Example

rk(i, j) expression for L¥(i, j)

r?(i.j) | J | 3
i=1 a*(baa™)* a*(baa*)*b a*(baa*)*bb
2 aa*(baa™)* (aa*b)* (aa*b)*b
3 aa* + a*baa*(baa*)* | a*b(aa*b)* | A+ a*b(aa*bh)*b

2(1,1) = r3(1,1) + r3(1,3)r%(3,3)"r?(3,1)
r3(1,2) = r?(1,2) + r?(1,3)r%(3,3)"r?(3,2)

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Kleene 197 / 417

BELOW The state elimination method by Brzozowski et McCluskey con-
structs a regular expression for a given automaton, by iteratively re-
moving the states. The edges of the automaton do not just contain
symbols (or A) but regular expressions themselves. Thus the graphs
are a hybrid form of finite automata and regular expressions. It is
rather clear however what they express.

Start by adding a new initial and accepting state; connect the initial
state to the old initial state, and connect the old accepting states to
the new accepting state, using as label the expression A (representing
the empty word).

Whenever during this construction two parallel edges (p, 1, q) and
(p, 2, q) appear, we replace them with a single edge (p, 1 + 2, q)

Choose any node g to be removed. Let r, be the expression on the loop
for g. (If there is no loop we consider this expression to be @.)

For any incoming edge (p, r1, q) and outgoing edge (q, 3, s) we add the
edge (p, nr;r3, s) which replace the path from p to s via g.

Remove gq. Repeat.

When all original nodes are removed, we obtain a graph with single
edge; its label represents the language of the original automaton.

Brzozowski et McCluskey

®::@ M’@ join parallel edges

rryra

@\@ E—

reduce node g

special case: n =9
rn 3
@

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Brzozowski et McCluskey 198 / 417

REFERENCES

R. McNaughton and H. Yamada, Regular expressions and state graphs
for automata, IRE Trans. Electronic Computers, vol. 9 (1960), 39-47.
S.C. Kleene. Representation of Events in Nerve Nets and Finite Au-
tomata. Automata Studies, Annals of Math. Studies. Princeton Univ.
Press. 34 (1956)

state elimination method:

J.A. Brzozowski et E.J. McCluskey, Signal Flow Graph Techniques for
Sequential Circuit State Diagrams, IEEE Transactions on Electronic
Computers, Institute of Electrical & Electronics Engineers (IEEE), vol.
EC-12, no 2, avril 1963, p. 67-76. doi:10.1109/pgec.1963.263416

Example

Eliminate 4,3,2,1

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Brzozowski et McCluskey 199 / 417

Example

—(q0

Z4N \a&

b+ aa

b+ aa+ ba*(b+ aa)

. @/; %H—aera*

(b+ aa+ ba*b+ ba*aa)*(A + a =ba*a)

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Brzozowski et McCluskey 200 / 417

ABOVE

Start by adding new initial and accepting states i and f. Connect these
to the original initial and accepting states by edges with the expression
A.

Note we also replaced the parallel edges a, b (loops on node 4) with the
expression a+ b.

The first node that is eliminated is 4. The proces is not visible here, as
there are no pairs (/,j) such that there are edges (i, Ry, 4) and (4, R»,),
because there are no outgoing edges from 4. Thus no edges are con-
structed.

The second node eliminated is 3, as shown.

Example divisible by 3, 1

«—

l l
/\? 1 0 /\? 1 A
0C(0). Y. Y2yo1 0C(o). (1)yDo1%o 0+ 1(01%0)*1

Al 1 0 Al 1

s O fe

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Brzozowski et McCluskey 201 / 417

Example divisible by 3,

10*1
AN 0 3 0
Al 1 0 0

10*
O O

0%1(10*1)*0
0% + 0*1(10*1)*10*

O

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Brzozowski et McCluskey

14 0(10*1)*0

0(10%1)*10*

Example divisible by 3,

0*1(10*1)*0
0* 4+ 0*1(10%1)*10* 1+0(10%1)*0

0(10%1)*10*

0* + 0*1(10*1)*10* +
0*1(10%1)*0(1 + 0(10*1)*0)*0(10*1)*10*

O

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Brzozowski et McCluskey

2

203 / 417

ABOVE

We compute a regular expression from the given automaton in two
different reduction orders.

