Delta$.

A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:
$n\left(h_{a}\right)=1, n\left(h_{r}\right)=2, n\left(q_{0}\right)=3, n(q) \geq 4$ for other $q \in Q$.

Assign numbers to each tape symbol:
$n\left(a_{i}\right)=i$.

Assign numbers to each tape head direction:
$n(R)=1, n(L)=2, n(S)=3$.

A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p, \sigma)=(q, \tau, D)$

$$
e(m)=1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of T in some order as $m_{1}, m_{2}, \ldots, m_{k}$, and we define

$$
e(T)=e\left(m_{1}\right) 0 e\left(m_{2}\right) 0 \ldots 0 e\left(m_{k}\right) 0
$$

If $z=z_{1} z_{2} \ldots z_{j}$ is a string, where each $z_{i} \in \mathcal{S}$,

$$
e(z)=01^{n\left(z_{1}\right)} 01^{n\left(z_{2}\right)} 0 \ldots 01^{n\left(z_{j}\right)} 0
$$

Example 8.30. The Set of Turing Machines Is Countable
Let $\mathcal{T}(\Sigma)$ be set of Turing machines with input alphabet Σ There is injective function $e: \mathcal{T}(\Sigma) \rightarrow\{0,1\}^{*}$ (e is encoding function)

Hence (. . .) , set of recursively enumerable languages is countable

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because \mathbb{N} and $\{0,1\}^{*}$ are the same size, there are uncountably many languages over $\{0,1\}$

Theorem 8.32. Not all languages are recursively enumerable. In fact, the set of languages over $\{0,1\}$ that are not recursively enumerable is uncountable.
(Not) Recursively enumerable
vs.
(Not) Countable

A slide from lecture 4:

Theorem 8.4. If L_{1} and L_{2} are both recursively enumerable languages over Σ, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also recursively enumerable.

Proof. . .

Exercise 8.3.

Is the following statement true or false?

If L_{1}, L_{2}, \ldots are any recursively enumerable subsets of Σ^{*}, then $\cup_{i=1}^{\infty} L_{i}$ is recursively enumerable.

Give reasons for your answer.

9. Undecidable Problems

9.1. A Language

That Can't Be Accepted,
and a Problem That Can't Be Decided

A slide from lecture 4

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language
$L \subseteq \Sigma^{*}$,
if $L(T)=L$.
T decides L,
if T computes the characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$

A language L is recursively enumerable, if there is a TM that accepts L,
and L is recursive,
if there is a TM that decides L.

	$e\left(T_{0}\right)$	$e\left(T_{1}\right)$	$e\left(T_{2}\right)$	$e\left(T_{3}\right)$	$e\left(T_{4}\right)$	$e\left(T_{5}\right)$	$e\left(T_{6}\right)$	$e\left(T_{7}\right)$	$e\left(T_{8}\right)$	$e\left(T_{9}\right)$
$L\left(T_{0}\right)$	1	0	1	0	0	1	0	0	0	1
$L\left(T_{1}\right)$	0	1	1	1	0	0	0	0	1	0
$L\left(T_{2}\right)$	1	0	0	1	0	0	1	0	0	0
$L\left(T_{3}\right)$	0	0	0	0	0	0	0	0	0	0
$L\left(T_{4}\right)$	0	0	0	0	1	0	0	0	0	0
$L\left(T_{5}\right)$	0	0	1	1	0	1	0	1	0	0
$L\left(T_{6}\right)$	0	0	0	0	0	0	0	0	1	0
$L\left(T_{7}\right)$	1	1	1	1	1	1	1	1	1	1
$L\left(T_{8}\right)$	0	1	0	1	0	1	0	1	0	1
$L\left(T_{9}\right)$	0	0	0	0	0	0	0	0	0	0
\ldots						\ldots				

	$e\left(T_{0}\right)$	$e\left(T_{1}\right)$	$e\left(T_{2}\right)$	$e\left(T_{3}\right)$	$e\left(T_{4}\right)$	$e\left(T_{5}\right)$	$e\left(T_{6}\right)$	$e\left(T_{7}\right)$	$e\left(T_{8}\right)$	$e\left(T_{9}\right)$
$L\left(T_{0}\right)$	1	0	1	0	0	1	0	0	0	1
$L\left(T_{1}\right)$	0	1	1	1	0	0	0	0	1	0
$L\left(T_{2}\right)$	1	0	0	1	0	0	1	0	0	0
$L\left(T_{3}\right)$	0	0	0	0	0	0	0	0	0	0
$L\left(T_{4}\right)$	0	0	0	0	1	0	0	0	0	0
$L\left(T_{5}\right)$	0	0	1	1	0	1	0	1	0	0
$L\left(T_{6}\right)$	0	0	0	0	0	0	0	0	1	0
$L\left(T_{7}\right)$	1	1	1	1	1	1	1	1	1	1
$L\left(T_{8}\right)$	0	1	0	1	0	1	0	1	0	1
$L\left(T_{9}\right)$	0	0	0	0	0	0	0	0	0	0
\ldots						\ldots				
NSA	0	0	1	1	0	0	1	0	1	1

Hence, NSA is not recursively enumerable.

