Exercise 8.17.

In each case below, describe the language generated by the unrestricted grammar with the given productions. The symbols a, b, and c are terminals, and all other symbols are variables.

a.

$$S \to ABCS \mid ABC$$

$$AB \rightarrow BA \quad AC \rightarrow CA \quad BC \rightarrow CB$$

$$BA \to AB$$
 $CA \to AC$ $CB \to BC$

$$A \to a \quad B \to b \quad C \to c$$

Exercise 8.17.

In each case below, describe the language generated by the unrestricted grammar with the given productions. The symbols a, b, and c are terminals, and all other symbols are variables.

b.

$$S \to LaR$$
 $L \to LD \mid LT \mid \Lambda$ $Da \to aaD$ $Ta \to aaaT$

$$DR \to R$$
 $TR \to R$ $R \to \Lambda$

Exercise 8.17.

In each case below, describe the language generated by the unrestricted grammar with the given productions. The symbols a, b, and c are terminals, and all other symbols are variables.

C.

$$S \rightarrow LaMR \quad L \rightarrow LT \mid E$$

$$Ta \rightarrow aT$$
 $TM \rightarrow aaMT$ $TR \rightarrow aMR$

$$Ea \rightarrow aE \quad EM \rightarrow E \quad ER \rightarrow \Lambda$$

Exercise 8.18.

Consider the unrestricted grammar with the following productions.

$$S \to TD_1D_2$$
 $T \to ABCT \mid \Lambda$
 $AB \to BA$ $BA \to AB$ $CA \to AC$ $CB \to BC$
 $CD_1 \to D_1C$ $CD_2 \to D_2a$ $BD_1 \to D_1b$
 $A \to a$ $D_1 \to \Lambda$ $D_2 \to \Lambda$

- a. Describe the language generated by this grammar.
- **b.** Find a single production that could be substituted for $BD_1 \to D_1 b$ so that the resulting language would be

$$\{xa^n \mid n \ge 0, |x| = 2n, \text{ and } n_a(x) = n_b(x) = n\}$$

Exercise 8.19.

For each of the following languages, find an unrestricted grammar that generates the language.

a. $\{a^n b^n a^n b^n \mid n \ge 0\}$

Exercise 8.19.

For each of the following languages, find an unrestricted grammar that generates the language.

- **c.** $\{sss \mid s \in \{a,b\}^*\}$
- **d.** $\{ss^rs \mid s \in \{a,b\}^*\}$

Exercise 8.20.

For each of the following languages, find an unrestricted grammar that generates the language.

a.
$$\{x \in \{a, b, c\}^* \mid n_a(x) < n_b(x) \text{ and } n_a(x) < n_c(x)\}\$$

c. $\{a^n \mid n = j(j+1)/2 \text{ for some } j \ge 1\}$

(Suggestion: if a string has j groups of a's, the ith group containing i a's, then you can create j+1 groups by adding an a to each of the j gruops and adding a single extra a at the beginning.)

Exercise 8.21.

Suppose G is an unrestricted grammar with start symbol T that generate the language $L\subseteq\{a,b\}^*$. In each part below, another unrestricted grammar is described. Say (in terms of L) what language it generates.

a. The grammar containing all the variables and all the productions of G, two additional variables S (the start variable) and E, and the additional productions

$$S \to ET$$
 $E \to \Lambda$ $Ea \to E$ $Eb \to E$

Exercise 8.21.

Suppose G is an unrestricted grammar with start symbol T that generate the language $L \subseteq \{a,b\}^*$. In each part below, another unrestricted grammar is described. Say (in terms of L) what language it generates.

b. The grammar containing all the variables and all the productions of G, four additional variables S (the start variable), F, R, and E, and the additional productions

$$S \to FTR$$
 $Fa \to aF$ $Fb \to bF$ $F \to E$
 $Ea \to E$ $Eb \to E$ $ER \to \Lambda$

Exercise 8.22.

Figure 7.6 shows the transition diagram for a TM accepting $XX = \{xx \mid x \in \{a,b\}^*\}.$

In the grammar obtained from this TM as in the proof of Theorem 8.14, give a derivation for the string abab.

Exercise 8.27.

Show that if L is any recursively enumerable language, then L can be generated by a grammar in which the left side of every production is a string of one or more variables.