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Regular languages

Definition (REG)
— @ is in REG.
—{a} in REG, foreveryacX

—if L1 and L, in REG,
then so are L; U Lp, Ly - Ly, and L7.

Smallest set[family] of languages that
— contains & and {a} for a € X, and basis
— is closed under union, concatenation and star. induction
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From elementary components

{ab, bab}*{A, bb}

( ({a}-{b}) U ({b}-{a}-{b}) )" - (2" U ({b}-{b}))
AN
% U

! / N\
\ A
N (b} (b}
/\ / N\
{a) (b} {b}
/ \
{a) {b}
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Regular expressions
- &, A, and a are RegEx  (for all a € X)
—if E; and E; are RegEx, then so are Ef, (E; + E>), and (E1Ep)
expression [syntax] vs its language [semantics]

E string L(E) language

(%) %)

A A}

a {a}

(E1 + E) L(E)UL(E)

(E1E>) L(E1) - L(E2)
Ef L(E1)*

we say

El = E iff L(E1) = L(E»)
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— Odd number of a

bbao bal bbb32 bbal an bb
[M] E 3.2
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— Odd number of a

bbagbaibbbasbbatas bb

b*ab*(ab*a)*b* not correct
b*ab*(ab*ab*)* b*ab*(ab*ab*)(ab*ab™)
b*a(b*ab*ab*)*  not correct
b*a(b*ab*a)*b*  b*a(b*ab*a)(b*ab*a)b*
b*a(b+ ab*a)* b*ab*(ab*a)b*(ab*a)b*
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Examples

— Ending with b, no aa

bb(ab)bbb(ab)(ab)b
(b+ ab)*(b+ ab) at least once

— No aa may also end in a

(b+ ab)*(A+ a)
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Examples

— Even number of both a and b
two letters together

aa and bb keep both numbers even [odd]
ab and ba switch between even and odd, for both numbers
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Examples

— Even number of both a and b
two letters together

aa and bb keep both numbers even [odd]
ab and ba switch between even and odd, for both numbers

(aa+ bb+ (ab + ba)(aa + bb)*(ab + ba) )*
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Examples

— Numeric constants in programming language
14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E-1, .3E42

[M] E 35
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Examples

— Numeric constants in programming language

14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E-1, .3E42
Usedfor(0+14+24+3+4+5+6+7+8+9)

Use s for (A + ’+7 + 7=7)

Use p for 7.

(sdd* (A + pd*) + pdd*)(A + Esdd*)
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Kleene's theorem

Theorem (Kleene)

Finite automata and regular expressions specify the same familiy of
languages.

from RegEx to FA

—Thompson's construction

from FA to RegEx

—McNaughton and Yamada

State elimination <—Brzozowski et McCluskey
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Thompson's construction

Theorem

If L is a regular language, then there exists an NFA that accepts L.

H
a
() M ()@ M

NFA for L*. ..

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Regular languages 178 / 417



Thompson's construction

Theorem
If L is a regular language, then there exists an NFA that accepts L.

®

®
S

|
®
)

a

®

—(@) M () —@) M (&)
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Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*

Step 1
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Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*

Step 2

O——+O—"+0—=0
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Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*

Step 3
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Example 3.28. An NFA Corresponding to ((aa+ b)*(aba)*bab)*

Step 4
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Example 3.28. An NFA Corresponding to ((aa+ b)*(aba)*bab)*

Step 5

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Regular languages 184 / 417



Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*
Step 6 A

A
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Intro: finding a regular expression

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Regular languages 186 / 417



loop on qg

Intro: finding a regular expression

b a

(@ b @—-(@)

b
b[(b+ ab)*ala+ a

single loop on g2

[(b+ ab)*aa] [b(b+ ab)*aa + a]*

from qp to g2

loop on q»

short answer (a4 b)*aa see <—>FA example

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Regular languages 187 / 417



ABOVE

It is possible to construct an expression for a small automaton “by
hand” by starting with a restricted version of the automaton, and slowly
adding nodes and edges.

BELOW
Next a formal proof how this can be done generally, referred to as the
McNaughtonYamada algorithm.

