Fundamentele Informatica 3

najaar 2016
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 143 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 13, 29 november 2016
10. Computable Functions
10.1. Primitive Recursive Functions
10.2. Quantification, Minimalization, and μ-Recursive Functions

Huiswerkopgave 3, inleverdatum vrijdag 2 december 2016, 13:45 uur

A slide from lecture 12

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

2. The successor function $s: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the formula

$$
s(x)=x+1
$$

3. Projection functions: For each $k \geq 1$ and each i with $1 \leq$ $i \leq k$, the projection function $p_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
p_{i}^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{i}
$$

A slide from lecture 12

Definition 10.2. The Operations of Composition and Primitive Recursion

1. Suppose f is a partial function from \mathbb{N}^{k} to \mathbb{N}, and for each i with $1 \leq i \leq k, g_{i}$ is a partial function from \mathbb{N}^{m} to \mathbb{N}. The partial function obtained from f and $g_{1}, g_{2}, \ldots, g_{k}$ by composition is the partial function h from \mathbb{N}^{m} to \mathbb{N} defined by the formula

$$
h(X)=f\left(g_{1}(X), g_{2}(X), \ldots, g_{k}(X)\right) \text { for every } X \in \mathbb{N}^{m}
$$

A slide from lecture 12

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)
2. Suppose $n \geq 0$ and g and h are functions of n and $n+2$ variables, respectively. (By "a function of 0 variables," we mean simply a constant.)
The function obtained from g and h by the operation of primitive recursion is the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by the formulas

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, f(X, k))
\end{aligned}
$$

for every $X \in \mathbb{N}^{n}$ and every $k \geq 0$.

A slide from lecture 12
n-place predicate P is function from \mathbb{N}^{n} to \{true, false\}
characteristic function χ_{P} defined by

$$
\chi_{P}(X)= \begin{cases}1 & \text { if } P(X) \text { is true } \\ 0 & \text { if } P(X) \text { is false }\end{cases}
$$

We say P is primitive recursive...

Theorem 10.6.

The two-place predicates $L T, E Q, G T, L E, G E$, and $N E$ are primitive recursive.
(LT stands for "less than," and the other five have similarly intuitive abbreviations.)
If P and Q are any primitive recursive n-place predicates, then $P \wedge Q, P \vee Q$ and $\neg P$ are primitive recursive.

Proof. . .

Structure tree $\chi_{E Q} .$.

$$
\begin{gathered}
\substack{\text { p.r. Sg } \\
C_{0}^{0} \\
C_{1}^{2}}
\end{gathered}
$$

Structure tree $\chi_{E Q}$:

Structure tree $\chi_{E Q}$:

Exercise.

Let $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ be a primitive recursive function.
Show that the predicate $P: \mathbb{N}^{n+1} \rightarrow\{$ true, false $\}$ defined by

$$
P(X, y)=(f(X, y)=0)
$$

is primitive recursive.

Let P be n-place predicate, $f_{1}, f_{2}, \ldots, f_{n}: \mathbb{N}^{k} \rightarrow \mathbb{N}$
Then $Q=P\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is k-place predicate, with

$$
\chi_{Q}=\chi_{P}\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

Primitive recursiveness...

Let P be n-place predicate, $f_{1}, f_{2}, \ldots, f_{n}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ then $Q=P\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is k-place predicate,

$$
\chi_{Q}=\chi_{P}\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

Primitive recursiveness...

Example.

$$
\left(f_{1}=\left(3 f_{2}\right)^{2} \wedge\left(f_{3}<f_{4}+f_{5}\right)\right) \vee \neg(P \vee Q)
$$

Theorem 10.7.

Suppose $f_{1}, f_{2}, \ldots, f_{k}$ are primitive recursive functions from \mathbb{N}^{n} to \mathbb{N},
$P_{1}, P_{2}, \ldots, P_{k}$ are primitive recursive n-place predicates, and for every $X \in \mathbb{N}^{n}$,
exactly one of the conditions $P_{1}(X), P_{2}(X), \ldots, P_{k}(X)$ is true.
Then the function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
f(X)=\left\{\begin{array}{cc}
f_{1}(X) & \text { if } P_{1}(X) \text { is true } \\
f_{2}(X) & \text { if } P_{2}(X) \text { is true } \\
\ldots & \text { if } P_{k}(X) \text { is true }
\end{array}\right.
$$

is primitive recursive.

