Fundamentele Informatica 3

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 10, 8 november 2016
9. Undecidable Problems
9.3. More Decision Problems Involving Turing Machines 9.4. Post's Correspondence Problem

Huiswerkopgave 2,
inleverdatum 10 november 2016, 13:45 uur

A slide from lecture 9

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1}
if and only if $F(I)$ is a yes-instance of P_{2}.

A slide from lecture 9

Theorem 9.7.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

A slide from lecture 9

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...
2. Prove that Accepts \leq Halts ...

Accepts- \wedge : Given a TM T, is $\wedge \in L(T)$?

Theorem 9.9. The following five decision problems are undecidable.
5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts-^ \leq WritesSymbol ...

AtLeast10MovesOn-^:
Given a TM T, does T make at least ten moves on input \wedge ?

WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input \wedge ?

Theorem 9.10.
The decision problem WritesNonblank is decidable.

Proof. . .

Definition 9.11. A Language Property of TMs
A property R of Turing machines is called a language property if, for every Turing machine T having property R, and every other TM T_{1} with $L\left(T_{1}\right)=L(T), T_{1}$ also has property R.

A language property of TMs is nontrivial if there is at least one $T M$ that has the property and at least one that doesn't.

In fact, a language property is a property of the languages accepted by TMs.

Theorem 9.12. Rice's Theorem

If R is a nontrivial language property of TMs, then the decision problem

$$
P_{R}: \text { Given a TM } T \text {, does } T \text { have property } R \text { ? }
$$

is undecidable.

Proof. . .

Prove that Accepts- $\wedge \leq P_{R} \ldots$
(or that Accepts- $\wedge \leq P_{\text {not-R }} \ldots$..)
T_{2} highly unspecified...

A slide from lecture 9

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1}
if and only if $F(I)$ is a yes-instance of P_{2}.

Examples of decision problems to which Rice's theorem can be applied:

1. Accepts- L : Given a TM T, is $L(T)=L$? (assuming ...)
2. AcceptsSomething:

Given a TM T, is there at least one string in $L(T)$?
3. AcceptsTwoOrMore:

Given a TM T, does $L(T)$ have at least two elements ?
4. AcceptsFinite: Given a TM T, is $L(T)$ finite ?
5. AcceptsRecursive:

Given a TM T, is $L(T)$ recursive ? (note that ...)

All these problems are undecidable.

Rice's theorem cannot be applied (directly)

- if the decision problem does not involve just one TM Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Rice's theorem cannot be applied (directly)

- if the decision problem does not involve just one TM Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$
- if the decision problem involves the operation of the TM WritesSymbol: Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ? WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input \wedge ?
- if the decision problem involves a trivial property Accepts-NSA: Given a TM T, is $L(T)=$ NSA ?

9.4. Post's Correspondence Problem

Instance:

10
101
:---:
100

0
10

1
010

Instance:

10
101
100
:---:
10
:---:
0

Match:

10	1	01	0	100	100	0	100
101	010	100	10	0	0	10	0

Definition 9.14. Post's Correspondence Problem

An instance of Post's correspondence problem (PCP) is a set

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of pairs, where $n \geq 1$ and the α_{i} 's and β_{i} 's are all nonnull strings over an alphabet Σ.

The decision problem is this:
Given an instance of this type, do there exist a positive integer k and a sequence of integers $i_{1}, i_{2}, \ldots, i_{k}$, with each i_{j} satisfying $1 \leq i_{j} \leq n$, satisfying

$$
\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\beta_{i_{1}} \beta_{i_{2}} \ldots \beta_{i_{k}} \quad ?
$$

$i_{1}, i_{2}, \ldots, i_{k}$ need not all be distinct.

Definition 9.14. Post's Correspondence Problem (continued)

An instance of the modified Post's correspondence problem (MPCP) looks exactly like an instance of $P C P$, but now the sequence of integers is required to start with 1 . The question can be formulated this way:

Do there exist a positive integer k and a sequence $i_{2}, i_{3}, \ldots, i_{k}$ such that

$$
\alpha_{1} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\beta_{1} \beta_{i_{2}} \ldots \beta_{i_{k}}
$$

(Modified) correspondence system, match.

