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9. Undecidable Problems

9.1. A Language
That Can’t Be Accepted,
and a Problem That Can’t Be Decided
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A slide from lecture 4

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T ) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.
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A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.
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A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T ) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0
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e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . . . . .
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e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . . . . .

NSA 0 0 1 1 0 0 1 0 1 1 .

Hence, NSA is not recursively enumerable.
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A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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Set-up of constructing language NSA that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely e(Ti))

2. Define another language NSA by:

e(Ti) ∈ NSA ⇐⇒ e(Ti) /∈ L(Ti)

3. Conclusion: for all i, NSA 6= L(Ti)

Hence, NSA is not RE
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Set-up of constructing language that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

2. Define another language L by:

x ∈ L ⇐⇒ x /∈ (language that x is associated with)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE
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Set-up of constructing language L that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely xi)

2. Define another language L by:

xi ∈ L ⇐⇒ xi /∈ L(Ti)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

Every infinite list x0, x1, x2, . . . of different elements of {0,1}∗

yields language L that is not RE
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Λ 0 1 00 01 10 11 000 001 010 . . .
L(T0) 1 0 1 0 0 1 0 0 0 1 . . .
L(T1) 0 1 1 1 0 0 0 0 1 0 . . .
L(T2) 1 0 0 1 0 0 1 0 0 0 . . .
L(T3) 0 0 0 0 0 0 0 0 0 0 . . .
L(T4) 0 0 0 0 1 0 0 0 0 0 . . .
L(T5) 0 0 1 1 0 1 0 1 0 0 . . .
L(T6) 0 0 0 0 0 0 0 0 1 0 . . .
L(T7) 1 1 1 1 1 1 1 1 1 1 . . .
L(T8) 0 1 0 1 0 1 0 1 0 1 . . .
L(T9) 0 0 0 0 0 0 0 0 0 0 . . .
. . . . . .

newL 0 0 1 1 0 0 1 0 1 1 . . .

Hence, newL is not recursively enumerable.
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Set-up of constructing language NSA that is not RE:

1. Start with collection of RE languages over {0,1}

(which are subsets of {0,1}∗): {L(T ) | TM T}

each one associated with specific element of {0,1}∗

(namely e(T ))

2. Define another language NSA by:

e(T ) ∈ NSA ⇐⇒ e(T ) /∈ L(T )

3. Conclusion: for all TM T , NSA 6= L(T )

Hence, NSA is not RE
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Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T ) | T is a TM, and e(T ) /∈ L(T )}

SA = {e(T ) | T is a TM, and e(T ) ∈ L(T )}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)
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A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. . .
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Exercise 9.2.

Describe how a universal Turing machine could be used in the

proof that SA is recursively enumerable.
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Given a TM T , does T accept the string e(T )?
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Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

Given an undirected graph G = (V,E),

does G contain a Hamiltonian path?

Given a list of integers x1, x2, . . . , xn,

is the list sorted?

Self-Accepting: Given a TM T , does T accept the string

e(T )?
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Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

yes-instances of a decision problem:

instances for which the answer is ‘yes’

no-instances of a decision problem:

instances for which the answer is ‘no’
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Self-Accepting: Given a TM T , does T accept the string e(T )?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. . . .
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Self-Accepting: Given a TM T , does T accept the string e(T )?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E′: strings not representing instances
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For general decision problem P ,

an encoding e of instances I as strings e(I) over alphabet Σ

is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding e(I)

2. e is injective

3. string e(I) can be decoded
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A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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For general decision problem P and reasonable encoding e,

Y (P ) = {e(I) | I is yes-instance of P}

N(P ) = {e(I) | I is no-instance of P}

E(P ) = Y (P ) ∪N(P )

E(P ) must be recursive
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Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P ) = {e(I) | I is a yes-instance of P} is a recursive language.
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Theorem 9.4. The decision problem Self-Accepting is undecid-

able.

