Fundamentele Informatica 3

$$
\text { voorjaar } 2020
$$

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet
kamer 140 Snellius, tel. 071-527 2876
rvvliet(at)liacs(dot)nl
hoor-/werkcollege 7b, 29 mei 2020
9. Undecidable Problems
9.3. More Decision Problems Involving Turing Machines

A slide from lecture 7a:

Accepts- $\wedge:$ Given a TM T, is $\Lambda \in L(T)$?

Theorem 9.9. The following five decision problems are undecidable.
5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts-^ \leq WritesSymbol . . .

A slide from lecture 7a:

AtLeast10MovesOn-^:
Given a TM T, does T make at least ten moves on input \wedge ?

WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input \wedge ?

Theorem 9.10.
The decision problem WritesNonblank is decidable.

Proof. . .

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.
a. Given a TM T, does it ever reach a nonhalting state other than its initial state if it starts with a blank tape?

Definition 9.11. A Language Property of TMs
A property R of Turing machines is called a language property if, for every Turing machine T having property R, and every other TM T_{1} with $L\left(T_{1}\right)=L(T), T_{1}$ also has property R.

A language property of TMs is nontrivial if there is at least one $T M$ that has the property and at least one that doesn't.

In fact, a language property is a property of the languages accepted by TMs.

Example of nontrivial language property:
2. AcceptsSomething:

Given a TM T, is there at least one string in $L(T)$?

Theorem 9.12. Rice's Theorem

If R is a nontrivial language property of TMs, then the decision problem

$$
P_{R}: \text { Given a TM } T \text {, does } T \text { have property } R \text { ? }
$$

is undecidable.

Proof. . .

Prove that Accepts- $\wedge \leq P_{R} \ldots$
(or that Accepts- $\wedge \leq P_{\text {not }-R} \ldots$...)

Examples of decision problems to which Rice's theorem can be applied:

1. Accepts- L : Given a TM T, is $L(T)=L$? (assuming ...)
2. AcceptsSomething:

Given a TM T, is there at least one string in $L(T)$?
3. AcceptsTwoOrMore:

Given a TM T, does $L(T)$ have at least two elements ?
4. AcceptsFinite: Given a TM T, is $L(T)$ finite ?
5. AcceptsRecursive:

Given a TM T, is $L(T)$ recursive ? (note that ...)

All these problems are undecidable.

Rice's theorem cannot be applied (directly)

- if the decision problem does not involve just one TM Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Rice's theorem cannot be applied (directly)

- if the decision problem does not involve just one TM Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$
- if the decision problem involves the operation of the TM WritesSymbol: Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ? WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input \wedge ?
- if the decision problem involves a trivial property Accepts-NSA: Given a TM T, is $L(T)=$ NSA ?

Exercise 9.23. Show that the property "accepts its own encoding" is not a language property of TMs.

Part of a slide from lecture 4:
Definition 7.33. An Encoding Function (continued)
For each move m of T of the form $\delta(p, \sigma)=(q, \tau, D)$

$$
e(m)=1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of T in some order as $m_{1}, m_{2}, \ldots, m_{k}$, and we define

$$
e(T)=e\left(m_{1}\right) 0 e\left(m_{2}\right) 0 \ldots 0 e\left(m_{k}\right) 0
$$

Exercise 9.23. Show that the property "accepts its own encoding" is not a language property of TMs.

A slide from lecture 4:
Example 7.34. A Sample Encoding of a TM

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.
b. Given a TM T and a nonhalting state q of T, does T ever enter state q when it begins with a blank tape?
e. Given a TM T, is there a string it accepts in an even number of moves?
j. Given a TM T, does T halt within ten moves on every string?
I. Given a TM T, does T eventually enter every one of its nonhalting states if it begins with a blank tape?

Exercise 9.13.

In this problem TMs are assumed to have input alphabet $\{0,1\}$. For a finite set $S \subseteq\{0,1\}^{*}, P_{S}$ denotes the decision problem: Given a TM T, is $S \subseteq L(T)$?
a. Show that if $x, y \in\{0,1\}^{*}$, then $P_{\{x\}} \leq P_{\{y\}}$.
b. Show that if $x, y, z \in\{0,1\}^{*}$, then $P_{\{x\}} \leq P_{\{y, z\}}$.
c. Show that if $x, y, z \in\{0,1\}^{*}$, then $P_{\{x, y\}} \leq P_{\{z\}}$.
d. Is it true that for every two finite subsets S and U of $\{0,1\}^{*}$, $P_{S} \leq P_{U}$.

