Fundamentele Informatica 3

najaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 3, 20 september 2016

- 7. Turing Machines
- 7.4. Combining Turing Machines
- 7.5. Multitape Turing Machines

7.4. Combining Turing Machines

Example.

A TM for
$$f(x) = a^{n_a(x)}$$

x = aababba

Example.

A TM for
$$f(x) = a^{n_a(x)}$$

$$x = aababba$$

Example 7.20. Inserting and Deleting a Symbol

Delete: from $y\underline{\sigma}z$ to $y\underline{z}$

Insert(σ): from $y\underline{z}$ to $y\underline{\sigma}z$

N.B.: z does not contain blanks

TM T_1 computes f

TM T_2 computes g

TM T_1T_2 computes . . .

$$T_1 \longrightarrow T_2$$

Example 7.17. Finding the Next Blank or the Previous Blank

NB

PB

Example 7.18. Copying a String

Copy: from Δx to $\Delta x \Delta x$

x = abaa

A slide from lecture 2

Example 7.10. The Reverse of a String

Example 7.24. Comparing Two Strings

Equal: accept $\Delta x \Delta y$ if x = y, and reject if $x \neq y$

Exercise 7.17.

For each case below, draw a TM that computes the indicated function.

e. $E: \{a,b\}^* \times \{a,b\}^* \to \{0,1\}$ defined by E(x,y) = 1 if x = y, E(x,y) = 0 otherwise.

Example 7.25. Accepting the Language of . . .

$$Copy
ightarrow NB
ightarrow R
ightarrow PB
ightarrow Equal$$

Example 7.25. Accepting the Language of Palindromes

Example 7.21. Erasing the Tape

From the current position to the right

Many notations for composition

7.5. Multitape Turing Machines

Example 5.3. A PDA Accepting the Language *AnBn*

$$AnBn = \{a^ib^i \mid i \ge 0\}$$

Exercise 7.4.

For each of the following languages, draw a transition diagram for a Turing machine that accepts that language.

a.
$$AnBn = \{a^ib^i \mid i \ge 0\}$$

With two tapes...

Exercise 7.4.

For each of the following languages, draw a transition diagram for a Turing machine that accepts that language.

a.
$$AnBn = \{a^ib^i \mid i \ge 0\}$$

With two tapes...

Exercise 7.4.

For each of the following languages, draw a transition diagram for a Turing machine that accepts that language.

a.
$$AnBn = \{a^ib^i \mid i \ge 0\}$$

We could also use the portion of the tape to the right of the input, to simulate the stack of a deterministic pushdown automaton (works for any deterministic PDA!)

Example 7.24. Comparing Two Strings

Equal: accept $\Delta x \Delta y$ if x = y, and reject if $x \neq y$

2-tape TM...

A slide from lecture 2

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T = (Q, \Sigma, \Gamma, q_0, \delta)$, where

Q is a finite set of states. The two *halt* states h_a and h_r are not elements of Q.

 Σ , the input alphabet, and Γ , the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$. The *blank* symbol Δ is not an element of Γ .

 q_0 , the initial state, is an element of Q.

 δ is the transition function:

$$\delta: Q \times (\Gamma \cup \{\Delta\}) \rightarrow (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\}$$

2-Tape TM $T = (Q, \Sigma, \Gamma, q_0, \delta)$, where

$$\delta: Q \times (\Gamma \cup \{\Delta\})^2 \to (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\})^2 \times \{R, L, S\}^2$$

Combination of two slides from lecture 2

Notation:

description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$

configuration $xqy = xqy\Delta = xqy\Delta\Delta$

initial configuration corresponding to input x: $q_0 \Delta x$

In the third edition of the book, a configuration is denoted as $(q, x\underline{y})$ or $(q, x\underline{\sigma}y)$ instead of xqy or $xq\sigma y$. In one case, we still use this old notation. Configuration of 2-tape TM is

$$(q, x_1\underline{a_1}y_1, x_2\underline{a_2}y_2)$$

Initial configuration corresponding to input string x is

$$(q_0, \underline{\Delta}x, \underline{\Delta})$$

Output will appear on first tape.

Theorem 7.26.

For every 2-tape TM $T=(Q,\Sigma,\Gamma,q_0,\delta)$, there is an ordinary 1-tape TM $T_1=(Q_1,\Sigma,\Gamma_1,q_1,\delta_1)$ with $\Gamma\subseteq\Gamma_1$, such that

- 1. For every $x \in \Sigma^*$, T accepts x if and only if T_1 accepts x, and T rejects x if and only if T_1 rejects x. (In particular, $L(T) = L(T_1)$.)
- 2. For every $x \in \Sigma^*$, if

$$(q_0, \underline{\Delta}x, \underline{\Delta}) \vdash_T^* (h_a, y\underline{a}z, u\underline{b}v)$$

for some strings $y, z, u, v \in (\Gamma \cup \{\Delta\})^*$ and symbols $a, b \in \Gamma \cup \{\Delta\}$, then

$$q_1 \Delta x \vdash_{T_1}^* y h_a az$$
 i.e., $(q_1, \underline{\Delta} x) \vdash_{T_1}^* (h_a, y\underline{a}z)$

Proof...

Simulating two tapes on one

Δ	1	Δ	0	1	Δ	
0	1	0	<u>O</u>	Δ	Δ	

If
$$\delta(p, 1, 0) = (q, \Delta, 1, L, R)$$
...

Simulating two tape heads

1. Move left to \$, right to σ' , back to \$

- 1. Move left to \$, right to σ' , back to \$
- 2. Move right to τ' Let $\delta(p, \sigma, \tau) = (q, \sigma_1, \tau_1, D_1, D_2)$ If $q = h_r$, reject Otherwise, $\tau' \to \tau_1$ and move D_2

- 1. Move left to \$, right to σ' , back to \$
- 2. Move right to τ' Let $\delta(p, \sigma, \tau) = (q, \sigma_1, \tau_1, D_1, D_2)$ If $q = h_r$, reject Otherwise, $\tau' \to \tau_1$ and move D_2
- 3. If \$, reject
 Otherwise, (if #, move #) place ' and back to \$

- 1. Move left to \$, right to σ' , back to \$
- 2. Move right to τ' Let $\delta(p, \sigma, \tau) = (q, \sigma_1, \tau_1, D_1, D_2)$ If $q = h_r$, reject Otherwise, $\tau' \to \tau_1$ and move D_2
- 3. If \$, reject
 Otherwise, (if #, move #) place ' and back to \$
- 4. Move right to σ' , $\sigma' \to \sigma_1$ and move D_1

- 1. Move left to \$, right to σ' , back to \$
- 2. Move right to τ' Let $\delta(p, \sigma, \tau) = (q, \sigma_1, \tau_1, D_1, D_2)$ If $q = h_r$, reject Otherwise, $\tau' \to \tau_1$ and move D_2
- 3. If \$, reject
 Otherwise, (if #, move #) place ' and back to \$
- 4. Move right to σ' , $\sigma' \to \sigma_1$ and move D_1
- 5. If \$, rejectOtherwise, (if #, move #) place '

If T accepts, then...

6. Delete second track

If T accepts, then...

- 6. Delete second track
- 7. Delete \$ and #

If T accepts, then...

- 6. Delete second track
- 7. Delete \$ and #
- 8. Find σ' , unprime, halt in h_a

Corollary 7.27.

Every language that is accepted by a 2-tape TM can be accepted by an ordinary 1-tape TM,

and every function that is computed by a 2-tape TM can be computed by an ordinary TM.

This generalizes to k-tape TMs for $k \geq 3$.