Fundamentele Informatica 3

najaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 11, 15 november 2016

- 9. Undecidable Problems
- 9.5. Undecidable Problems
 Involving Context-Free Languages

Huiswerkopgave 3

Reducties en (on-)beslisbaarheid

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \le P_2)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that for every I the answers for the two instances are the same, or I is a yes-instance of P_1 if and only if F(I) is a yes-instance of P_2 .

Theorem 9.7.

. . .

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

9.4. Post's Correspondence Problem

Instance:

 10
 01
 0
 100
 1

 101
 100
 10
 0
 010

Instance:

 10
 01
 0
 100
 1

 101
 100
 10
 0
 010

Match:

10	1	01	0	100	100	O	100
101	010	100	10	0	0	10	0

Definition 9.14. Post's Correspondence Problem

An instance of Post's correspondence problem (PCP) is a set

$$\{(\alpha_1,\beta_1),(\alpha_2,\beta_2),\ldots,(\alpha_n,\beta_n)\}$$

of pairs, where $n \geq 1$ and the α_i 's and β_i 's are all nonnull strings over an alphabet Σ .

The decision problem is this:

Given an instance of this type, do there exist a positive integer k and a sequence of integers i_1, i_2, \ldots, i_k , with each i_j satisfying $1 \le i_j \le n$, satisfying

$$\alpha_{i_1}\alpha_{i_2}\dots\alpha_{i_k} = \beta_{i_1}\beta_{i_2}\dots\beta_{i_k} \quad ?$$

 i_1, i_2, \ldots, i_k need not all be distinct.

Theorem 9.17.

Post's correspondence problem is undecidable.

9.5. Undecidable Problems Involving Context-Free Languages

For an instance

$$\{(\alpha_1,\beta_1),(\alpha_2,\beta_2),\ldots,(\alpha_n,\beta_n)\}$$

of PCP, let...

CFG G_{α} be defined by productions...

For an instance

$$\{(\alpha_1,\beta_1),(\alpha_2,\beta_2),\ldots,(\alpha_n,\beta_n)\}$$

of PCP, let...

CFG G_{α} be defined by productions

$$S_{\alpha} \to \alpha_i S_{\alpha} c_i \mid \alpha_i c_i \quad (1 \le i \le n)$$

Example derivation:

$$S_{\alpha} \Rightarrow \alpha_2 S_{\alpha} c_2 \Rightarrow \alpha_2 \alpha_5 S_{\alpha} c_5 c_2 \Rightarrow \alpha_2 \alpha_5 \alpha_1 S_{\alpha} c_1 c_5 c_2 \Rightarrow \alpha_2 \alpha_5 \alpha_1 \alpha_3 c_3 c_1 c_5 c_2$$

Unambiguous

For an instance

$$\{(\alpha_1,\beta_1),(\alpha_2,\beta_2),\ldots,(\alpha_n,\beta_n)\}$$

of *PCP*, let...

CFG G_{α} be defined by productions

$$S_{\alpha} \to \alpha_i S_{\alpha} c_i \mid \alpha_i c_i \quad (1 \le i \le n)$$

CFG G_{β} be defined by productions

$$S_{\beta} \to \beta_i S_{\beta} c_i \mid \beta_i c_i \quad (1 \le i \le n)$$

Example.

Let I be the following instance of PCP:

10	01	0	100	1
101	100	10	0	010

 G_{lpha} and $G_{eta}...$

Theorem 9.20.

These two problems are undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty?

2. IsAmbiguous:

Given a CFG G, is G ambiguous?

Proof...

Theorem 9.20.

This problem is undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty?

Alternative proof...

Let CFG G_1 be defined by productions

$$S_1 \to \alpha_i S_1 \beta_i^r \mid \alpha_i \# \beta_i^r \quad (1 \le i \le n)$$

Let CFG G_2 be defined by productions

$$S_2 \rightarrow aS_2a \mid bS_2b \mid a\#a \mid b\#b$$

Let T be TM, let x be string accepted by T, and let

$$z_0 \vdash z_1 \vdash z_2 \vdash z_3 \ldots \vdash z_n$$

be 'successful computation' of T for x , i.e., $z_0=q_0\Delta x$

and z_n is accepting configuration.

Let T be TM, let x be string accepted by T, and let

$$z_0 \vdash z_1 \vdash z_2 \vdash z_3 \ldots \vdash z_n$$

be 'successful computation' of T for x,

i.e.,
$$z_0 = q_0 \Delta x$$

and z_n is accepting configuration.

Successive configurations z_i and z_{i+1} are almost identical; hence the language

 $\{z\#z'\#\mid z \text{ and } z' \text{ are config's of } T \text{ for which } z\vdash z'\}$ cannot be described by CFG, cf. $XX=\{xx\mid x\in\{a,b\}^*\}.$

Let T be TM, let x be string accepted by T, and let

$$z_0 \vdash z_1 \vdash z_2 \vdash z_3 \ldots \vdash z_n$$

be 'successful computation' of T for x,

i.e.,
$$z_0 = q_0 \Delta x$$

and z_n is accepting configuration.

On the other hand, $z_i \# z_{i+1}^r$ is almost a palindrome, and palindromes can be described by CFG.

Lemma.

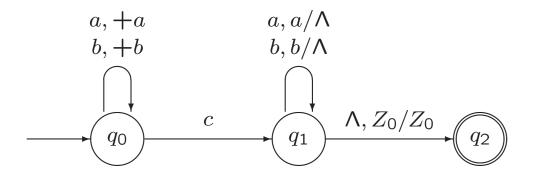
The language

 $L_1 = \{z\#(z')^r\#\mid z \text{ and } z' \text{ are config's of } T \text{ for which } z\vdash z'\}$ is context-free.

