Fundamentele Informatica 3

najaar 2016
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/
Rudy van Vliet
kamer 143 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 14, 6 december 2016
10. Computable Functions
10.2. Quantification, Minimalization, and μ-Recursive Functions
10.3. Gödel Numbering

A slide from lecture 13

Definition 10.9. Bounded Quantifications

Let P be an $(n+1)$-place predicate. The bounded existential quantification of P is the $(n+1)$-place predicate E_{P} defined by $E_{P}(X, k)=($ there exists y with $0 \leq y \leq k$ such that $P(X, y)$ is true)
The bounded universal quantification of P is the $(n+1)$-place predicate A_{P} defined by

$$
A_{P}(X, k)=(\text { for every } y \text { satifying } 0 \leq y \leq k, P(X, y) \text { is true })
$$

A slide from lecture 13

Theorem 10.10.

If P is a primitive recursive $(n+1)$-place predicate, both the predicates E_{P} and A_{P} are also primitive recursive.

Proof. . .

A slide from lecture 13

Definition 10.11. Bounded Minimalization
For an $(n+1)$-place predicate P, the bounded minimalization of P is the function $m_{P}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by
$m_{P}(X, k)= \begin{cases}\min \{y \mid 0 \leq y \leq k \text { and } P(X, y)\} & \text { if this set is not empty } \\ k+1 & \text { otherwise }\end{cases}$
The symbol μ is often used for the minimalization operator, and we sometimes write

$$
m_{P}(X, k)=\stackrel{k}{\mu} y[P(X, y)]
$$

An important special case is that in which $P(X, y)$ is $(f(X, y)=0)$, for some $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$. In this case m_{P} is written m_{f} and referred to as the bounded minimalization of f.

A slide from lecture 13

Theorem 10.12.

If P is a primitive recursive $(n+1)$-place predicate, its bounded minimalization m_{P} is a primitive recursive function.

Proof. . .

Example 10.13. The nth Prime Number

$$
\begin{aligned}
& \operatorname{PrNo}(0)=2 \\
& \operatorname{PrNo}(1)=3 \\
& \operatorname{PrNo}(2)=5
\end{aligned}
$$

Example 10.13. The nth Prime Number

$$
\begin{aligned}
& \operatorname{PrNo}(0)=2 \\
& \operatorname{PrNo}(1)=3 \\
& \operatorname{PrNo}(2)=5
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Prime}(n)=(n \geq 2) \wedge \neg(\text { there exists } y \text { such that } \\
& y \geq 2 \wedge y \leq n-1 \wedge \operatorname{Mod}(n, y)=0)
\end{aligned}
$$

Example 10.13. The nth Prime Number
Let

$$
P(x, y)=(y>x \wedge \operatorname{Prime}(y))
$$

Then $m_{P}(x, k) \ldots$ and

$$
\begin{aligned}
\operatorname{PrNo}(0) & =2 \\
\operatorname{PrNo}(k+1) & =\ldots
\end{aligned}
$$

Example 10.13. The nth Prime Number

Let

$$
P(x, y)=(y>x \wedge \text { Prime }(y))
$$

Then $m_{P}(x, k) \ldots$ and

$$
\begin{aligned}
\operatorname{PrNo}(0) & =2 \\
\operatorname{PrNo}(k+1) & =m_{P}(\operatorname{PrNo}(k),(\operatorname{PrNo}(k))!+1)
\end{aligned}
$$

is primitive recursive, with $h\left(x_{1}, x_{2}\right)=\ldots$

A slide from lecture 9

Application:

```
\(\mathrm{n}=4\);
while ( n is the sum of two primes)
    \(\mathrm{n}=\mathrm{n}+2\);
```

This program loops forever, if and only if Goldbach's conjecture is true.

Exercise 10.19.

Show that each of the following functions is primitive recursive.
b. $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $f(x, y)=\min \{x, y\}$
c. $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=\lfloor\sqrt{x}\rfloor$
(the largest natural number less than or equal to \sqrt{x})
d. $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=\left\lfloor\log _{2}(x+1)\right\rfloor$

Exercise 10.23.

In addition to the bounded minimalization of a predicate, we might define the bounded maximalization of a predicate P to be the function m^{P} defined by
$m^{P}(X, k)= \begin{cases}\max \{y \leq k \mid P(x, y) \text { is true }\} & \text { if this set is not empty } \\ 0 & \text { otherwise }\end{cases}$
a. Show m^{P} is primitive recursive by finding two primitive recursive functions from which it can be obtained by primitive recursion.
b. Show m^{P} is primitive recursive by using bounded minimalization.

