A slide from exercise class 6:

Exercise 9.1.

Show that the relation \leq on the set of decision problems is reflexive and transitive.

Give an example to show that it is not symmetric.

A slide from lecture 7

Theorem 9.9. The following five decision problems are undecidable.

4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Proof.

4. Prove that $Subset \leq Equivalent \dots$

Subset: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?

Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Exercise 9.10.

- **a.** Given two sets A and B, find two sets C and D, defined in terms of A and B, such that A = B if and only if $C \subseteq D$.
- **b.** Show that the problem *Equivalent* can be reduced to the problem *Subset*.

AcceptsEverything:

Given a TM T with input alphabet Σ , is $L(T) = \Sigma^*$?

Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Exercise 9.11. Construct a reduction from *AcceptsEverything* to the problem *Equivalent*.

Exercise 9.23. Show that the property "accepts its own encoding" is not a language property of TMs.

Part of a slide from lecture 4:

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p,\sigma)=(q,\tau,D)$

$$e(m) = 1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0$$

We list the moves of T in some order as m_1, m_2, \ldots, m_k , and we define

$$e(T) = e(m_1)0e(m_2)0...0e(m_k)0$$

Exercise 9.23. Show that the property "accepts its own encoding" is not a language property of TMs.

A slide from lecture 4:

Example 7.34. A Sample Encoding of a TM

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.

a. Given a TM T, does it ever reach a nonhalting state other than its initial state if it starts with a blank tape?

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.

- **b.** Given a TM T and a nonhalting state q of T, does T ever enter state q when it begins with a blank tape?
- **e.** Given a TM T, is there a string it accepts in an even number of moves?
- **j.** Given a TM T, does T halt within ten moves on every string?
- I. Given a TM T, does T eventually enter every one of its nonhalting states if it begins with a blank tape?

Exercise 9.13.

In this problem TMs are assumed to have input alphabet $\{0,1\}$. For a finite set $S \subseteq \{0,1\}^*$, P_S denotes the decision problem: Given a TM T, is $S \subseteq L(T)$?

- **a.** Show that if $x, y \in \{0, 1\}^*$, then $P_{\{x\}} \leq P_{\{y\}}$.
- **b.** Show that if $x, y, z \in \{0, 1\}^*$, then $P_{\{x\}} \leq P_{\{y, z\}}$.
- **c.** Show that if $x, y, z \in \{0, 1\}^*$, then $P_{\{x,y\}} \leq P_{\{z\}}$.
- **d.** Is it true that for every two finite subsets S and U of $\{0,1\}^*$, $P_S \leq P_U$.