
Fundamentele Informatica 3

najaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 143 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 13, 29 november 2016

10. Computable Functions

10.1. Primitive Recursive Functions

10.2. Quantification, Minimalization, and µ-Recursive

Functions

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/


Huiswerkopgave 3,
inleverdatum vrijdag 2 december 2016,
13:45 uur

2



A slide from lecture 12

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k ≥ 0 and each a ≥ 0, the
constant function Ck

a : Nk → N is defined by the formula

Ck
a(X) = a for every X ∈ N

k

2. The successor function s : N → N is defined by the formula

s(x) = x+1

3. Projection functions: For each k ≥ 1 and each i with 1 ≤
i ≤ k, the projection function pki : Nk → N is defined by the
formula

pki (x1, x2, . . . , xk) = xi

3



A slide from lecture 12

Definition 10.2. The Operations of Composition and Primitive

Recursion

1. Suppose f is a partial function from N
k to N, and for each i

with 1 ≤ i ≤ k, gi is a partial function from N
m to N.

The partial function obtained from f and g1, g2, . . . , gk by

composition is the partial function h from N
m to N defined

by the formula

h(X) = f(g1(X), g2(X), . . . , gk(X)) for every X ∈ N
m

4



A slide from lecture 12

Definition 10.2. The Operations of Composition and Primitive

Recursion (continued)

2. Suppose n ≥ 0 and g and h are functions of n and n + 2

variables, respectively. (By “a function of 0 variables,” we

mean simply a constant.)

The function obtained from g and h by the operation of

primitive recursion is the function f : Nn+1 → N defined by

the formulas

f(X,0) = g(X)

f(X, k +1) = h(X, k, f(X, k))

for every X ∈ N
n and every k ≥ 0.

5



A slide from lecture 12

n-place predicate P is function from N
n to {true, false}

characteristic function χP defined by

χP (X) =

{

1 if P (X) is true
0 if P (X) is false

We say P is primitive recursive. . .

6



Theorem 10.6.

The two-place predicates LT , EQ, GT , LE , GE , and NE are

primitive recursive.

(LT stands for “less than,” and the other five have similarly

intuitive abbreviations.)

If P and Q are any primitive recursive n-place predicates, then

P ∧Q, P ∨Q and ¬P are primitive recursive.

Proof. . .

7



Structure tree χEQ. . .

✁
✁✁

❆
❆
❆

p.r.

C0
0 C2

1

Sg

8



Structure tree χEQ:

✟✟✟✟✟✟✟✟

❛❛❛❛❛❛❛❛❛

✦✦✦✦✦✦✦✦✦✦

❆
❆
❆❆

�
�

��

❅
❅
❅❅

✑
✑

✑
✑

✑✑

❅
❅

❅❅

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵

✁
✁
✁

❆
❆
❆

◗
◗
◗

◗
◗◗

Sub C2
1

Add comp

Sg Sub Sg comp

Sub p22 p21

comp

comp

comp

9



Structure tree χEQ:

✟✟✟✟✟✟✟✟

❛❛❛❛❛❛❛❛❛

✦✦✦✦✦✦✦✦✦✦

❆
❆
❆❆

�
�

��

❅
❅
❅❅

✑
✑

✑
✑

✑✑

❅
❅

❅❅

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵

✁
✁
✁

❆
❆
❆

◗
◗
◗

◗
◗◗

C2
1

comp

comp

p22 p21

comp

comp

comp

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁✁

❆
❆
❆

p.r.

p11 comp

p.r. p33

C0
0 p21

Sub

Pred

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

p.r.

p11 comp

s p33

Add

✁
✁✁

❆
❆
❆

p.r.

C0
0 C2

1

Sg
✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁✁

❆
❆
❆

p.r.

p11 comp

p.r. p33

C0
0 p21

Sub

Pred

✁
✁✁

❆
❆
❆

p.r.

C0
0 C2

1

Sg

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁✁

❆
❆
❆

p.r.

p11 comp

p.r. p33

C0
0 p21

Sub

Pred

10



Exercise.

Let f : Nn+1 → N be a primitive recursive function.