Proof...

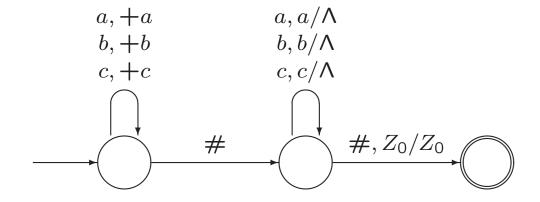
Example 5.3. A Pushdown Automaton Accepting SimplePal

$$SimplePal = \{xcx^r \mid x \in \{a, b\}^*\}$$



A Pushdown Automaton Accepting L_0

$$L_0 = \{z \# z^r \# \mid z \in \{a, b, c\}^*\}$$



Now adjust for

 $L_1 = \{z\#(z')^r\#\mid z \text{ and } z' \text{ are config's of } T \text{ for which } z\vdash z'\}$

Definition 9.21. Valid Computations of a TM

Let $T = (Q, \Sigma, \Gamma, q_0, \delta)$ be a Turing machine.

A valid computation of T is a string of the form

$$z_0 \# z_1^r \# z_2 \# z_3^r \dots \# z_n \#$$

if n is even, or

$$z_0 \# z_1^r \# z_2 \# z_3^r \dots \# z_n^r \#$$

if n is odd, where in either case, # is a symbol not in Γ , and the strings z_i represent successive configurations of T on some input string x, starting with the initial configuration z_0 and ending with an accepting configuration.

The set of valid computations of T will be denoted by C_T .

Theorem 9.22.

For a TM $T = (Q, \Sigma, \Gamma, q_0, \delta)$,

- ullet the set C_T of valid computations of T is the intersection of two context-free languages,
- ullet and its complement C_T^\prime is a context-free language.

Proof...

Theorem 9.22.

For a TM $T = (Q, \Sigma, \Gamma, q_0, \delta)$,

- ullet the set C_T of valid computations of T is the intersection of two context-free languages,
- ullet and its complement C_T' is a context-free language.

Proof. Let

```
L_1 = \{z\#(z')^r\# \mid z \text{ and } z' \text{ are config's of } T \text{ for which } z\vdash z'\}
L_2 = \{z^r\#z'\# \mid z \text{ and } z' \text{ are config's of } T \text{ for which } z\vdash z'\}
I = \{z\# \mid z \text{ is initial configuration of } T\}
A = \{z\# \mid z \text{ is accepting configuration of } T\}
A_1 = \{z^r\# \mid z \text{ is accepting configuration of } T\}
```

$$C_T = L_3 \cap L_4$$

where

$$L_3 = IL_2^*(A_1 \cup \{\Lambda\})$$

$$L_4 = L_1^*(A \cup \{\Lambda\})$$

for each of which we can algorithmically construct a CFG

If $x \in C_T'$ (i.e., $x \notin C_T$), then...

Definition 9.21. Valid Computations of a TM

Let $T = (Q, \Sigma, \Gamma, q_0, \delta)$ be a Turing machine.

A valid computation of T is a string of the form

$$z_0 \# z_1^r \# z_2 \# z_3^r \dots \# z_n \#$$

if n is even, or

$$z_0 \# z_1^r \# z_2 \# z_3^r \dots \# z_n^r \#$$

if n is odd, where in either case # is a syr

where in either case, # is a symbol not in Γ , and the strings z_i represent successive configurations of T on some input string x, starting with the initial configuration z_0 and ending with an accepting configuration.

The set of valid computations of T will be denoted by C_T .

If $x \in C'_T$ (i.e., $x \notin C_T$), then

- 1. Either, x does not end with # Otherwise, let $x = z_0 \# z_1 \# \dots \# z_n \#$ (no reversed strings in this partitioning)
- 2. Or, for some even i, z_i is not configuration of T
- 3. Or, for some odd i, z_i^r is not configuration of T
- 4. Or z_0 is not initial configuration of T
- 5. Or z_n is neither accepting configuration, nor the reverse of one
- 6. Or, for some even i, $z_i \not\vdash z_{i+1}^r$
- 7. Or, for some odd i, $z_i^r \not\vdash z_{i+1}$

If
$$x \in C_T'$$
 (i.e., $x \notin C_T$), then

- 1. Either, x does not end with # Otherwise, let $x = z_0 \# z_1 \# \dots \# z_n \#$
- 2. Or, for some even i, z_i is not configuration of T
- 3. Or, for some odd i, z_i^r is not configuration of T
- 4. Or z_0 is not initial configuration of T
- 5. Or z_n is neither accepting configuration, nor the reverse of one
- 6. Or, for some even i, $z_i \not\vdash z_{i+1}^r$
- 7. Or, for some odd i, $z_i^r \not\vdash z_{i+1}$

Hence, C_T^\prime is union of seven context-free languages, for each of which we can algorithmically construct a CFG

Corollary.

The decision problem

CFGNonEmptyIntersection:

Given two CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty?

is undecidable (cf. Theorem 9.20(1)).

Proof.

Let

AcceptsSomething: Given a TM T, is $L(T) \neq \emptyset$?

Prove that *AcceptsSomething* \leq *CFGNonEmptyIntersection*

Theorem 9.23. The decision problem

CFGGeneratesAII: Given a CFG G with terminal alphabet Σ , is $L(G) = \Sigma^*$?

is undecidable.

Proof.

Let

AcceptsNothing: Given a TM T, is $L(T) = \emptyset$?

Prove that $AcceptsNothing \leq CFGGeneratesAll...$

Undecidable Decision Problems (we have discussed)