Theorem 9.15. $M P C P \leq P C P$

Proof.

For instance

$$
I=\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of MPCP, construct instance $J=F(I)$ of $P C P$, such that I is yes-instance, if and only if J is yes-instance.

For $1 \leq i \leq n$, if

$$
\left(\alpha_{i}, \beta_{i}\right)=\left(a_{1} a_{2} \ldots a_{r}, b_{1} b_{2} \ldots b_{s}\right)
$$

we let

$$
\left(\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right)=\left(a_{1} \# a_{2} \# \ldots a_{r} \#, \# b_{1} \# b_{2} \ldots \# b_{s}\right)
$$

Match MPCP:

10	1	01	0	100	100	0	100
101	010	100	10	0	0	10	0

Almost match PCP:

$1 \# 0 \#$	$1 \#$	$0 \# 1 \#$	$0 \#$	$1 \# 0 \# 0 \#$	$1 \# 0 \# 0 \#$	$0 \#$	$1 \# 0 \# 0 \#$
$\# 1 \# 0 \# 1$	$\# 0 \# 1 \# 0$	$\# 1 \# 0 \# 0$	$\# 1 \# 0$	$\# 0$	$\# 0$	$\# 1 \# 0$	$\# 0$

Match MPCP:

10	1	01	0	100	100	0	100
101	010	100	10	0	0	10	0

Almost match PCP:

$1 \# 0 \#$	$1 \#$	$0 \# 1 \#$	$0 \#$	$1 \# 0 \# 0 \#$	$1 \# 0 \# 0 \#$	$0 \#$	$1 \# 0 \# 0 \#$	$\$$
$\# 1 \# 0 \# 1$	$\# 0 \# 1 \# 0$	$\# 1 \# 0 \# 0$	$\# 1 \# 0$	$\# 0$	$\# 0$	$\# 1 \# 0$	$\# 0$	$\# \$$

Match MPCP:

10	1	01	0	100	100	0	100
101	010	100	10	0	0	10	0

Match PCP:

$\# 1 \# 0 \#$	$1 \#$	$0 \# 1 \#$	$0 \#$	$1 \# 0 \# 0 \#$	$1 \# 0 \# 0 \#$	$0 \#$	$1 \# 0 \# 0 \#$	$\$$
$\# 1 \# 0 \# 1$	$\# 0 \# 1 \# 0$	$\# 1 \# 0 \# 0$	$\# 1 \# 0$	$\# 0$	$\# 0$	$\# 1 \# 0$	$\# 0$	$\# \$$

For $1 \leq i \leq n$, if

$$
\left(\alpha_{i}, \beta_{i}\right)=\left(a_{1} a_{2} \ldots a_{r}, b_{1} b_{2} \ldots b_{s}\right)
$$

we let

$$
\left(\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right)=\left(a_{1} \# a_{2} \# \ldots a_{r} \#, \# b_{1} \# b_{2} \ldots \# b_{s}\right)
$$

If

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(a_{1} a_{2} \ldots a_{r}, b_{1} b_{2} \ldots b_{s}\right)
$$

add

$$
\left(\alpha_{1}^{\prime \prime}, \beta_{1}^{\prime \prime}\right)=\left(\# a_{1} \# a_{2} \# \ldots a_{r} \#, \# b_{1} \# b_{2} \ldots \# b_{s}\right)
$$

Finally, add

$$
\left(\alpha_{n+1}^{\prime}, \beta_{n+1}^{\prime}\right)=(\$, \# \$)
$$

```
#1#0#
#1#0#1
```

$1 \# 0 \#$	$0 \# 1 \#$
$\# 1 \# 0 \# 1$	$\# 1 \# 0 \# 0$

$0 \#$
$\# 1 \# 0$

$1 \# 0 \# 0 \#$
$\# 0$

$1 \#$
$\# 0 \# 1 \# 0$

$\$$
$\# \$$

Theorem 9.16. Accepts $\leq M P C P$

The technical details of the proof of this result do not have to be known for the exam. However, one must be able to carry out the construction below.