The first example reduces nodes in the order 2,1, 0. The result is (0+
1(01*0)*1)*

(The removal of the last loop was left as an exercise.)

The second example in the order 0, 1, 2. The result 0*+0*110*4+0*10(1+
00)*010* 0*+0*1(10*1)*10* +0*1(10*1)*0(1+0(10*1)*0)*0(10*1)*10*
The result differs in structure and size.

Homomorphism

h:%Z; — X5 letter-to-string map

1 — aa
h: 2 —» A
3 — abb

h:%X] — X5 string-to-string map
h(o105...0k) = h(o1)h(02) ... h(ox) h(12113) = aa-A-aa-aa- abb

e e
VW e

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem

K C X language-to-language map
h(K)={h(x)|xe K}

@

Other 204 / 417

Inverse homomorphism

h:Zy =55, LCEy h L) ={xeZi|h(x)elL)}

1 — aa oAy > 1 2 1 3 1
h: 2 — A Lh
3 +— abb 25 L > aa A aa abb aa
2

a a 1 1
b/\b
ag@i/
a 2 1 2

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Other 205 / 417

Closure

Regular languages are closed under
— Boolean operations (complement, union, intersection, minus)

— Regular operations (union, concatenation, star)

— Reverse (mirror)
— [inverse] Homomorphism

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Other 206 / 417

Section 4

Automata Theory Context-Free Languages

<

207 / 417

3

Chapter

4 Context-Free Languages
Examples: recursion
Regular operations
Regular grammars
Derivation trees and ambiguity
Normalform
Chomsky normalform
Attribute grammars

Automata Theory Context-Free Languages 208 / 417

Syntax: statements

(assignment) ::= (variable) = (expression)
(statement) ::= (assignment) |

(compound-statement) |

(if-statement) |

(while-statement) | ...
(if-statement) ::=

if (test) then (statement) |

if (test) then (statement) else (statement)
(while-statement) ::=

while (test) do (statement)

Automata Theory Context-Free Languages Examples: recursion

209 / 417

Propositional logic as a formal language

Definition (well-formed formulas)
... by using the construction rules below, and only those, finitely many times:

— every propositional atom p, g, r, ... is a wff
—if ¢ is a wff, then so is (—¢)
—if ¢ and 1 are wff, then so are (¢ AYP), (b V V), (¢ —),

BNF Backus Naur form
Yuo=pl (=) [(WAY) [PV (b —)

M.Huet & M.Ryan, Logic in Computer Science

Automata Theory Context-Free Languages Examples: recursion 210 / 417

AnBn={a"b" | n>0}C{a, b}*

- A€ AnBn
— for every x € AnBhn, also axb € AnBn

[M] E1.18

«E)»

Automata Theory Context-Free Languages Examples: recursion 211 / 417

Grammar

Example

- A € AnBn (basis)
— for every x € AnBhn, also axb € AnBn (induction)
S—>A

S — aSb

S = aSb = aaSbb = aabb
S = aSb = aaSbb = aaaSbbb = aaa bbb

if S =* x then also S =* axb

Automata Theory Context-Free Languages Examples: recursion 212 / 417

Pal C {a, b}*

- A a be Pal
— for every x € Pal, also axa, bxb € Pal

[M] E1.18

«E)»

Automata Theory Context-Free Languages Examples: recursion 213 / 417

Grammar

Example

- A, a,be Pal
— for every x € Pal, also axa, bxb € Pal

S—Alalb
S — aSa
S — bSh

S = aSa = aaSaa = aabSbaa = aababaa

Automata Theory Context-Free Languages Examples: recursion 214 / 417

AnBn={a"p"|n>0}
variants

{anbn+1 | ,.'20}
S — b (end with extra b)
S — aSb

{ab]i<}
S—=A
S — aSb|Sb (free b's)

{a'b i)}
S— A|B (choice!)
A— aAblaAla (i>))
B—aBb|Bb|b (i<})

Automata Theory Context-Free Languages

Examples: recursion

Grammars

215 / 417

Recursion

Balanced C {(,)}*: A, (), ((0), 00, ((0)), (D)0, ...