A slide from lecture 12

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:
total and computable

Turing-computable functions: not necessarily total

Unbounded minimalization

Total?

Unbounded minimalization

Total?

A possible definition:
$M(X)=\left\{\begin{array}{cl}(\min \{y \mid P(X, y) \text { is true }\})+1 & \text { if this set is not empty } \\ 0 & \text { otherwise }\end{array}\right.$

Computable?

A slide from lecture 13
(Un)bounded quantification
$H(x, y)=T_{u}$ halts after exactly y moves on input s_{x}
Halts $(x)=$ there exists y such that
T_{u} halts after exactly y moves on input s_{x}

Definition 10.14. Unbounded Minimalization

If P is an $(n+1)$-place predicate, the unbounded minimalization of P is the partial function $M_{P}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{P}(X)=\min \{y \mid P(X, y) \text { is true }\}
$$

$M_{P}(X)$ is undefined at any $X \in \mathbb{N}^{n}$ for which there is no y satisfying $P(X, y)$.

Definition 10.14. Unbounded Minimalization

If P is an $(n+1)$-place predicate, the unbounded minimalization of P is the partial function $M_{P}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{P}(X)=\min \{y \mid P(X, y) \text { is true }\}
$$

$M_{P}(X)$ is undefined at any $X \in \mathbb{N}^{n}$ for which there is no y satisfying $P(X, y)$.

The notation $\mu y[P(X, y)]$ is also used for $M_{P}(X)$.
In the special case in which $P(X, y)=(f(X, y)=0)$, we write $M_{P}=M_{f}$ and refer to this function as the unbounded minimalization of f.

Exercise 10.30.

Show that the unbounded minimalization of any predicate can be written in the form $\mu y[f(X, y)=0$], for some function f.

Definition 10.15. μ-Recursive Functions
The set \mathcal{M} of μ-recursive, or simply recursive, partial functions is defined as follows.

1. Every initial function is an element of \mathcal{M}.
2. Every function obtained from elements of \mathcal{M} by composition or primitive recursion is an element of \mathcal{M}.
3. For every $n \geq 0$ and every total function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in \mathcal{M}, the function $M_{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{f}(X)=\mu y[f(X, y)=0]
$$

is an element of \mathcal{M}.

In particular, f may be any primitive recursive function.

Example.

Let

$$
f(x, y)=p_{1}^{2}(x, y)-C_{1}^{2}(x, y)
$$

$M_{f}(x) \ldots$

Structure tree M_{f} :

Not total

Exercise.

a. Give an example of a non-total function f and another function g, such that the composition of f and g is total.
b. Can you also find an example of a non-total function f and another function g, such that the composition of g and f is total?

Structure tree $M_{f}(x \% 2)$:

Total

Theorem 10.16.

All μ-recursive partial functions are computable.

Proof. . .

10.3. Gödel Numbering

Definition 10.17.

The Gödel Number of a Sequence of Natural Numbers

For every $n \geq 1$ and every finite sequence $x_{0}, x_{1}, \ldots, x_{n-1}$ of n natural numbers, the Gödel number of the sequence is the number
where $\operatorname{PrNo}(i)$ is the i th prime (Example 10.13).

Exercise 10.16.

Show that for any $n \geq 1$, the functions Add_{n} and Mult $_{n}$ from \mathbb{N}^{n} to \mathbb{N}, defined by

$$
\begin{aligned}
\operatorname{Add}_{n}\left(x_{1}, \ldots, x_{n}\right) & =x_{1}+x_{2}+\cdots+x_{n} \\
\operatorname{Mult}_{n}\left(x_{1}, \ldots, x_{n}\right) & =x_{1} * x_{2} * \cdots * x_{n}
\end{aligned}
$$

respectively, are both primitive recursive.

Example 10.18.

The Power to Which a Prime is Raised in the Factorization of x
Function Exponent: $\mathbb{N}^{2} \rightarrow \mathbb{N}$ defined as follows:
Exponent $(i, x)= \begin{cases}\text { the exp. of } \operatorname{PrNo}(i) \text { in } x \text { 's prime fact. } & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$