Proof. . .

Example 10.8. The Mod and Div Functions
10.2. Quantification, Minimalization, and μ-Recursive Functions

A slide from lecture 12

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:
total and computable

Turing-computable functions: not necessarily total

(Un)bounded quantification

$\operatorname{Sq}(x, y)=\left(y^{2}=x\right)$
PerfectSquare $(x)=$ there exists y such that $y^{2}=x$
(Un)bounded quantification
$\operatorname{Sq}(x, y)=\left(y^{2}=x\right)$

PerfectSquare $(x)=$ there exists y such that $y^{2}=x$
$E_{S q}(x, k)=$ there exists $y \leq k$ such that $y^{2}=x$

(Un)bounded quantification

$H(x, y)=T_{u}$ halts after exactly y moves on input s_{x}
(Un)bounded quantification
$H(x, y)=T_{u}$ halts after exactly y moves on input s_{x}
Halts $(x)=$ there exists y such that
T_{u} halts after exactly y moves on input s_{x}

(Un)bounded quantification

$H(x, y)=T_{u}$ halts after exactly y moves on input s_{x}

Halts $(x)=$ there exists y such that
T_{u} halts after exactly y moves on input s_{x}
$E_{H}(x, k)=$ there exists $y \leq k$ such that
T_{u} halts after exactly y moves on input s_{x}

Definition 10.9. Bounded Quantifications

Let P be an $(n+1)$-place predicate. The bounded existential quantification of P is the $(n+1)$-place predicate E_{P} defined by $E_{P}(X, k)=$ (there exists y with $0 \leq y \leq k$ such that $P(X, y)$ is true) The bounded universal quantification of P is the $(n+1)$-place predicate A_{P} defined by

$$
A_{P}(X, k)=(\text { for every } y \text { satifying } 0 \leq y \leq k, P(X, y) \text { is true })
$$

Theorem 10.10.

If P is a primitive recursive $(n+1)$-place predicate, both the predicates E_{P} and A_{P} are also primitive recursive.

Proof. . .

A slide from lecture 12

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:
total and computable

Turing-computable functions: not necessarily total

Definition 10.11. Bounded Minimalization

For an ($n+1$)-place predicate P, the bounded minimalization of P is the function $m_{P}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by $m_{P}(X, k)= \begin{cases}\min \{y \mid 0 \leq y \leq k \text { and } P(X, y)\} & \text { if this set is not empty } \\ k+1 & \text { otherwise }\end{cases}$

Definition 10.11. Bounded Minimalization

For an ($n+1$)-place predicate P, the bounded minimalization of P is the function $m_{P}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by
$m_{P}(X, k)= \begin{cases}\min \{y \mid 0 \leq y \leq k \text { and } P(X, y)\} & \text { if this set is not empty } \\ k+1 & \text { otherwise }\end{cases}$

The symbol μ is often used for the minimalization operator, and we sometimes write

$$
m_{P}(X, k)=\stackrel{k}{\mu} y[P(X, y)]
$$

An important special case is that in which $P(X, y)$ is $(f(X, y)=0)$, for some $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$. In this case m_{P} is written m_{f} and referred to as the bounded minimalization of f.

Exercise.

Let $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ be a primitive recursive function.
Show that the predicate $P: \mathbb{N}^{n+1} \rightarrow\{$ true, false $\}$ defined by

$$
P(X, y)=(f(X, y)=0)
$$

is primitive recursive.

Theorem 10.12.

If P is a primitive recursive $(n+1)$-place predicate, its bounded minimalization m_{P} is a primitive recursive function. Proof. . .

$$
\begin{aligned}
& h(X, y, z)= \begin{cases}z & \text { if } z \leq y \\
y+1 & \text { if } z \geq y+1 \wedge P(X, y+1) \text { is true } \\
y+2 & \text { if } z \geq y+1 \wedge \neg P(X, y+1) \text { is true }\end{cases} \\
& h(X, y, z)= \begin{cases}z & \text { if } E_{P}(X, y) \text { is true } \\
y+1 & \text { if } \neg E_{P}(X, y) \wedge P(X, y+1) \text { is true } \\
y+2 & \text { if } \neg E_{P}(X, y) \wedge \neg P(X, y+1) \text { is true }\end{cases}
\end{aligned}
$$

