Overview Ch.2 & 3

Regular languages

Definition (REG)

- Ø is in REG.
- $-\{a\}$ in REG, for every $a \in \Sigma$
- if L_1 and L_2 in REG, then so are $L_1 \cup L_2$, $L_1 \cdot L_2$, and L_1^* .

[M] D. 3.1 R

Smallest set[family] of languages that

- contains \emptyset and $\{a\}$ for $a \in \Sigma$, and
- is closed under union, concatenation and star.

[M] cf. E 1.20

basis induction

From elementary components

 $\{ab, bab\}^*\{\Lambda, bb\}$ $((\{a\} \cdot \{b\}) \cup (\{b\} \cdot \{a\} \cdot \{b\}))^* \cdot (\varnothing^* \cup (\{b\} \cdot \{b\}))$

Regular expressions

- $-\varnothing$, Λ , and a are RegEx (for all $a \in \Sigma$)
- if E_1 and E_2 are RegEx, then so are E_1^* , $(E_1 + E_2)$, and (E_1E_2)

expression [syntax] vs its language [semantics]

E string	L(E) language
Ø	Ø
Λ	$\{\Lambda\}$
a	{ <i>a</i> }
$(E_1 + E_2)$	$L(E_1) \cup L(E_2)$
(E_1E_2)	$L(E_1) \cdot L(E_2)$
E_1^*	$L(E_1)^*$

we say

$$E_1 = E_2$$
 iff $L(E_1) = L(E_2)$

Examples

- Odd number of a

 $bba_0ba_1bbba_2bba_1a_2bb$

[M] E 3.2

- Odd number of a

```
bba_0ba_1bbba_2bba_1a_2bb
b^*ab^*(ab^*a)^*b^* not correct
b^*ab^*(ab^*ab^*)^* b^*ab^*(ab^*ab^*)(ab^*ab^*)
b^*a(b^*ab^*ab^*)^* not correct
b^*a(b^*ab^*a)^*b^* b^*a(b^*ab^*a)(b^*ab^*a)b^*
b^*a(b+ab^*a)^* b^*ab^*(ab^*a)b^*(ab^*a)b^*
[M] E 3.2
```

Examples

- Ending with b, no aa

$$bb(ab)bbb(ab)(ab)b$$

 $(b+ab)^*(b+ab)$ at least once

[M] cf. E 3.3, see \hookrightarrow E. 2.3

No aa may also end in a

$$(b+ab)^*(\Lambda+a)$$

Examples

Even number of both a and b
 two letters together
 aa and bb keep both numbers even [odd]
 ab and ba switch between even and odd, for both numbers

- Even number of both a and b

two letters together

aa and bb keep both numbers even [odd]

ab and ba switch between even and odd, for both numbers

$$(aa + bb + (ab + ba)(aa + bb)^*(ab + ba))^*$$

[M] E 3.4, see \hookrightarrow Brzozowski *et* McCluskey

Examples

- Numeric constants in programming language 14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E-1, .3E+2

- Numeric constants in programming language

14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E-1, .3E+2 Use
$$d$$
 for $(0+1+2+3+4+5+6+7+8+9)$ Use s for $(\Lambda+'+'+'-')$ Use p for ' . '

$$(sdd^*(\Lambda + pd^*) + pdd^*)(\Lambda + Esdd^*)$$

[M] E 3.5

Kleene's theorem

Theorem (Kleene)

Finite automata and regular expressions specify the same familiy of languages.

- from RegEx to FA

 →Thompson's construction
- from FA to RegEx

 →McNaughton and Yamada
 State elimination →Brzozowski et McCluskey

Thompson's construction

Theorem

If L is a regular language, then there exists an NFA that accepts L.

Thompson's construction

Theorem

If L is a regular language, then there exists an NFA that accepts L.

Step 1

Step 2

Step 3

Intro: finding a regular expression

Intro: finding a regular expression

short answer $(a+b)^*aa$ see \hookrightarrow FA example

ABOVE

It is possible to construct an expression for a small automaton "by hand" by starting with a restricted version of the automaton, and slowly adding nodes and edges.

BELOW

Next a formal proof how this can be done generally, referred to as the McNaughtonYamada algorithm.

The expression is built iteratively. First we consider only paths in the automaton that can not pass any node: we only consider single edges. Then we add the nodes one by one. Regular expression $r^k(i,j)$ includes all strings from paths from i to j that only pass by nodes from 1 to k. (We always may exit or enter any other node, but only as first or last node of the path.)

LATER.

The method of Brzozowski and McCluskey below "implements" this proof, using a generalized automaton. It features graphs with edges that carry regular expressions.

If M is an FA, then L(M) is regular.

PROOF

$$M = (Q, \Sigma, q_0, A, \delta)$$
 assume $Q = \{1, 2, \dots, n\}$ $q_0 = 1$

$$L^k(i,j)$$
 only paths $i, p_1, \ldots, p_\ell, j$ with $1 \leqslant p_\ell \leqslant k$

[M] Th 3.30

cf. Floyd's algorithm for all-pairs shortest path problem

If M is an FA, then L(M) is regular.

