$r^k(i,j)$ expression for $L^k(i,j)$

$$r^{3}(1,1) = r^{2}(1,1) + r^{2}(1,3)r^{2}(3,3)*r^{2}(3,1)$$

 $r^{3}(1,2) = r^{2}(1,2) + r^{2}(1,3)r^{2}(3,3)*r^{2}(3,2)$

[M] E 3.32

BELOW The state elimination method by Brzozowski et McCluskey constructs a regular expression for a given automaton, by iteratively removing the states. The edges of the automaton do not just contain symbols (or Λ) but regular expressions themselves. Thus the graphs are a hybrid form of finite automata and regular expressions. It is rather clear however what they express.

Start by adding a new initial and accepting state; connect the initial state to the old initial state, and connect the old accepting states to the new accepting state, using as label the expression Λ (representing the empty word).

Whenever during this construction two parallel edges (p, r_1, q) and (p, r_2, q) appear, we replace them with a single edge $(p, r_1 + r_2, q)$

Choose any node q to be removed. Let r_2 be the expression on the loop for q. (If there is no loop we consider this expression to be \emptyset .)

For any incoming edge (p, r_1, q) and outgoing edge (q, r_3, s) we add the edge $(p, r_1 r_2^* r_3, s)$ which replace the path from p to s via q.

Remove q. Repeat.

When all original nodes are removed, we obtain a graph with single edge; its label represents the language of the original automaton.

Brzozowski et McCluskey

join parallel edges

$$p$$
 r_1
 q
 r_3
 r_2

reduce node *q*

$$p \xrightarrow{r_1 r_3} s$$

special case: $r_2 = \emptyset$

[M] Exercise 3.54

References

R. McNaughton and H. Yamada, Regular expressions and state graphs for automata, IRE Trans. Electronic Computers, vol. 9 (1960), 39–47. S.C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Automata Studies, Annals of Math. Studies. Princeton Univ. Press. 34 (1956)

state elimination method:

J.A. Brzozowski et E.J. McCluskey, Signal Flow Graph Techniques for Sequential Circuit State Diagrams, IEEE Transactions on Electronic Computers, Institute of Electrical & Electronics Engineers (IEEE), vol. EC-12, no 2, avril 1963, p. 67–76. doi:10.1109/pgec.1963.263416

Eliminate 4,3,2,1

ABOVE

Start by adding new initial and accepting states i and f. Connect these to the original initial and accepting states by edges with the expression Λ .

Note we also replaced the parallel edges a,b (loops on node 4) with the expression a+b.

The first node that is eliminated is 4. The proces is not visible here, as there are no pairs (i, j) such that there are edges $(i, R_1, 4)$ and $(4, R_2, j)$, because there are no outgoing edges from 4. Thus no edges are constructed.

The second node eliminated is 3, as shown.

ABOVE

We compute a regular expression from the given automaton in two different reduction orders.

The first example reduces nodes in the order 2, 1, 0. The result is (0+1(01*0)*1)* (The removal of the last loop was left as an exercise.)

The second example in the order 0, 1, 2. The result $0^*+0^*110^*+0^*10(1+00)^*010^*$ $0^*+0^*1(10^*1)^*10^*+0^*1(10^*1)^*0(1+0(10^*1)^*0)^*0(10^*1)^*10^*$ The result differs in structure and size.

Homomorphism

 $h: \Sigma_1 o \Sigma_2^*$ letter-to-string map

$$h: 2 \mapsto \Lambda$$

$$3 \mapsto abb$$

$$h: \Sigma_1^* \to \Sigma_2^*$$
 string-to-string map $h(\sigma_1 \sigma_2 \dots \sigma_k) = h(\sigma_1) h(\sigma_2) \dots h(\sigma_k)$ $h(12113) = aa \cdot \Lambda \cdot aa \cdot aa \cdot abb$

$$K \subseteq \Sigma_1^*$$
 language-to-language map $h(K) = \{ h(x) \mid x \in K \}$

Inverse homomorphism

Closure

Regular languages are closed under

- Boolean operations (complement, union, intersection, minus)
- Regular operations (union, concatenation, star)
- Reverse (mirror)
- [inverse] Homomorphism

Section 4

Context-Free Languages

Chapter

- 4 Context-Free Languages
 - Examples: recursion
 - Regular operations
 - Regular grammars
 - Derivation trees and ambiguity
 - Normalform
 - Chomsky normalform
 - Attribute grammars