A slide from lecture 4

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

Set-up of constructing language NSA that is not RE:

1. Start with list of $R E$ languages over $\{0,1\}$
(which are subsets of $\left.\{0,1\}^{*}\right): L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$ (namely $e\left(T_{i}\right)$)
2. Define another language NSA by:

$$
e\left(T_{i}\right) \in N S A \Longleftrightarrow e\left(T_{i}\right) \notin L\left(T_{i}\right)
$$

3. Conclusion: for all $i, N S A \neq L\left(T_{i}\right)$

Hence, NSA is not RE

Set-up of constructing language that is not RE:

1. Start with list of RE languages over $\{0,1\}$
(which are subsets of $\{0,1\}^{*}$): $L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$
2. Define another language L by:
$x \in L \Longleftrightarrow x \notin$ (language that x is associated with)
3. Conclusion: for all $i, L \neq L\left(T_{i}\right)$ Hence, L is not RE

Set-up of constructing language L that is not RE:

1. Start with list of RE languages over $\{0,1\}$
(which are subsets of $\left.\{0,1\}^{*}\right): L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$ (namely x_{i})
2. Define another language L by:

$$
x_{i} \in L \Longleftrightarrow x_{i} \notin L\left(T_{i}\right)
$$

3. Conclusion: for all $i, L \neq L\left(T_{i}\right)$ Hence, L is not RE

Every infinite list $x_{0}, x_{1}, x_{2}, \ldots$ of different elements of $\{0,1\}^{*}$ yields language L that is not RE

	\wedge	0	1	00	01	10	11	000	001	010	\ldots
$L\left(T_{0}\right)$	1	0	1	0	0	1	0	0	0	1	\cdots
$L\left(T_{1}\right)$	0	1	1	1	0	0	0	0	1	0	\cdots
$L\left(T_{2}\right)$	1	0	0	1	0	0	1	0	0	0	\cdots
$L\left(T_{3}\right)$	0	0	0	0	0	0	0	0	0	0	\cdots
$L\left(T_{4}\right)$	0	0	0	0	1	0	0	0	0	0	\cdots
$L\left(T_{5}\right)$	0	0	1	1	0	1	0	1	0	0	\cdots
$L\left(T_{6}\right)$	0	0	0	0	0	0	0	0	1	0	\cdots
$L\left(T_{7}\right)$	1	1	1	1	1	1	1	1	1	1	\cdots
$L\left(T_{8}\right)$	0	1	0	1	0	1	0	1	0	1	\cdots
$L\left(T_{9}\right)$	0	0	0	0	0	0	0	0	0	0	\cdots
\ldots						\ldots					
newL	0	0	1	1	0	0	1	0	1	1	\cdots

Hence, newL is not recursively enumerable.

Set-up of constructing language NSA that is not RE:

1. Start with collection of RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^{*}$): $\{L(T) \mid$ TM $T\}$ each one associated with specific element of $\{0,1\}^{*}$ (namely $e(T)$)
2. Define another language NSA by:
$e(T) \in N S A \Longleftrightarrow e(T) \notin L(T)$
3. Conclusion: for all TM $T, N S A \neq L(T)$ Hence, NSA is not RE

Definition 9.1. The Languages NSA and SA

Let

$$
\begin{aligned}
\text { NSA } & =\{e(T) \mid T \text { is a TM, and } e(T) \notin L(T)\} \\
S A & =\{e(T) \mid T \text { is a TM, and } e(T) \in L(T)\}
\end{aligned}
$$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

A slide from lecture 4

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Proof. . .

Exercise 9.2.

Describe how a universal Turing machine could be used in the proof that $S A$ is recursively enumerable.

Given a TM T, does T accept the string $e(T)$?

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that . . . ?

Given an undirected graph $G=(V, E)$, does G contain a Hamiltonian path?

Given a list of integers $x_{1}, x_{2}, \ldots, x_{n}$, is the list sorted?

