Fundamentele Informatica 3
najaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvanl/fi3/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl

college 6, 11 oktober 2016

8. Recursively Enumerable Languages
8.3. More General Grammars
8.4. Context-Sensitive Languages and The Chomsky Hierarchy
1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Huiswerkopgave 1

Voor 0.4pt

Inleveren: donderdag 20 oktober 2016, 13:45 uur

A slide from lecture 5

Definition 8.1. Accepting a Language and Deciding a Language
A Turing machine T" with input alphabet > accepts a language
L C X%,

if L(T) = L.

T decides L,
if T" computes the characteristic function xjy : ~* — {0,1}

A language L is recursively enumerable,
if there is a TM that accepts L,

and L is recursive,
if there is a TM that decides L.

38.3. More General Grammars

reg. languages FA reg. grammar reg. expression
determ. cf. languages | DPDA

cf. languages PDA cf. grammar

CcsS. languages LBA CS. grammar

re. languages ™ unrestr. grammar

A slide from lecture 1

FI2: Pumping Lemma for CFLs

A
(S)

A
(4

)>

A slide from lecture 1

FI2: Pumping Lemma for CFLs

e e
A A
4

Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple G = (V,X,S, P), where V
and 2> are disjoint sets of variables and terminals, respectively,
S is an element of V called the start symbol, and P is a set of
productions of the form

a— 3

where o, 8 € (V UX)* and « contains at least one variable.

Notation as for CFGs:
Q :>?; B
L(G)={zeX"|S=5uz}
but. ..

Example 8.12. A Grammar Generating {a"b"c" | n > 1}

Example 8.12. A Grammar Generating {a"b"c" |n > 1}

S — SABC | LABC
BA -+ AB (CB —- BC (CA— AC

LA—a aA—>aa aB —ab bB—=bb bC —bc cC — cc

10

Example 8.11. A Grammar Generating {azk | k € N}

{a, a?,a* a8 al®, .. .} = {a, aa, aaaa, aaaaaaaa, acaaaaaaaaaaaaaa, . . .}

11

Example 8.11. A Grammar Generating {an | k € N}

{a, a?, a* a8 al®, .. .} = {a, aa, aaaa, aaaaaaaa, acaaaaaaaaaaaaaa, . . .}

S — LaR
L— LD Da—aaD DR — R

L—->AN\N R—AN

12

Example.
An Unrestricted Grammar Generating XX = {zz | x € {a,b}*}

First a CFG for Pal = {z € {a,b}" |z = z"}:

S—aSa | bSb | a | b | A

13

Example.

An Unrestricted Grammar Generating XX = {zz | x € {a,b}*}

S — aAS |bBS | M
Aa - aA Ab—bA Ba—aB Bb—bB

AM — Ma BM — Mb M — A

14

Theorem 8.13.
For every unrestricted grammar G, there is a Turing machine T
with L(T) = L(G).

Proof.

1. Move past input

2. Simulate derivation in G on the tape of a Turing machine
3. Equal

15

Theorem 8.13.
For every unrestricted grammar G, there is a Turing machine T
with L(T) = L(G).

Proof.
1. Move past input
2. Simulate derivation in G on the tape of a Turing machine:
Write S on tape
Repeat
a. Select production o« —
b. Select occurrence of « (if there is one)
Cc. Replace occurrence of a by g
until b. fails (caused by ...)
3. Equal

16

A slide from lecture 4

Theorem 7.31.

For every nondeterministic TM T = (Q, X, I, qp,9),

there is an ordinary (deterministic) TM T7 = (Q1,>,11,91,61)
with L(Ty) = L(T).

Proof. ..
Initialize | Copy Input ‘ ha ‘
1 Tapes 2.3.4 113 -~ Execute - ha
P
Erase | Next | not 111...1 Copy Sequence
Tape 3 | Sequence | 2 =4
not all 111...1

B e Check
Uy all Tape 4

17

Example.

(The second part of) the construction from Theorem 8.13 to
obtain a TM simulating a derivation in the unrestricted grammar
with productions

S—aBS|N\N aB—Ba Ba—aB B—b

See next slide

N.B.:

In next slide, we simulate application of arbitrary production by
e first moving to arbitrary position in current string (at ¢»)

e only then selecting (and applying) a possible production

This implementation of the construction must be known for the

exXam
18

b/b,R
A/S,L

a0 A/AR
i : ‘@ A/S,S
A/A L aj/a :
-2 :
) ,S | B,L
/ @ S/S,L
a/a,l
b/b,LU a
B/B,L |

S/S,L

19

8.4. Context-Sensitive Languages
and the Chomsky Hierarchy

reg. languages FA reg. grammar reg. expression
determ. cf. languages | DPDA

cf. languages PDA cf. grammar

CcS. languages LBA CS. grammar

re. languages ™ unrestr. grammar

20

Definition 8.16. Context-Sensitive Grammars

A context-sensitive grammar (CSG) is an unrestricted grammar
in which no production is length-decreasing.

