
Fundamentele Informatica 3
Solutions to selected exercises from Chapter 10

John Martin: Introduction to Languages and the Theory of Computation
(fourth edition)

Rudy van Vliet

Spring 2014

10.1 The set F includes the set of total functions from N to N, which includes
the set of total functions from N to {0, 1}, which in turn is the same size as
2N, which is uncountable (see Example 8.31 from the book). This implies
that F is certainly uncountable.

By definition, each computable (partial) function can be computed by a
Turing machine, and each Turing machine computes at most one function.
Therefore, C, the set of computable, partial functions is at most as large as
the set of Turing machines. By Example 8.30 from the book, the latter set
is countable. This implies that C is certainly countable.

Now, by Exercise 8.38 from the book, U = F − C is uncountable.

10.2 A solution to this exercise is given at page 419 of the book.

10.14 We have

f(k + 1) = (k + 1)2 = k2 + 2k + 1 = f(k) + 2k + 1

f(0) = 0

Therefore, take

g(·) = 0 = C0
0 (·)

h(x1, x2) = x2 + 2x1 + 1

Then, indeed,

f(0) = g(·)

f(k + 1) = h(k, f(k))

1

10.15 a Various solutions are possible. We give two.
(1)

f(x, y) = Add(Mult(C2
2 (x, y), p

2
1(x, y)),Mult(C2

3 (x, y), p
2
2(x, y)))

with functions Add and Mult from Example 10.5 from the book.
(2)

f(x, y) = Add(Double(p21(x, y)),Triple(p
2
2(x, y)))

where the function Double is defined by

Double(0) = 2× 0 = 0

Double(k + 1) = 2× (k + 1) = 2× k + 2 = Double(k) + 2 = s(s(Double(k)))

In other words, Double is obtained by primitive recursion from the functions

g(·) = C0
0 (·)

h(x1, x2) = x2 + 2 = s(s(p22(x1, x2)))

The function Triple is defined analogously.
c We have

f(0) = 20 = 1

f(k + 1) = 2k+1 = 2× 2k = 2× f(k)

Therefore, take

g(·) = C0
1 (·)

h(x1, x2) = 2× x2 = Mult(C2
2 (x1, x2), p

2
2(x1, x2))

Then f is obtained from the functions g and h by primitive recursion.

10.19 b We have

f(x, y) =

{

x if x ≤ y

y if x > y

Indeed, the functions

f1(x, y) = x = p21(x, y)

f2(x, y) = y = p22(x, y)

are primitive recursive, by Theorem 10.6 from the book the two-place predi-
cates x ≤ y and x > y are also primitive recursive, and for every (x, y) ∈ N

2,

2

exactly one of the two predicates is true. Therefore, by Theorem 10.7 from
the book, f is primitive recursive.
c We have

f(x) = max{y | y2 ≤ x}

which can be reformulated as

f(x) = min{y | y2 > x}
.
− 1 (1)

Let the two-place predicate P be defined by P (x, y) = (y2 > x). Because
the function f1(y) = y2 = Mult(p11(y), p

1
1(y)) is primitive recursive, and by

Theorem 10.6 from the book the two-place predicate x1 > x2 is primitive
recursive, P is also primitive recursive.

In order to prove that f is primitive recursive, we have to bound the
possible values for y in Equation (1), without affecting the validity of the
equation. We can take as bound k = x+ 1, because for sure,

(x+ 1)2 = x2 + 2x+ 1 > x

We thus have
f(x) = mP (x, x+ 1)

.
− 1

By Theorem 10.12 from the book, mP is primitive recursive, and so is f .

10.22 The function HighestPrime : N → N is defined by

HighestPrime(k) =

{

0 if k ≤ 1
max{i | Exponent(i, k) > 0} if k ≥ 2

(2)

Because the function Exponent is primitive recursive, so is the predicate P

defined by
P (k, i) = (Exponent(i, k) > 0)

But then, by Exercise 10.23, the bounded maximalisation mP of P , defined
by

mP (k, k2) =

{

max{i ≤ k2 | Exponent(i, k) > 0} if this set is not empty
0 otherwise

is also primitive recursive.
If we can find a bound k2 such that for k ≥ 2,

max{i | Exponent(i, k) > 0} = max{i ≤ k2 | Exponent(i, k) > 0}

3

then HighestPrime is primitive recursive, because then Equation (2) reduces
to

HighestPrime(k) =

{

0 if k ≤ 1
mP (k, k2) if k ≥ 2

(3)

Note that indeed, for k ≥ 2, the set {i | Exponent(i, k) > 0} is not empty.
For this, we observe that Exponent(i, k) > 0, if and only if PrNo(i)

divides k evenly. If this is the case, then certainly PrNo(i) ≤ k. If that
is the case, then certainly i ≤ k, because for every i ≥ 0, i ≤ PrNo(i).
Therefore, we can safely bound the values for i by k2 = k:

HighestPrime(k) =

{

0 if k ≤ 1
max{i ≤ k | Exponent(i, k) > 0} if k ≥ 2

=

{

0 if k ≤ 1
mP (k, k) if k ≥ 2

10.23 A solution to this exercise is given at page 420 of the book.
b Alternative solution: Assume that the two-place predicate P is primitive
recursive. The given definition of mP is equivalent to

mP (X, k) =

{

k
.
− min{y ≤ k | P (X, k

.
− y) is true} if this set is not empty

0 otherwise

= k
.
−

{

min{y ≤ k | P (X, k
.
− y) is true} if this set is not empty

k + 1 otherwise

If we can prove that the function P ′ defined by

P ′(x, k) =

{

min{y ≤ k | P (X, k
.
− y) is true} if this set is not empty

k + 1 otherwise

is primitive recursive, then so is mP .
For this, let Q be the the three-place predicate defined by

Q(x, k, y) = P (x, k
.
− y).

Because P is primitive recursive, so is Q. By Theorem 10.12 from the book,
its bounded minimalization mQ defined by

mQ(x, k, k2) =

{

min{y ≤ k2 | P (X, k
.
− y) is true} if this set is not empty

k2 + 1 otherwise

4

is primitive recursive. But then our function P ′ is also primitive recursive,
because

P ′(x, k) = mQ(x, k, k).

10.35 We ignore the suggestion in the book, because it would make things
more complicated.

As a result of a move of the Turing machine for configuration number
m, the symbol at position Posn(m) on the tape changes from Symbol(m) to
NewSymbol(m). The rest of the tape remains the same in this move.

Position Posn(m) contributes a factor PrNo(Posn(m))Symbol(m) to
TapeNumber(m). In NewTapeNumber(m), this contribution is substituted

by a factor PrNo(Posn(m))NewSymbol(m). We can thus write

NewTapeNumber(m) = (TapeNumber(m) Div PrNo(Posn(m))Symbol(m))

×PrNo(Posn(m))NewSymbol(m)
.

version 3 June 2014

5