The expression is built iteratively. First we consider only paths in the
automaton that can not pass any node: we only consider single edges.
Then we add the nodes one by one. Regular expression r*(i, j) includes
all strings from paths from / to j that only pass by nodes from 1 to k.
(We always may exit or enter any other node, but only as first or last
node of the path.)

LATER

The method of Brzozowski and McCluskey below “implements” this
proof, using a generalized automaton. It features graphs with edges
that carry regular expressions.



Theorem
If M is an FA, then L(M) is regular.

PROOF
M=(Q,%, q0,Abd) assume @={1,2,...,n} qgo=1

L*(i,j) only paths i, py, ..., pe,j with 1 < pg < k

cf. Floyd's algorithm for all-pairs shortest path problem
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Theorem
If M is an FA, then L(M) is regular.

PROOF
M=(Q,XZ, q0,Ab) assume @={1,2,...,n} qgo=1

L*(i,j) only paths i, py, ..., pe,j with 1 < pp < k

Lo, j)={ald(i,a)=j} i#]j basis
LO(i,j) ={al 8(i,a) =jJU{A} =]
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Theorem
If M is an FA, then L(M) is regular.

PROOF
M=(Q,Z, qgo,A 6) assume @={1,2,..., nf qo=1

L%(i,j) only paths i, py,..., pe.j with 1 < pg < k

oG, j)={albd(i,a)=j} i#]j basis
L°(i,j) ={ald(i,a) = JU{A} i=j

one by one add nodes, k from 1 to n:

Lk(i, j) =...
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Theorem
If M is an FA, then L(M) is regular.

PROOF
M=(Q,Z, qgp,A 8) assume @={1,2,..., nf qo=1

L¥(i,j) only paths i, p1,..., pe,j with 1 < pe < k
oG, j)={albd(i,a)=j} i#]j basis
LO(i,j) ={al 8(i,a) =j}U{A} =]

one by one add nodes, k from 1 to n:
LR(i,j) = L<72(0,5) U L7 k) - (LY (k, k) )T - LY (k)
S~—— ~—

—_—
from i to k loop from k to k from k to j
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Theorem
If M is an FA, then L(M) is regular.

PROOF
M=(Q,Z, q9,A b)) assume @={1,2,...,n} qgo=1

L¥(i,j) only paths i, p1,..., pe,j with 1 < pp < k
LO0i,j) ={ald(i,a) =4} i#}j basis
L9(i,j) ={al8(i,a) =jJU{A} =]

one by one add nodes, k from 1 to n:

LR(i,j) = L72(0,5) U LY k) - (LY (ke k) )T - LYk, )
——

from i to k loop from k to k from k to j

L(M) = U L"(1,)) full language, all nodes
JEA
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Example

rk(i, j) expression for L¥(i, )
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Example

rk(i, j) expression for L¥(i, )

Plig)[j=1]2]3 2 |3

i=1 |a+A|b|D a*b %]

2 a Al b A+aa*b | b

3 a bl A a*b A
Simplified
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rk(i, j) expression for L¥(i, j)

Example

(i, j) | j=1 | 2 3
i=1 a*(baa*)* a*(baa*)*b a*(baa™)*bb
2 aa*(baa*)* (aa*b)* (aa*b)*b
3 aa* + a*baa*(baa*)* | a*b(aa*b)* | A+ a*b(aa*b)*b

AWE}Wﬁ%ﬂ ly’onrgwmh Regular Expressions, and Kleene's Theorem

Kleene
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Example

rk(i, j) expression for L¥(i, j)

r?(i.j) | J | 3
i=1 a*(baa™)* a*(baa*)*b a*(baa*)*bb
2 aa*(baa™)* (aa*b)* (aa*b)*b
3 aa* + a*baa*(baa*)* | a*b(aa*b)* | A+ a*b(aa*bh)*b

2(1,1) = r3(1,1) + r3(1,3)r%(3,3)"r?(3,1)
r3(1,2) = r?(1,2) + r?(1,3)r%(3,3)"r?(3,2)
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