Proof. . .
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For every decision problem, there is complementary problem P ′,

obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:

Given a TM T , does T fail to accept e(T ) ?
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Theorem 9.5. For every decision problem P , P is decidable if

and only if the complementary problem P ′ is decidable.

Proof. . .
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SA vs. NSA

Self-Accepting vs. Non-Self-Accepting
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9.2. Reductions and the Halting Problem
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(Informal) Examples of reductions

1. Recursive algorithms

2. Given NFA M and string x, is x ∈ L(M) ?

3. Given FAs M1 and M2, is L(M1) ⊆ L(M2) ?
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Theorem 2.15.

Suppose M1 = (Q1,Σ, q1, A1, δ1) and M2 = (Q2,Σ, q2, A2, δ2)
are finite automata accepting L1 and L2, respectively.

Let M be the FA (Q,Σ, q0, A, δ), where

Q = Q1 ×Q2

q0 = (q1, q2)
and the transition function δ is defined by the formula

δ((p, q), σ) = (δ1(p, σ), δ2(q, σ))
for every p ∈ Q1, every q ∈ Q2, and every σ ∈ Σ.

Then

1. If A = {(p, q)| p ∈ A1 or q ∈ A2},
M accepts the language L1 ∪ L2.

2. If A = {(p, q)| p ∈ A1 and q ∈ A2},
M accepts the language L1 ∩ L2.

3. If A = {(p, q)| p ∈ A1 and q /∈ A2},
M accepts the language L1 − L2.
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Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P1

if and only if F (I) is a yes-instance of P2.

. . .
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Theorem 9.7.

. . .

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.
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Two more decision problems:

Accepts: Given a TM T and a string w, is w ∈ L(T ) ?

Halts: Given a TM T and a string w, does T halt on input w ?
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Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .
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Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P1

if and only if F (I) is a yes-instance of P2.

. . .
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Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

2. Prove that Accepts ≤ Halts . . .
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Application:

n = 4;

while (n is the sum of two primes)

n = n+2;

This program loops forever, if and only if Goldbach’s conjecture

is true.
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9.3. More Decision Problems
Involving Turing Machines
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Accepts: Given a TM T and a string x, is x ∈ L(T ) ?

Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x ?

Instances are . . .

Self-Accepting: Given a TM T , does T accept the string e(T )?

Instances are . . .
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Accepts: Given a TM T and a string x, is x ∈ L(T ) ?

Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x ?

Instances are . . .

Self-Accepting: Given a TM T , does T accept the string e(T )?

Instances are . . .

Now fix a TM T :

T -Accepts: Given a string x, does T accept x ?

Instances are . . .

Decidable or undecidable ? (cf. Exercise 9.7.)

45



Theorem 9.9. The following five decision problems are unde-

cidable.

1. Accepts-Λ: Given a TM T , is Λ ∈ L(T ) ?

Proof.

1. Prove that Accepts ≤ Accepts-Λ . . .
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Reduction from Accepts to Accepts-Λ.

Instance of Accepts is (T1, x) for TM T1 and string x.

Instance of Accepts-Λ is TM T2.

T2 = F (T1, x) =

Write(x) → T1

T2 accepts Λ, if and only if T1 accepts x.
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If we had an algorithm/TM A2 to solve Accepts-Λ,

then we would also have an algorithm/TM A1 to solve Accepts,

as follows:

A1:

Given instance (T1, x) of Accepts,

1. construct T2 = F (T1, x);

2. run A2 on T2.

A1 answers ‘yes’ for (T1, x),

if and only if A2 answers ‘yes’ for T2,

if and only T2 accepts Λ,

if and only if T1 accepts x.
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Theorem 9.9. The following five decision problems are unde-

cidable.

2. AcceptsEverything:

Given a TM T with input alphabet Σ, is L(T ) = Σ∗ ?

Proof.

2. Prove that Accepts-Λ ≤ AcceptsEverything . . .
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