
Fundamentele Informatica 3

najaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 6, 11 oktober 2016

8. Recursively Enumerable Languages

8.3. More General Grammars

8.4. Context-Sensitive Languages and The Chomsky Hierarchy

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Huiswerkopgave 1

Voor 0.4pt

Inleveren: donderdag 20 oktober 2016, 13:45 uur

2

A slide from lecture 5

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

3

8.3. More General Grammars

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar

4

A slide from lecture 1

FI2: Pumping Lemma for CFLs

✖✕
✗✔
✁
✁
❅
❅
❅

S

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

v z

✖✕
✗✔

❆
❆
�

�
�

A

✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

w y

✖✕
✗✔
A

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

x

5

A slide from lecture 1

FI2: Pumping Lemma for CFLs

✖✕
✗✔
✁
✁
❅
❅
❅

S

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

v z

✖✕
✗✔
A

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

x

✖✕
✗✔
✁
✁
❅
❅
❅

S

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

v z

✖✕
✗✔

❆
❆
�

�
�

A

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

w y

✖✕
✗✔

❆
❆
�

�
�

A

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

w y

✖✕
✗✔
A

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

x

6

Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple G = (V,Σ, S, P), where V

and Σ are disjoint sets of variables and terminals, respectively,

S is an element of V called the start symbol, and P is a set of

productions of the form

α → β

where α, β ∈ (V ∪Σ)∗ and α contains at least one variable.

7

Notation as for CFGs:

α ⇒∗
G β

L(G) = {x ∈ Σ∗ | S ⇒∗
G x}

but. . .

8

Example 8.12. A Grammar Generating {anbncn | n ≥ 1}

9

Example 8.12. A Grammar Generating {anbncn | n ≥ 1}

S → SABC | LABC

BA → AB CB → BC CA → AC

LA → a aA → aa aB → ab bB → bb bC → bc cC → cc

10

Example 8.11. A Grammar Generating {a2
k
| k ∈ N}

{a, a2, a4, a8, a16, . . .} = {a, aa, aaaa, aaaaaaaa, aaaaaaaaaaaaaaaa, . . .}

11

Example 8.11. A Grammar Generating {a2
k
| k ∈ N}

{a, a2, a4, a8, a16, . . .} = {a, aa, aaaa, aaaaaaaa, aaaaaaaaaaaaaaaa, . . .}

S → LaR

L → LD Da → aaD DR → R

L → Λ R → Λ

12

Example.

An Unrestricted Grammar Generating XX = {xx | x ∈ {a, b}∗}

First a CFG for Pal = {x ∈ {a, b}∗ | x = xr}:

S → aSa | bSb | a | b | Λ

13

Example.

An Unrestricted Grammar Generating XX = {xx | x ∈ {a, b}∗}

S → aAS | bBS | M

Aa → aA Ab → bA Ba → aB Bb → bB

AM → Ma BM → Mb M → Λ

14

Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T

with L(T) = L(G).

Proof.

1. Move past input

2. Simulate derivation in G on the tape of a Turing machine

3. Equal

15

Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T

with L(T) = L(G).

Proof.

1. Move past input

2. Simulate derivation in G on the tape of a Turing machine:

Write S on tape

Repeat

a. Select production α → β

b. Select occurrence of α (if there is one)

c. Replace occurrence of α by β

until b. fails (caused by . . .)

3. Equal

16

A slide from lecture 4

Theorem 7.31.

For every nondeterministic TM T = (Q,Σ,Γ, q0, δ),
there is an ordinary (deterministic) TM T1 = (Q1,Σ,Γ1, q1, δ1)
with L(T1) = L(T).

Proof. . .

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲ ✲

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✙

✟✟✟✟✟✟✟✙

✛

✛

❍❍❍❍❍❍❍❨

✛

✟✟✟✟✟✟✟✯

ha

hr

Initialize
Tapes 2,3,4

Copy Input
1 → 3 Execute

Copy Sequence
2 → 4

Check
Tape 4

Next
Sequence

Erase
Tape 3

ha

hr

111 . . .1

not 111 . . .1

all

not all

17

Example.