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Decision problem: problem for which the answer is 'yes' or 'no':

Given ... , is it true that ...?
yes-instances of a decision problem:
instances for which the answer is 'yes'
no-instances of a decision problem:
instances for which the answer is 'no'

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. ...

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. E^{\prime} : strings not representing instances

For general decision problem P, an encoding e of instances I as strings $e(I)$ over alphabet Σ is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding $e(I)$
2. e is injective
3. string $e(I)$ can be decoded

A slide from lecture 4

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with
a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

For general decision problem P and reasonable encoding e,

$$
\begin{aligned}
& Y(P)=\{e(I) \mid I \text { is yes-instance of } P\} \\
& N(P)=\{e(I) \mid I \text { is no-instance of } P\} \\
& E(P)=Y(P) \cup N(P)
\end{aligned}
$$

$E(P)$ must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ, we say that P is decidable if $Y(P)=\{e(I) \mid I$ is a yes-instance of $P\}$ is a recursive language.

Theorem 9.4. The decision problem Self-Accepting is undecidable.

Proof. . .

For every decision problem, there is complementary problem P^{\prime}, obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting:
Given a TM T, does T fail to accept $e(T)$?

Theorem 9.5. For every decision problem P, P is decidable if and only if the complementary problem P^{\prime} is decidable.

Proof. . .

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

9.2. Reductions and the Halting Problem

(Informal) Examples of reductions

1. Recursive algorithms
2. Given NFA M and string x, is $x \in L(M)$?
3. Given FAs M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?

Theorem 2.15.

Suppose $M_{1}=\left(Q_{1}, \Sigma, q_{1}, A_{1}, \delta_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, q_{2}, A_{2}, \delta_{2}\right)$ are finite automata accepting L_{1} and L_{2}, respectively.
Let M be the FA ($Q, \Sigma, q_{0}, A, \delta$), where

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \\
& q_{0}=\left(q_{1}, q_{2}\right)
\end{aligned}
$$

and the transition function δ is defined by the formula

$$
\delta((p, q), \sigma)=\left(\delta_{1}(p, \sigma), \delta_{2}(q, \sigma)\right)
$$

for every $p \in Q_{1}$, every $q \in Q_{2}$, and every $\sigma \in \Sigma$.
Then

1. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ or $\left.q \in A_{2}\right\}$, M accepts the language $L_{1} \cup L_{2}$.
2. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \in A_{2}\right\}$,
M accepts the language $L_{1} \cap L_{2}$.
3. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \notin A_{2}\right\}$,
M accepts the language $L_{1}-L_{2}$.

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1} if and only if $F(I)$ is a yes-instance of P_{2}.

Theorem 9.7.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

Two more decision problems:
Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w ?

Theorem 9.8. Both Accepts and Halts are undecidable.
Proof.

1. Prove that Self-Accepting \leq Accepts ...

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...
2. Prove that Accepts \leq Halts ...

Application:

$$
\begin{aligned}
& \mathrm{n}=4 ; \\
& \text { while (} \mathrm{n} \text { is the sum of two primes) } \\
& \mathrm{n}=\mathrm{n}+2 \text {; }
\end{aligned}
$$

This program loops forever, if and only if Goldbach's conjecture is true.

Exercise 9.5.

Fermat's last theorem, until recently one of the most famous unproved statements in mathematics, asserts that there are no integer solutions (x, y, z, n) to the equation $x^{n}+y^{n}=z^{n}$ satisfying $x, y>0$ and $n>2$.

Ignoring the fact that the theorem has now been proved, explain how a solution to the halting problem would allow you to determine the truth or falsity of the statement.

Theorem 9.7.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

Order $P_{1} \leq P_{2}$

Proof. . .

Exercise 9.1.

Show that the relation \leq on the set of decision problems is reflexive and transitive.

Give an example to show that it is not symmetric.

|ouw mening is belangrijk!

Wat?

- De Nationale Studenten Enquête

Waarom?

- Omdat je graag je mening wilt geven \& wilt meehelpen je opleiding te verbeteren
- Omdat bij 25\% respons studenten koeken krijgen
- Omdat er per ingevulde enquête 25 cent wordt gedoneerd aan stichting vluchteling-student (UAF)
- Omdat de studievereniging met de hoogste respons een gratis sportactiviteit mag organiseren

Hoe?

- Via de persoonlijke link in de uitnodigingsmail
- Link kwijt? Vul je uMail-ibox e-mailadres in op www.nse.nl

Gemakkelijk via je telefoon!

