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10.3. Gödel Numbering
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A slide from lecture 13

Definition 10.9. Bounded Quantifications

Let P be an (n + 1)-place predicate. The bounded existential

quantification of P is the (n+1)-place predicate EP defined by

EP (X, k) = (there exists y with 0 ≤ y ≤ k such that P (X, y) is true)

The bounded universal quantification of P is the (n + 1)-place

predicate AP defined by

AP (X, k) = (for every y satifying 0 ≤ y ≤ k, P (X, y) is true)
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A slide from lecture 13

Theorem 10.10.

If P is a primitive recursive (n+1)-place predicate,

both the predicates EP and AP are also primitive recursive.

Proof. . .
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A slide from lecture 13

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mP : Nn+1 → N defined by

mP (X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise

The symbol µ is often used for the minimalization operator, and

we sometimes write

mP (X, k) =
k
µ y[P (X, y)]

An important special case is that in which P (X, y) is (f(X, y) = 0),

for some f : Nn+1 → N. In this case mP is written mf and referred

to as the bounded minimalization of f .
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A slide from lecture 13

Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate,

its bounded minimalization mP is a primitive recursive function.

Proof. . .
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Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5

6



Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5

Prime(n) = (n ≥ 2) ∧ ¬(there exists y such that

y ≥ 2 ∧ y ≤ n− 1 ∧Mod(n, y) = 0)
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Example 10.13. The nth Prime Number

Let

P (x, y) = (y > x ∧ Prime(y))

Then mP (x, k) . . .

and

PrNo(0) = 2

PrNo(k +1) = . . .
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Example 10.13. The nth Prime Number

Let

P (x, y) = (y > x ∧ Prime(y))

Then mP (x, k) . . .

and

PrNo(0) = 2

PrNo(k +1) = mP (PrNo(k), (PrNo(k))! + 1)

is primitive recursive, with h(x1, x2) = . . .
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A slide from lecture 9

Application:

n = 4;

while (n is the sum of two primes)

n = n+2;

This program loops forever, if and only if Goldbach’s conjecture

is true.
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Exercise 10.19.

Show that each of the following functions is primitive recursive.

b. f : N2 → N defined by f(x, y) = min{x, y}

c. f : N → N defined by f(x) = ⌊√x⌋
(the largest natural number less than or equal to

√
x)

d. f : N → N defined by f(x) = ⌊log2(x+1)⌋
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Exercise 10.23.

In addition to the bounded minimalization of a predicate,

we might define the bounded maximalization of a predicate P to

be the function mP defined by

mP (X, k) =

{

max{y ≤ k | P (x, y) is true} if this set is not empty
0 otherwise

a. Show mP is primitive recursive by finding two primitive re-

cursive functions from which it can be obtained by primitive

recursion.

b. Show mP is primitive recursive by using bounded minimaliza-

tion.
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A slide from lecture 12

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total
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Unbounded minimalization

Total?
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Unbounded minimalization

Total?

A possible definition:

M(X) =

{

(min{y | P (X, y) is true}) + 1 if this set is not empty
0 otherwise

Computable?
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A slide from lecture 13

(Un)bounded quantification

H(x, y) = Tu halts after exactly y moves on input sx

Halts(x) = there exists y such that

Tu halts after exactly y moves on input sx
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Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization

of P is the partial function MP : Nn → N defined by

MP (X) = min{y | P (X, y) is true}

MP (X) is undefined at any X ∈ N
n for which there is no y satis-

fying P (X, y).
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Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization

of P is the partial function MP : Nn → N defined by

MP (X) = min{y | P (X, y) is true}

MP (X) is undefined at any X ∈ N
n for which there is no y satis-

fying P (X, y).

The notation µ y[P (X, y)] is also used for MP (X).

In the special case in which P (X, y) = (f(X, y) = 0), we write

MP = Mf and refer to this function as the unbounded minimal-

ization of f .

18



Exercise 10.30.

Show that the unbounded minimalization of any predicate can

be written in the form µ y[f(X, y) = 0], for some function f .
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Definition 10.15. µ-Recursive Functions

The set M of µ-recursive, or simply recursive, partial functions
is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition
or primitive recursion is an element of M.

3. For every n ≥ 0 and every total function f : Nn+1 → N in M,
the function Mf : Nn → N defined by

Mf(X) = µ y[f(X, y) = 0]

is an element of M.

In particular, f may be any primitive recursive function.
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Example.

Let

f(x, y) = p21(x, y)
.
− C2

1(x, y)

Mf(x) . . .
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Exercise.

a. Give an example of a non-total function f and another func-

tion g, such that the composition of f and g is total.

b. Can you also find an example of a non-total function f and

another function g, such that the composition of g and f is total?
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Structure tree Mf(x%2):
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Theorem 10.16.

All µ-recursive partial functions are computable.

Proof. . .
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10.3. Gödel Numbering
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Definition 10.17.

The Gödel Number of a Sequence of Natural Numbers

For every n ≥ 1 and every finite sequence x0, x1, . . . , xn−1 of

n natural numbers, the Gödel number of the sequence is the

number

gn(x0, x1, . . . , xn−1) = 2x03x15x2 . . . (PrNo(n− 1))xn−1

where PrNo(i) is the ith prime (Example 10.13).
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Exercise 10.16.

Show that for any n ≥ 1, the functions Addn and Multn from N
n

to N, defined by

Addn(x1, . . . , xn) = x1 + x2 + · · ·+ xn

Multn(x1, . . . , xn) = x1 ∗ x2 ∗ · · · ∗ xn

respectively, are both primitive recursive.
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Example 10.18.

The Power to Which a Prime is Raised in the Factorization of x

Function Exponent : N2 → N defined as follows:

Exponent(i, x) =

{

the exp. of PrNo(i) in x’s prime fact. if x > 0
0 if x = 0

29