Syntax: statements

```
\langle assignment \rangle ::= \langle variable \rangle = \langle expression \rangle
⟨statement⟩ ::= ⟨assignment⟩ |
        (compound-statement)
        (if-statement) |
        (while-statement) | . . .
(if-statement) ::=
        if (test) then (statement)
        if \(\text\) then \(\statement\) else \(\statement\)
(while-statement) ::=
        while (test) do (statement)
```

Propositional logic as a formal language

Definition (well-formed formulas)

- ... by using the construction rules below, and only those, finitely many times:
- every propositional atom p, q, r, \ldots is a wff
- if ϕ is a wff, then so is $(\neg \phi)$
- if ϕ and ψ are wff, then so are $(\phi \wedge \psi)$, $(\phi \vee \psi)$, $(\phi \to \psi)$,

$$\psi ::= p \mid (\neg \psi) \mid (\psi \land \psi) \mid (\psi \lor \psi) \mid (\psi \to \psi)$$

M.Huet & M.Ryan, Logic in Computer Science

Recursion

$$AnBn = \{ a^n b^n \mid n \geqslant 0 \} \subseteq \{a, b\}^*$$

Example

- $-\Lambda \in AnBn$
- for every $x \in AnBn$, also $axb \in AnBn$

[M] E 1.18

Grammar

Example

- $-\Lambda \in AnBn$
- for every $x \in AnBn$, also $axb \in AnBn$

$$S \rightarrow \Lambda$$

 $S \rightarrow aSb$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbb \Rightarrow aaabb$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

if $S \Rightarrow^* x$ then also $S \Rightarrow^* axb$

Recursion

 $Pal \subseteq \{a, b\}^*$

Example

- − Λ , a, $b \in Pal$
- for every $x \in Pal$, also axa, $bxb \in Pal$

[M] E 1.18

- $-\Lambda$, $a, b \in Pal$
- for every $x \in Pal$, also axa, $bxb \in Pal$

$$S \rightarrow \Lambda \mid a \mid b$$

$$S \rightarrow aSa$$

$$S \rightarrow bSb$$

$$S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aababaa$$

 $AnBn = \{ a^n b^n \mid n \geqslant 0 \}$

variants

 $\{a^ib^j \mid i \neq i\}$

 $\{ a^n b^{n+1} \mid n \ge 0 \}$ $S \rightarrow b$ (end with extra b) $S \rightarrow aSb$

 $\{a^ib^j \mid i \leq i\}$ $S \to \Lambda$ $S \rightarrow aSb \mid Sb$ (free b's)

> $S \rightarrow A \mid B$ (choice!) $A \rightarrow aAb \mid aA \mid a \quad (i > i)$

 $B \rightarrow aBb \mid Bb \mid b \quad (i < j)$

Balanced
$$\subseteq \{(,)\}^*: \Lambda, (), (()), ()(), ((())), (())(), \dots$$

- $-\Lambda \in Balanced$
- for every $x, y \in Balanced$, also $xy \in Balanced$
- for every $x \in Balanced$, also $(x) \in Balanced$

[M] E 1.19

$$Expr \subseteq \{a, +, *, (,)\}$$

- $-a \in Expr$
- for every $x, y \in Expr$, also $x + y \in Expr$ and $x * y \in Expr$
- for every $x \in Expr$, als $(x) \in Expr$

[M] E 1.19

- $-a \in Expr$
- for every $x, y \in Expr$, also $x + y \in Expr$ and $x * y \in Expr$
- for every $x \in Expr$, als $(x) \in Expr$

$$S \rightarrow a \mid S+S \mid S*S \mid (S)$$
 derivation(s) for $a+(a*a)$ and $a+a*a$... ambiguity

[M] E 4.2

Non palindromes

NonPal \subseteq {a, b}* $x = abbbaaba \in NonPal$ [M] E 4.3

Non palindromes

 $NonPal \subseteq \{a, b\}^*$ $x = abbbaaba \in NonPal$

Example

- for every $A \in \{a, b\}^*$, aAb and bAa are elements of NonPal
- for every S in NonPal, aSa and bSb are in NonPal

$$A \rightarrow \Lambda \mid aA \mid bA$$

 $S \rightarrow aAb \mid bAa \mid aSa \mid bSb$
[M] E 4.3

Non palindromes

 $NonPal \subseteq \{a, b\}^*$ $x = abbbaaba \in NonPal$

Example

- for every $A \in \{a, b\}^*$, aAb and bAa are elements of NonPal
- for every S in NonPal, aSa, bSb, aSb and bSa are in NonPal

$$A \rightarrow \Lambda \mid aA \mid bA$$

 $S \rightarrow aAb \mid bAa \mid aSa \mid bSb \mid aSb \mid bSa$
[M] E 4.3

Coin exchange language

```
alphabet \{1, 2, 5, =\} \{x=y \mid x \in \{1, 2\}^*, y \in \{5\}^*, n_1(x) + 2n_2(x) = 5n_5(y)\} n_{\sigma}(x) number of \sigma occurrences in x 212=5 22222=55 12(122)^32=5^4
```