In other words, every production is of the form a — B, where

8] = |e].

A language is a context-sensitive language (CSL) if it can be
generated by a context-sensitive grammar.

21

Example 8.12. A Grammar Generating {a"b"c" | n > 1}

S — SABC | LABC
BA —- AB (CB —- BC (CA— AC

LA—a aA—>aa aB—ab bB—bb bC —bc cC — cc

Not context-sensitive.

22

Example 8.17. A CSG Generating L = {a"b"c" | n > 1}

S — SABC | ABC
BA -+~ AB (CB —- BC (CA— AC

A—a aA—>aa aB —ab bB —->bb bC —bc cC — cc

23

Example.

An Unrestricted Grammar Generating XX = {zx | € {a, b}*}

S — aAS | bBS | M
Aa - aA Ab—bA Ba—aB Bb—bB

AM —- Ma BM — Mb M — A

Not context-sensitive.

24

EXxercise 8.24.

Find a context-sensitive grammar generating the language

XX —{N} = {zx | x € {a,b}" and = #= A}

25

Programming languages

26

Theorem 8.13.
For every unrestricted grammar G, there is a Turing machine T
with L(T) = L(G).

Proof.

1. Move past input

2. Simulate derivation in G on the tape of a Turing machine
3. Equal

27

Definition 8.18. Linear-Bounded Automata

A linear-bounded automaton (LBA) is a 5-tuple M = (Q, %, I, qg,9)
that is identical to a nondeterministic Turing machine, with the
following exception.

There are two extra tape symbols [and |, assumed not to be
elements of the tape alphabet I'.

The initial configuration of M corresponding to input z is gglx],
with the symbol [in the leftmost square and the symbol] in the
first square to the right of x.

During its computation, M is not permitted to replace either of
these brackets or to move its tape head to the left of the [or to
the right of the].

28

Theorem 8.19.
If L C >* is a context-sensitive language, then there is a linear-
bounded automaton that accepts L.

Proof. ..

29

Theorem 8.19.
If L C >* is a context-sensitive language, then there is a linear-
bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13, except
e two tape tracks instead of move past input
e reject also if we (want to) write on |

30

Theorem 8.19.
If L C >* is a context-sensitive language, then there is a linear-
bounded automaton that accepts L.

Proof.

1. Create second tape track

2. Simulate derivation in G on track 2
3. Equal

31

Theorem 8.19.
If L C >* is a context-sensitive language, then there is a linear-
bounded automaton that accepts L.

Proof.
1. Create second tape track
2. Simulate derivation in G on track 2:
Write S on track 2
Repeat
a. Select production aa — 3
b. Select occurrence of o on track 2 (if there is one)
c. Try to replace occurrence of o by 3
until b. fails (caused by ...)
or c. fails (caused by ...); then reject
3. Equal

32

Theorem 8.19.
If L C >* is a context-sensitive language, then there is a linear-
bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13, except
e two tape tracks instead of move past input
e reject also if we (want to) write on |

Alternative proof.

Simulate derivation of string x from S in reverse order
c.f., bottom-up parsing

Then one tape track is sufficient

33

Just an observation

Every context-sensitive language is recursively enumerable

34

A slide from lecture 5

Theorem 8.2.
Every recursive language is recursively enumerable.

Proof...

35

Theorem 8.22. Every context-sensitive language L is recursive.

Proof. ..

36

Theorem 8.22. Every context-sensitive language L is recursive.
Proof.

Let CSG G generate L
Let LBA M accept strings generated by G (as in Theorem 8.19)

Simulate M by NTM T, which

e inserts markers [and |

e also has two tape tracks

e maintains list of (different) strings generated so far

a. Select production o —
b. Select occurrence of a on track 2 (if there is one)
c. Try to replace occurrence of o by g
d. Compare new string to strings to the right of |
until b. fails (caused by ...); then Equal
or c. fails (caused by ...); then reject
or d. finds match; then reject
37

A slide from lecture 5

Corollary.

If L is accepted by a nondeterministic TM T, and if there is no
input string on which T" can possibly loop forever,
then L is recursive.

Proof. ..

338