Proof. . .

For every instance (T, w) of Accepts, construct instance $F(T, w)$ of MPCP, such that ...

A slide from lecture 3

Notation:

description of tape contents: $x \underline{\sigma} y$ or $x \underline{y}$
configuration $x q y=x q y \Delta=x q y \Delta \Delta$
initial configuration corresponding to input x : $q_{0} \Delta x$

In the third edition of the book, a configuration is denoted as ($q, x \underline{y}$) or ($q, x \underline{\sigma} y$) instead of $x q y$ or $x q \sigma y$. In one case, we still use this old notation.

Example 9.18. A Modified Correspondence System for a TM

T accepts...

Example 9.18. A Modified Correspondence System for a TM

T accepts all strings in $\{a, b\}^{*}$ ending with b.

Proof of Theorem 9.16. (continued)

Take

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\#, \# q_{0} \Delta w \#\right)
$$

Pairs of type 1: (a, a) for every $a \in \Gamma \cup\{\Delta\}$, and (\#, \#)
Pairs of type 2: corresponding to moves in T, e.g.,

$$
\begin{aligned}
& (q a, b p), \text { if } \delta(q, a)=(p, b, R) \\
& (c q a, p c b), \text { if } \delta(q, a)=(p, b, L)
\end{aligned}
$$

Proof of Theorem 9.16. (continued)

Take

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\#, \# q_{0} \Delta w \#\right)
$$

Pairs of type 1: (a, a) for every $a \in \Gamma \cup\{\Delta\}$, and (\#, \#)

Pairs of type 2: corresponding to moves in T, e.g.,

$$
\begin{aligned}
& (q a, b p), \text { if } \delta(q, a)=(p, b, R) \\
& (c q a, p c b), \text { if } \delta(q, a)=(p, b, L) \\
& (q \#, p a \#), \text { if } \delta(q, \Delta)=(p, a, S)
\end{aligned}
$$

Proof of Theorem 9.16. (continued)
Take

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\#, \# q_{0} \Delta w \#\right)
$$

Pairs of type 1: (a, a) for every $a \in \Gamma \cup\{\Delta\}$, and (\#, \#)
Pairs of type 2: corresponding to moves in T, e.g.,

$$
\begin{aligned}
& (q a, b p), \text { if } \delta(q, a)=(p, b, R) \\
& (c q a, p c b), \text { if } \delta(q, a)=(p, b, L) \\
& (q \#, p a \#), \text { if } \delta(q, \Delta)=(p, a, S)
\end{aligned}
$$

Pairs of type 3: for every $a, b \in \Gamma \cup\{\Delta\}$, the pairs $\left(h_{a} a, h_{a}\right), \quad\left(a h_{a}, h_{a}\right), \quad\left(a h_{a} b, h_{a}\right)$

One pair of type 4:
($h_{a} \# \#, \#$)

Proof of Theorem 9.16. (continued)

Two assumptions in book:

1. T never moves to h_{r}
2. $w \neq \wedge$ (i.e., special initial pair if $w=\wedge$)

These assumptions are not necessary...

Theorem 9.17.
Post's correspondence problem is undecidable.

Example 9.18. A Modified Correspondence System for a TM

T accepts all strings in $\{a, b\}^{*}$ ending with b.
Pairs of type 2 :

$$
\begin{array}{llll}
\left(q_{0} \Delta, \Delta q_{1}\right) & \left(q_{0} \#, \Delta q_{1} \#\right) & \left(q_{1} a, a q_{1}\right) & \left(q_{1} b, b q_{1}\right) \\
\left(a q_{1} \Delta, q_{2} a \Delta\right) & \left(b q_{1} \Delta, q_{2} b \Delta\right) & \cdots
\end{array}
$$

Study this example yourself.