Show that the predicate P : Nn+1 → {true, false} defined by

P (X, y) = (f(X, y) = 0)

is primitive recursive.

11



Let P be n-place predicate,

f1, f2, . . . , fn : Nk → N

Then Q = P (f1, f2, . . . , fn) is k-place predicate, with

χQ = χP (f1, f2, . . . , fn)

Primitive recursiveness. . .

12



Let P be n-place predicate,

f1, f2, . . . , fn : Nk → N

then Q = P (f1, f2, . . . , fn) is k-place predicate,

χQ = χP (f1, f2, . . . , fn)

Primitive recursiveness. . .

Example.

(f1 = (3f2)
2 ∧ (f3 < f4 + f5)) ∨ ¬(P ∨Q)

13



Theorem 10.7.

Suppose f1, f2, . . . , fk are primitive recursive functions from N
n

to N,

P1, P2, . . . , Pk are primitive recursive n-place predicates,

and for every X ∈ N
n,

exactly one of the conditions P1(X), P2(X), . . . , Pk(X) is true.

Then the function f : Nn → N defined by

f(X) =



















f1(X) if P1(X) is true
f2(X) if P2(X) is true
. . .

fk(X) if Pk(X) is true

is primitive recursive.

Proof. . .

14



Example 10.8. The Mod and Div Functions

15



10.2. Quantification, Minimalization, and
µ-Recursive Functions

16



A slide from lecture 12

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total

17



(Un)bounded quantification

Sq(x, y) = (y2 = x)

PerfectSquare(x) = there exists y such that y2 = x

18



(Un)bounded quantification

Sq(x, y) = (y2 = x)

PerfectSquare(x) = there exists y such that y2 = x

ESq(x, k) = there exists y ≤ k such that y2 = x

19



(Un)bounded quantification

H(x, y) = Tu halts after exactly y moves on input sx

20



(Un)bounded quantification

H(x, y) = Tu halts after exactly y moves on input sx

Halts(x) = there exists y such that

Tu halts after exactly y moves on input sx

21



(Un)bounded quantification

H(x, y) = Tu halts after exactly y moves on input sx

Halts(x) = there exists y such that

Tu halts after exactly y moves on input sx

EH(x, k) = there exists y ≤ k such that

Tu halts after exactly y moves on input sx

22



Definition 10.9. Bounded Quantifications

Let P be an (n + 1)-place predicate. The bounded existential

quantification of P is the (n+1)-place predicate EP defined by

EP (X, k) = (there exists y with 0 ≤ y ≤ k such that P (X, y) is true)

The bounded universal quantification of P is the (n + 1)-place

predicate AP defined by

AP (X, k) = (for every y satifying 0 ≤ y ≤ k, P (X, y) is true)

23



Theorem 10.10.

If P is a primitive recursive (n+1)-place predicate,

both the predicates EP and AP are also primitive recursive.

Proof. . .

24



A slide from lecture 12

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total

25



Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mP : Nn+1 → N defined by

mP (X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise

26



Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mP : Nn+1 → N defined by

mP (X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise

The symbol µ is often used for the minimalization operator, and

we sometimes write

mP (X, k) =
k
µ y[P (X, y)]

An important special case is that in which P (X, y) is (f(X, y) = 0),

for some f : Nn+1 → N. In this case mP is written mf and referred

to as the bounded minimalization of f .

27



Exercise.

Let f : Nn+1 → N be a primitive recursive function.

Show that the predicate P : Nn+1 → {true, false} defined by

P (X, y) = (f(X, y) = 0)

is primitive recursive.

28



Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate,

its bounded minimalization mP is a primitive recursive function.

Proof. . .

29



h(X, y, z) =











z if z ≤ y

y +1 if z ≥ y +1 ∧ P (X, y +1) is true
y +2 if z ≥ y +1 ∧ ¬P (X, y +1) is true

h(X, y, z) =











z if EP (X, y) is true
y +1 if ¬EP (X, y) ∧ P (X, y +1) is true
y +2 if ¬EP (X, y) ∧ ¬P (X, y +1) is true

30