PROOF

$$M = (\mathit{Q}, \Sigma, \mathit{q}_0, \mathit{A}, \delta)$$
 assume $\mathit{Q} = \{1, 2, \dots, \mathit{n}\}$ $\mathit{q}_0 = 1$

$$L^k(i,j)$$
 only paths $i, p_1, \ldots, p_\ell, j$ with $1 \leq p_\ell \leq k$

$$L^{0}(i,j) = \{a \mid \delta(i,a) = j\} \quad i \neq j$$

$$L^{0}(i,j) = \{a \mid \delta(i,a) = j\} \cup \{\Lambda\} \quad i = j$$

[M] Th 3.30

If M is an FA, then L(M) is regular.

PROOF

$$M = (Q, \Sigma, q_0, A, \delta)$$
 assume $Q = \{1, 2, \dots, n\}$ $q_0 = 1$

 $L^k(i,j)$ only paths i,p_1,\ldots,p_ℓ,j with $1\leqslant p_\ell\leqslant k$

$$L^{0}(i,j) = \{a \mid \delta(i,a) = j\} \quad i \neq j$$

$$L^{0}(i,j) = \{a \mid \delta(i,a) = j\} \cup \{\Lambda\} \quad i = j$$

3

one by one add nodes, k from 1 to n:

$$L^k(i,j) = \dots$$

[M] Th 3.30

If M is an FA, then L(M) is regular.

PROOF

$$M = (Q, \Sigma, q_0, A, \delta)$$
 assume $Q = \{1, 2, ..., n\}$ $q_0 = 1$

 $L^k(i,j)$ only paths $i, p_1, \ldots, p_\ell, j$ with $1 \leqslant p_\ell \leqslant k$

$$L^{0}(i,j) = \{a \mid \delta(i,a) = j\} \quad i \neq j$$

$$L^{0}(i,j) = \{a \mid \delta(i,a) = j\} \cup \{\Lambda\} \quad i = j$$

one by one add nodes, k from 1 to n:

$$L^{k}(i,j) = L^{k-1}(i,j) \ \cup \ \underbrace{L^{k-1}(i,k)}_{\text{from } i \text{ to } k} \cdot \underbrace{\left(L^{k-1}(k,k)\right)^{*}}_{\text{loop from } k \text{ to } k} \cdot \underbrace{L^{k-1}(k,j)}_{\text{from } k \text{ to } j}$$

[M] Th 3.30

If M is an FA, then L(M) is regular.

PROOF

$$M = (Q, \Sigma, q_0, A, \delta)$$
 assume $Q = \{1, 2, ..., n\}$ $q_0 = 1$

$$L^k(i,j)$$
 only paths $i, p_1, \ldots, p_\ell, j$ with $1 \leqslant p_\ell \leqslant k$

$$L^{0}(i, j) = \{a \mid \delta(i, a) = j\} \cup \{\Lambda\} \quad i = j$$

 $L^0(i, j) = \{a \mid \delta(i, a) = i\} \quad i \neq i$

one by one add nodes, k from 1 to n:

$$L^{k}(i,j) = L^{k-1}(i,j) \cup \underbrace{L^{k-1}(i,k)}_{\text{from } i \text{ to } k} \cdot \underbrace{\left(L^{k-1}(k,k)\right)^{*}}_{\text{loop from } k \text{ to } k} \cdot \underbrace{L^{k-1}(k,j)}_{\text{from } k \text{ to } j}$$

$$L(M) = \bigcup L^n(1,j)$$
 full language, all nodes

< ∃ →

 $r^k(i,j)$ expression for $L^k(i,j)$

$$\begin{array}{c|cccc} r^0(i,j) & j=1 & 2 & 3 \\ \hline i=1 & a+\Lambda & b & \varnothing \\ 2 & a & \Lambda & b \\ 3 & a & b & \Lambda \\ \end{array}$$

[M] E 3.32

Example

 $r^k(i,j)$ expression for $L^k(i,j)$

$$\begin{array}{c|cccc} r^1(i,j) & j=1 & 2 & 3 \\ \hline i=1 & a^* & a^*b & \varnothing \\ 2 & aa^* & \Lambda + aa^*b & b \\ 3 & aa^* & a^*b & \Lambda \\ \end{array}$$

Simplified

[M] E 3.32

 $r^{k}(i, j)$ expression for $L^{k}(i, j)$

$r^{1}(i,j)$	j=1	2	3
i = 1	a*	a* b	Ø
2	aa*	$\Lambda + aa^*b$	Ь
3	aa*	a* b	Λ
		•	

 $r^k(i,j)$ expression for $L^k(i,j)$

$$r^{3}(1,1) = r^{2}(1,1) + r^{2}(1,3)r^{2}(3,3)*r^{2}(3,1)$$

 $r^{3}(1,2) = r^{2}(1,2) + r^{2}(1,3)r^{2}(3,3)*r^{2}(3,2)$

[M] E 3.32