The problem with most solutions is that when read from left to right the initial string over {1, 2} cannot always be chopped into part with exact value 5, without chopping the symbol 2. The solution is like a finite automaton, which reads 1, 2 and 'saves' the

values until the value 5 is reached, then we write a 5 to the right.

$$\Sigma = \{1, 2, 5, =\}$$

variables S_i , $0 \le i \le 4$
axiom S_0
productions

productions
$$S_0 \rightarrow 1S_1 \mid 2S_2$$

$$S_1 \rightarrow 1S_2 \mid 2S_3$$

 $S_2 \rightarrow 1S_3 \mid 2S_4$ $S_2 \rightarrow 1S_4 \mid 2S_05$ $S_4 \rightarrow 1S_05 \mid 2S_15$

 $S_0 \rightarrow =$

Context-free languages

Definition

context-free grammar (CFG) 4-tuple $G = (V, \Sigma, S, P)$

- V alphabet variables / nonterminals
 - Σ alphabet *terminals* disjoint $V \cap \Sigma = \emptyset$
 - $-S \in V$ axiom, start symbol
 - *P* finite set rules, *productions* of the form $A \rightarrow \alpha$, $A \in V$, $\alpha \in (V \cup \Sigma)^*$

derivation step
$$\alpha = \alpha_1 A \alpha_2 \Rightarrow_G \alpha_1 \gamma \alpha_2 = \beta$$
 for $A \rightarrow \gamma \in P$

Definition

language generated by G

$$L(G) = \{ x \in \Sigma^* \mid S \Rightarrow_G^* x \}$$

[M] Def 4.6 & 4.7

NonPal, its grammar components

$$A \rightarrow \Lambda \mid aA \mid bA$$

 $S \rightarrow aAb \mid bAa \mid aSa \mid bSb$

variables
$$V = \{ S, A \}$$

terminals $\Sigma = \{ a, b \}$
axiom S

$$P = \{A \rightarrow \Lambda, A \rightarrow \textit{aA}, A \rightarrow \textit{bA}, S \rightarrow \textit{aAb}, S \rightarrow \textit{bAa}, S \rightarrow \textit{aSa}, S \rightarrow \textit{bSb}\}$$

```
\Rightarrow_G^* is the transitive and reflexive closure of \Rightarrow_G zero, one or more steps general case \alpha = \alpha_0 \Rightarrow \alpha_1 \Rightarrow \ldots \Rightarrow \alpha_n = \beta \alpha \Rightarrow_G^* \beta iff there are strings \alpha_0, \alpha_1, \ldots, \alpha_n such that -\alpha_0 = \alpha -\alpha_n = \beta -\alpha_i \Rightarrow \alpha_{i+1} for 0 \leqslant i < n. special case n = 0 \alpha = \alpha_0 = \beta
```

Variables can be rewritten regardless of context

Lemma

If $u_1 \Rightarrow^* v_1$ and $u_2 \Rightarrow^* v_2$, then $u_1 u_2 \Rightarrow^* v_1 v_2$.

Lemma

If $u \Rightarrow^* v_1 v v_2$ and $v \Rightarrow^* w$, then $u \Rightarrow^* v_1 w v_2$.

Lemma

If $u \Rightarrow^* v$ and $u = u_1 u_2$, then $v = v_1 v_2$ such that $u_1 \Rightarrow^* v_1$ and $u_2 \Rightarrow^* v_2$.

Equal number

```
AeqB = { x \in \{a, b\}^* \mid n_a(x) = n_b(x) } aaabbb, ababab, aababb, . . . [M] E 4.8
```

From lecture 6:

Even number of both a and b
 two letters together

aa and bb keep both numbers even [odd]
ab and ba switch between even and odd, for both numbers

$$(aa + bb + (ab + ba)(aa + bb)^*(ab + ba))^*$$

[M] E 3.4

Equal number

AeqB = {
$$x \in \{a, b\}^* \mid n_a(x) = n_b(x)$$
 } aaabbb, ababab, aababb, . . .

