Fundamentele Informatica 3

voorjaar 2020

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl

hoor-/werkcollege 7b, 29 mei 2020

9. Undecidable Problems

9.3. More Decision Problems Involving Turing Machines

A slide from lecture 7a:

Accepts-A: Given a TM T, is $\Lambda \in L(T)$?

Theorem 9.9. The following five decision problems are undecidable.

5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts- $\Lambda \leq WritesSymbol \dots$

A slide from lecture 7a:

AtLeast10MovesOn- Λ : Given a TM T, does T make at least ten moves on input Λ ?

WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input Λ ?

Theorem 9.10.

The decision problem *WritesNonblank* is decidable.

Proof...

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.

a. Given a TM T, does it ever reach a nonhalting state other than its initial state if it starts with a blank tape?

Definition 9.11. A Language Property of TMs

A property R of Turing machines is called a *language property* if, for every Turing machine T having property R, and every other TM T_1 with $L(T_1) = L(T)$, T_1 also has property R.

A language property of TMs is *nontrivial* if there is at least one TM that has the property and at least one that doesn't.

In fact, a language property is a property of the languages accepted by TMs. Example of nontrivial language property:

2. AcceptsSomething:

Given a TM T, is there at least one string in L(T) ?

Theorem 9.12. Rice's Theorem

If R is a nontrivial language property of TMs, then the decision problem

 P_R : Given a TM T, does T have property R ?

is undecidable.

Proof...

Prove that Accepts- $\Lambda \leq P_R \ldots$

```
(or that Accepts-\Lambda \leq P_{not-R} ...)
```

Examples of decision problems to which Rice's theorem can be applied:

- 1. Accepts-L: Given a TM T, is L(T) = L? (assuming ...)
- 2. AcceptsSomething: Given a TM T, is there at least one string in L(T) ?
- 3. AcceptsTwoOrMore: Given a TM T, does L(T) have at least two elements ?
- 4. AcceptsFinite: Given a TM T, is L(T) finite?
- 5. *AcceptsRecursive*:

Given a TM T, is L(T) recursive ? (note that ...)

All these problems are undecidable.

Rice's theorem cannot be applied (directly)

• if the decision problem does not involve just one TM *Equivalent*: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$ Rice's theorem cannot be applied (directly)

• if the decision problem does not involve just one TM Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

• if the decision problem involves the *operation* of the TM *WritesSymbol*: Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ? *WritesNonblank*: Given a TM T, does T ever write a nonblank symbol on input Λ ?

• if the decision problem involves a *trivial* property Accepts-NSA: Given a TM T, is L(T) = NSA? **Exercise 9.23.** Show that the property "accepts its own encoding" is not a language property of TMs.

Part of a slide from lecture 4:

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p,\sigma) = (q,\tau,D)$

$$e(m) = 1^{n(p)} 0 1^{n(\sigma)} 0 1^{n(q)} 0 1^{n(\tau)} 0 1^{n(D)} 0$$

We list the moves of T in some order as m_1, m_2, \ldots, m_k , and we define

$$e(T) = e(m_1)0e(m_2)0\dots 0e(m_k)0$$

Exercise 9.23. Show that the property "accepts its own encoding" is not a language property of TMs.

A slide from lecture 4:

Example 7.34. A Sample Encoding of a TM

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.

b. Given a TM T and a nonhalting state q of T, does T ever enter state q when it begins with a blank tape?

e. Given a TM T, is there a string it accepts in an even number of moves?

j. Given a TM T, does T halt within ten moves on every string?

I. Given a TM T, does T eventually enter every one of its nonhalting states if it begins with a blank tape?

Exercise 9.13.

In this problem TMs are assumed to have input alphabet $\{0, 1\}$. For a finite set $S \subseteq \{0, 1\}^*$, P_S denotes the decision problem: Given a TM T, is $S \subseteq L(T)$?

- **a.** Show that if $x, y \in \{0, 1\}^*$, then $P_{\{x\}} \leq P_{\{y\}}$.
- **b.** Show that if $x, y, z \in \{0, 1\}^*$, then $P_{\{x\}} \leq P_{\{y,z\}}$.
- **c.** Show that if $x, y, z \in \{0, 1\}^*$, then $P_{\{x,y\}} \leq P_{\{z\}}$.

d. Is it true that for every two finite subsets S and U of $\{0, 1\}^*$, $P_S \leq P_U$.