Example

— A € Balanced

— for every x, y € Balanced, also xy € Balanced
— for every x € Balanced, also (x) € Balanced

Automata Theory Context-Free Languages Examples: recursion 216 / 417

Recursion

Expr C{a,+,*,(,)}

Example

—a € Expr

— for every x,y € Expr, also x + y € Expr and x x y € Expr
— for every x € Expr, als (x) € Expr

Automata Theory Context-Free Languages Examples: recursion 217 / 417

Expressions

Example

—a € Expr
— for every x,y € Expr, also x + y € Expr and x x y € Expr
— for every x € Expr, als (x) € Expr

S—al| S+S | S+S | (5)
derivation(s) for a+ (a*a) and a+ax*a...
ambiguity

Automata Theory Context-Free Languages Examples: recursion 218 / 417

NonPal C {a, b}*

X = abbbaaba € NonPal
M] E 4.3

Automata Theory Context-Free Languages

Examples: recursion

<

219 / 417

3

Non palindromes

NonPal C {a, b}*
x = abbbaaba € NonPal

Example

— for every A € {a, b}*, aAb and bAa are elements of NonPal
— for every S in NonPal, aSa and bSb are in NonPal

A— A|aA| bA
S — aAb | bAa| aSa| bSb

Automata Theory Context-Free Languages Examples: recursion 220 / 417

Non palindromes

NonPal C {a, b}*
x = abbbaaba € NonPal

Example

— for every A € {a, b}*, aAb and bAa are elements of NonPal
— for every S in NonPal, aSa, bSb, aSb and bSa are in NonPal

A— A|aA|bA
S — aAb | bAa| aSa| bSb | aSb | bSa

Automata Theory Context-Free Languages Examples: recursion 221 / 417

Coin exchange language

alphabet { 1,2,5, =}

{x=y Ixe{l,2)" y € {5}, ni(x) +2m2(x) = 5ns(y) }

ng(x) number of o occurrences in x

212=5 22222=55 12(122)32=5*

Automata Theory Context-Free Languages Examples: recursion 222 / 417

The problem with most solutions is that when read from left to right
the initial string over {1,2} cannot always be chopped into part with
exact value 5, without chopping the symbol 2.

The solution is like a finite automaton, which reads 1, 2 and ’saves’ the
values until the value 5 is reached, then we write a 5 to the right.

L={1,25=}
variables S;, 0 < i < 4
axiom Sy

productions

50 — 151 ‘ 252
51 — 152 ‘ 253
S, — 153 ‘ 25,
53 — 154 ‘ 2505
54 — 1505 | 2515
50 — =

Context-free languages

Definition
context-free grammar (CFG) 4-tuple G =(V,Z, S, P)
— V alphabet variables / nonterminals
— X alphabet terminals disjoint VNYL =g
- S eV axiom, start symbol
— P finite set rules, productions
of the fom A— «, AeV, axe(VUX)*

derivation step o= ojAxy =¢c iy = forA—vyeP

Definition
language generated by G
LG)={xeX|S=¢x}

Automata Theory Context-Free Languages Examples: recursion 223 / 417

Example

NonPal, its grammar components

A— AlaA|bA
S — aAb | bAa| aSa | bSb

variables V ={S5 A}
terminals X ={a b}
axiom S

productions
P={A— A A— aA A— bA, S — aAb,S — bAa,S — aSa, S — bSb}

Automata Theory Context-Free Languages Examples: recursion 224 / 417

Derivation

= is the transitive and reflexive closure of =g
zero, one or more steps

generalcase a=xy=>01=...=x, =

o = [iff there are strings xg, 1, ..., &, such that
- Xg =&
- Xp = B

- = jy1 for0<i<n.

specialcase n=0 oa=0xyp=9p

Automata Theory Context-Free Languages Examples: recursion 225 / 417

Why ‘context-free'

Variables can be rewritten regardless of context

Lemma
If ui =* vy and up =* v, then urur =* vivy.

Lemma
If u =" wvivwy and v =* w, then u =" vywvs.

Lemma
If u="*v and u= uju,
then v = viv» such that u; =™ v1 and up =* .

Automata Theory Context-Free Languages Examples: recursion 226 / 417

Equal number

AegB = { x €{a, b}* | ny(x) = np(x) }
aaabbb, ababab, aababb, . . .