(The second part of) the construction from Theorem 8.13 to

obtain a TM simulating a derivation in the unrestricted grammar

with productions

S → aBS | Λ aB → Ba Ba → aB B → b

See next slide

N.B.:

In next slide, we simulate application of arbitrary production by

• first moving to arbitrary position in current string (at q2)

• only then selecting (and applying) a possible production

This implementation of the construction must be known for the

exam

18

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✂✍

✲

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

✟✟✟✟✟✟✟✟✟✟✯ ❍❍❍❍❍❍❍❍❍❍❥
✲ ✲

❄

✛

q0 q1 q2

q3 q4

q5

q6 q7

q8ha

∆/∆,R ∆/S,S

S/a,R

∆/B,R

∆/S,L

a/B,R B/a,L

B/a,R a/B,L

∆/∆,L

∆/∆,S

❯

S/∆,L

✒

B/b,L

❑

∆/∆,R

✓✏S/S,R

❄

B/B,R

b/b,R
a/a,R

✒✑
✻a/a,L

b/b,L
B/B,L

S/S,L

✏
✑✛

a/a,L
b/b,L
B/B,L

S/S,L

19

8.4. Context-Sensitive Languages
and the Chomsky Hierarchy

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar

20

Definition 8.16. Context-Sensitive Grammars

A context-sensitive grammar (CSG) is an unrestricted grammar

in which no production is length-decreasing.

In other words, every production is of the form α → β, where

|β| ≥ |α|.

A language is a context-sensitive language (CSL) if it can be

generated by a context-sensitive grammar.

21

Example 8.12. A Grammar Generating {anbncn | n ≥ 1}

S → SABC | LABC

BA → AB CB → BC CA → AC

LA → a aA → aa aB → ab bB → bb bC → bc cC → cc

Not context-sensitive.

22

Example 8.17. A CSG Generating L = {anbncn | n ≥ 1}

S → SABC | ABC

BA → AB CB → BC CA → AC

A → a aA → aa aB → ab bB → bb bC → bc cC → cc

23

Example.

An Unrestricted Grammar Generating XX = {xx | x ∈ {a, b}∗}

S → aAS | bBS | M

Aa → aA Ab → bA Ba → aB Bb → bB

AM → Ma BM → Mb M → Λ

Not context-sensitive.

24

Exercise 8.24.

Find a context-sensitive grammar generating the language

XX − {Λ} = {xx | x ∈ {a, b}∗ and x 6= Λ}

25

Programming languages

26

Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T

with L(T) = L(G).

Proof.

1. Move past input

2. Simulate derivation in G on the tape of a Turing machine

3. Equal

27

Definition 8.18. Linear-Bounded Automata

A linear-bounded automaton (LBA) is a 5-tuple M = (Q,Σ,Γ, q0, δ)

that is identical to a nondeterministic Turing machine, with the

following exception.

There are two extra tape symbols [and], assumed not to be

elements of the tape alphabet Γ.

The initial configuration of M corresponding to input x is q0[x],

with the symbol [in the leftmost square and the symbol] in the

first square to the right of x.

During its computation, M is not permitted to replace either of

these brackets or to move its tape head to the left of the [or to

the right of the].

28

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof. . .

29

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13, except

• two tape tracks instead of move past input

• reject also if we (want to) write on]

30

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof.

1. Create second tape track

2. Simulate derivation in G on track 2

3. Equal

31

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof.

1. Create second tape track

2. Simulate derivation in G on track 2:

Write S on track 2

Repeat

a. Select production α → β

b. Select occurrence of α on track 2 (if there is one)

c. Try to replace occurrence of α by β

until b. fails (caused by . . .)

or c. fails (caused by . . .); then reject

3. Equal

32

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13, except

• two tape tracks instead of move past input

• reject also if we (want to) write on]

Alternative proof.

Simulate derivation of string x from S in reverse order

c.f., bottom-up parsing

Then one tape track is sufficient

33

Just an observation

Every context-sensitive language is recursively enumerable

34

A slide from lecture 5

Theorem 8.2.

Every recursive language is recursively enumerable.

Proof. . .

35

Theorem 8.22. Every context-sensitive language L is recursive.

Proof. . .

36

Theorem 8.22. Every context-sensitive language L is recursive.

Proof.

Let CSG G generate L
Let LBA M accept strings generated by G (as in Theorem 8.19)

Simulate M by NTM T , which
• inserts markers [and]
• also has two tape tracks
• maintains list of (different) strings generated so far

a. Select production α → β
b. Select occurrence of α on track 2 (if there is one)
c. Try to replace occurrence of α by β
d. Compare new string to strings to the right of]
until b. fails (caused by . . .); then Equal
or c. fails (caused by . . .); then reject
or d. finds match; then reject

37

A slide from lecture 5

Corollary.

If L is accepted by a nondeterministic TM T , and if there is no

input string on which T can possibly loop forever,

then L is recursive.

Proof. . .

38