[M] E 4.8

$$AeqB = \{ \ x \in \{a,b\}^* \mid n_a(x) = n_b(x) \ \}$$

Equal number

$$AeqB = \{ x \in \{a, b\}^* \mid n_a(x) = n_b(x) \}$$

aaabbb, ababab, aababb, . . .

$$S
ightarrow \Lambda \mid aB \mid bA$$

 $A
ightarrow aS \mid bAA$
 $B
ightarrow bS \mid aBB$

A generates $n_a(x) = n_b(x) + 1$ B generates $n_a(x) + 1 = n_b(x)$

$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aabSB \Rightarrow \dots$$
 (different options)

- (1) $aabB \Rightarrow aabaBB \Rightarrow aababSB \Rightarrow aababB \Rightarrow aababbS \Rightarrow aababb$
- (2) ... (ambiguous, later)

[M] E 4.8

ABOVE

When a string has multiple variables, like *aabSB* in the above example, then we are not forced to rewrite the first variable, we can as well rewrite another one.

Thus we can do $aab\underline{S}B \Rightarrow aabB$, but also $aabS\underline{B} \Rightarrow aabSaBB$, for instance.

$$AeqB = \{ x \in \{a, b\}^* \mid n_a(x) = n_b(x) \}$$

$$S \rightarrow \Lambda \mid aSb \mid bSa \mid SS$$

$$S \Rightarrow SS \Rightarrow a_1Sb_6S \Rightarrow a_1a_2Sb_3Sb_6S \Rightarrow \dots$$

$$S \Rightarrow a_1Sb_{10} \Rightarrow \dots$$

[M] Exercise 1.66

$$i = j + k$$
 vs $j = i + k$

$$L_1 = \{ a^i b^j c^k \mid i = j + k \}$$
 aaa b cc

$$i = j + k$$
 vs $j = i + k$

$$L_1 = \{ a^i b^j c^k \mid i = j + k \}$$
 aaa b cc generate as $a^{k+j} b^j c^k = a^k a^j b^j c^k$ $S \to aSc \mid T$ $T \to aTb \mid \Lambda$ $S \Rightarrow aSc \Rightarrow aaScc \Rightarrow aaTcc \Rightarrow aaaTbcc \Rightarrow aaabcc$

$$i = j + k$$
 vs $j = i + k$

$$L_1 = \{ a^i b^j c^k \mid i = j + k \} \quad aaa b cc$$
generate as
$$a^{k+j} b^j c^k = \underbrace{a^k a^j b^j c^k}_{S \to aSc \mid T}$$

$$T \rightarrow aTb \mid \Lambda$$

$$S \Rightarrow aSc \Rightarrow aaScc \Rightarrow aaTcc \Rightarrow aaaTbcc \Rightarrow aaabcc$$

$$L_2 = \{ a^i b^j c^k \mid j = i + k \} \quad a \ bbb \ cc$$
generate as $a^i b^{i+k} c^k = \underbrace{a^i b^i}_{X \to aXb} \underbrace{b^k c^k}_{X \to aXb}$ (concatenate)

$$X
ightarrow a imes b Y c \mid \Lambda$$

$$S \Rightarrow \underline{X} Y \Rightarrow a\underline{X}bY \Rightarrow ab\underline{Y} \Rightarrow ab\underline{bY}c \Rightarrow ab\underline{bbY}cc \Rightarrow$$

$$S \Rightarrow X \underline{Y} \Rightarrow \underline{X} bYc \Rightarrow aXb b\underline{Y}c \Rightarrow a\underline{X}b bbYcc \Rightarrow ab bb\underline{Y}cc \Rightarrow abbbcc$$

Automata Theory Context-Free Languages

Examples: recursion

(a priori there is no prescribed order rewriting X or Y) 235 / 417

Regular operations and CFL

Using building blocks

Theorem

If L_1 , L_2 are CFL, then so are $L_1 \cup L_2$, L_1L_2 and L_1^* .

[M] Thm 4.9

Regular operations and CFL

Using building blocks

Theorem

If L_1 , L_2 are CFL, then so are $L_1 \cup L_2$, L_1L_2 and L_1^* .

 $G_i = (V_i, \Sigma, S_i, P_i)$, having no variables in common.

[M] Thm 4.9

Regular operations and CFL

Using building blocks

Theorem

If L_1 , L_2 are CFL, then so are $L_1 \cup L_2$, L_1L_2 and L_1^* .

 $G_i = (V_i, \Sigma, S_i, P_i)$, having no variables in common.

Construction

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma, S, P),$$
 new axiom $S - P = P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}$ $L(G) = L(G_1) \cup L(G_2)$ $- P = P_1 \cup P_2 \cup \{S \to S_1S_2\}$ $L(G) = L(G_1)L(G_2)$ $G = (V_1 \cup \{S\}, \Sigma, S, P),$ new axiom $S - P = P_1 \cup \{S \to SS_1, S \to \Lambda\}$ $L(G) = L(G_1)^*$

[M] Thm 4.9