From lecture 6:

— Even number of both a and b

two letters together

aa and bb keep both numbers even [odd]

ab and ba switch between even and odd, for both numbers

(aa+ bb+ (ab + ba)(aa + bb)*(ab + ba))*

Automata Theory Context-Free Languages Examples: recursion 227 / 417

AegB = { x €{a, b}* | ny(x) = np(x) }
aaabbb, ababab, aababb, . ..

[M] E 4.8

«E)»

Automata Theory Context-Free Languages Examples: recursion 228 / 417

AeqB ={x € {a, b}* [na(x) = np(x) }

Automata Theory Context-Free Languages Examples: recursion 229 / 417

Equal number

AegB = { x € {a, b}* | na(x) = np(x) }
aaabbb, ababab, aababb, . . .

S—AlaB|bA

A — aS | bAA A generates n,(x) = np(x) +1

B — bS | aBB B generates n,(x) + 1 = np(x)
S = aB = aaBB = aabSB = ... (different options)

(1) aabB = aabaBB = aababSB = aababB = aababbS = aababb
(2) ... (ambiguous, later)

Automata Theory Context-Free Languages Examples: recursion 230 / 417

ABOVE

When a string has multiple variables, like aabSB in the above example,
then we are not forced to rewrite the first variable, we can as well
rewrite another one.

Thus we can do aabSB = aabB, but also aabSB = aabSaBB, for
instance.

AeqB ={x € {a, b}* [na(x) = np(x) }

S —+ AlaSb| bSal|SS

$§=55= 315b65 = 31325b35b65 = ...

5=>315b10:>...
[M] Exercise 1.66

Automata Theory Context-Free Languages Examples: recursion 231 / 417

Ly={abck|i=j+k)}

Automata Theory Context-Free Languages

gaabcc

Examples: recursion

<

232 / 417

3

i=j+kvsj=i+k

[y ={abck|i=j+k} aaabcc
generate as akti bl ck = ok b K
<~

—_—
S—aSc| T

T —aTb|A

S = aSc = aaScc = aaTcc = aaaTbcc = aaabcc

Automata Theory Context-Free Languages Examples: recursion

233 / 417

i=j+kvsj=i+k

Ly ={abck|i=j+k} aaabcc

generate as akti bl ck = ok J b K
<~
—_—
S—aSc| T

T —aTb| A
S = aSc = aaScc = aaTcc = aaaTbcc = aaabcc

Lo ={abck|j=i+k} abbbcc

Automata Theory Context-Free Languages Examples: recursion 234 / 417

I=j+kvsj=i+k
Li={abck|i=j+k} aaabcc
generate as akti bl ck = akJ b K
<~

—_———
S —aSc| T

T —aTb| A
S = aSc = aaScc = aaTcc = aaaTbcc = aaabcc
Lo ={abck|j=i+k} abbbcc
generate as a' btk ck =g b pk K
S
S — XY (concatenate)

X — aXb| A
Y - bYc| A

S=XY=aXbY =abY = abbYc = abbbY cc = abbbcc
S= XY= XbYc= aXbbYc = aXbbbYcc = abbbY cc =
abbbcc

(a priori there is no prescribed order rewriting X or Y
Automata Theory Context-Free Languages Examples: recursion 235 / 417

Regular operations and CFL

Using building blocks

Theorem
If L1, Ly are CFL, then so are L1 U Ly, LiLy and Lj.

Automata Theory Context-Free Languages Regular operations 236 / 417

Regular operations and CFL

Using building blocks

Theorem
If L1, L> are CFL, then so are L1 U Ly, L1L> and L7.

G =(V;, L, S;, P;), having no variables in common.

Automata Theory Context-Free Languages Regular operations 237 / 417

Regular operations and CFL

Using building blocks

Theorem
If L1, L> are CFL, then so are L1 U Ly, L1L> and L7.

G =(V;,L,S;, P;), having no variables in common.

Construction

G=(ViUWU{S}LZLS P), newaxiomS$S
-P=PLUP,U{§ =+ 5,5 — S} L(G)=L(G)UL(G)
- P=PiUP,U{S = 515} L(G)=L(G1)L(G)
G=(V1U{S},Z,5 P), new axiom S
—P=PU{S—55,5S>A} LG)=L(G)*

Automata Theory Context-Free Languages Regular operations

238 / 417

